Bound-T timing analysis tool

TR-TN-AOMEF-001

Technical Note

AOMF with
Keil C51 extensions
as input to Bound-T

Version 1 'é

2007-09-27 Tidorum Ltd.

Tidorum Ltd
www.tidorum.fi
Tiirasaarentie 32
FI-00200 Helsinki
Finland

This document was written and is maintained by Niklas Holsti at Tidorum Ltd.

Copyright 2007 Tidorum Ltd.

This document can be copied and distributed freely, in any format or medium, provided that it is kept
entire, with no deletions, insertions or changes, and that this copyright notice is included, prominently
displayed, and made applicable to all copies.

Document reference: TR-TN-AOMEF-001

Document issue: Version 1

Document issue date: 2007-09-27

Bound-T version: Various, depending on target processor.

Web location: http://www.bound-t.com/tech_notes/tn-aomf.pdf
Trademarks:

Bound-T is a trademark of Tidorum Ltd.
MCS®-51 is a registered trademark of Intel Corp.

Credits:
This document was created with the free OpenOffice.org software, http://www.openoffice.org/.

Relevant Bound-T source-file versions:

File Revision
formats-aomf_keil.adb 1.4
formats-aomf_keil.ads 1.5
formats-aomf_keil-opt.ads 1.4
formats-aomf_keil-parsing.adb 1.8
formats-aomf_keil-parsing.ads 1.4
formats-aomf_keil-text.adb 1.4

formats-aomf_keil-text.ads 1.2

Preface

The information in this document is believed to be complete and accurate when the
document is issued. However, Tidorum Ltd. reserves the right to make future changes in
the technical specifications of the product Bound-T described here. For the most recent
version of this document, please refer to the web address http.//www.tidorum.fi/.

If you have comments or questions on this document or the product, they are welcome via
electronic mail to the address info@tidorum.fi, or via telephone, fax or ordinary mail to the
address given below.

Please note that our office is located in the time-zone GMT + 2 hours (+3 hours in the
summer) and office hours are 9:00 -16:00 local time.

Cordially,

Tidorum Ltd.

Telephone: +358 (0) 40 563 9186

Web: http://www.tidorum.fi/
http://www.bound-t.com/

Mail: info@tidorum.fi

Post: Tiirasaarentie 32
FI-00200 HELSINKI
Finland

Credits

The Bound-T tool was first developed by Space Systems Finland Ltd (http://www.ssf.fi)
with support from the European Space Agency (ESA/ESTEC). Free software has played an
important role; we are grateful to Ada Core Technology for the Gnat compiler, to William
Pugh and his group at the University of Maryland for the Omega system, to Michel
Berkelaar for the Ip-solve program, to Mats Weber and EPFL-DI-LGL for Ada component
libraries, and to Ted Dennison for the OpenToken package. Call-graphs and flow-graphs
from Bound-T are displayed with the dot tool from AT&T Bell Laboratories.

Contents

1

1.1
1.2
1.3
1.4
1.5

2

2.1
2.2
2.3
2.4

3
4

INTRODUGCTION. ..ttt e ae e 1
PUTPOSE AN SCOPE....uuiiiiiiieeeeieeeiitttee et e ettt e e e e e sttt et e e e s s ssaibbeeeeeessssbbtteeeeeessnsssaeaaeeens 1
VBT VIBW . .ttt bttt bttt e et ettt ettt e e et e e e aeaeaeaeaaeeaeaeaeaeaeaaenaaans 1
RETEIEIICES. .. eeeieiiiiee ettt ettt e ettt e e ettt e e sttt e e e st e e e s sabtaeessatbaeessasbaeeesanbteeeeanaeens 1
TYPOZIraphiC CONVENTIONS. ceeiiieeuiiriiiieeeeeeeriiieitteeeeeeesriiatrreeeeeesessarreteeeessssnnrereeeessssssnnseeeeeesns 2
AbbTeviations and ACTOTIYINIS.cceeeuurririreeeeeeeeeeeeeseerrrereeeeeeeeeeessassrsrrreseeeaeeseesssssssssssssseeees 2
THE AOME FORMAT ... e ens 3
AOME FEATUTES. ... oiieiiiiiiiiee ettt ettt e s e ettt e e e e eetenenae s e e eeeennaaae s eseeeennnnes 3
How Bound-T Reads an AOMEF File..........uuuiiiiiiiiiiiiiiiiiieeeeeeeeiiieeeee e eesienee e e e s e s saanaeeeee s 5
Scopes for Symbols and Line NUMDETS........ccuttiiiiiiiiiiiiiiiieeeiiteee et 5
Target-Specific Parts of AOMF PrOCESSINEG........uuviieeeiiirriiiiiiiieeeeeeeeeniniiiiieeeeeeeeessssnnrreeeeeeeenns 6
AOMF WARNING MESSAGES.......cii e 8
AOMF ERROR MESSAGES......c e 10

1.1

1.2

1.3

INTRODUCTION

Purpose and Scope

Bound-T is a tool for computing bounds on the worst-case execution time of real-time
programs; see reference [1]. Bound-T applies static analysis to the machine-code program
in its compiled, linked and executable form. Bound-T must therefore start by reading in
the machine-code program from a file, for example a file in the ELF format. Bound-T can
read and understand several program-file formats. In addition to the basic machine code
(memory load image) a program file usually also contains symbolic debugging information
for the program (and this is usually the complex part of the format).

There are different versions of Bound-T for different target processors. Each version
supports a set of program formats that are commonly used with that target processor and
its cross-compilers. The Bound-T Application Note for each target explains which formats
are supported.

This Technical Note supplements the Bound-T User Manual [1] and the target-specific
Application Notes by describing how Bound-T reads and models programs represented in
the Absolute Object Module Format (AOMF) as defined by Intel [3] and extended by Keil [4,
2]. This format is often used for programs that run on MCS-51 microcontrollers, also
known as “8051” processors, but could conceivably be used for other targets, too.

This Technical Note describes Bound-T AOMF support in a generic way, without conside-
ring a particular target processor. When a version of Bound-T for a target processor
supports AOMF, the Application Note for that target processor may give additional target-
specific details, for example on the modeling of variables held in the processor's registers.

Overview

The reader is assumed to be familiar with the general principles and usage of Bound-T, as
described in the Bound-T User Manual [1]. The user manual also contains a glossary of
terms, some of which may be used in this Technical Note. You may also may find it useful
to first read the Bound-T Application Note for your target processor.

The remainder of this document is structured as follows:

-« Chapter 2 describes the main features of the AOMF format and how they relate to the
functions of Bound-T. The chapter also gives an overview of how Bound-T reads and
uses an AOMF file.

- Chapter 3 explains the warning messages that Bound-T may emit if it finds some
problems or unsupported features in an AOMF file.

Chapter 4 explains the possible error messages similarly.

References

[1] Bound-T User Manual.
Tidorum Ltd, Doc. ref. TR-UM-001.

http://www.bound-t.com/user-manual.pdf.

Bound-T and AOMF Introduction 1

http://www.bound-t.com/user-manual.pdf

[2] Keil — an ARM company. http://www.keil.com/.

[3]1 External Product Specification for the MCS-51 Object Module Format.
Intel Corporation, V5.0, Sept 05, 1982.

[4] Additions to the 8051 Object Module Format (OMF-51).
Keil Elektronik GmbH, 05/07/2000.

1.4 Typographic Conventions
We use the following fonts and styles to show the role of pieces of the text:
-option A command-line option for Bound-T or other tools.
symbol A mathematical symbol or variable.
text Text quoted from a text / source file or command.
Record Field The name of an AOMF record (type), or the name of a field in an AOMF
record.
1.5 Abbreviations and Acronyms
See also reference [1] for abbreviations specific to Bound-T and Appendix B of [3] for a
glossary of AOMF terms.
AOMF Absolute Object Module Format
BL51 Keil Banking Linker
OMF Object Module Format
PL/M Programming Language for Microcomputers
WCET Worst-Case Execution Time
2 Introduction Bound-T and AOMF

http://www.keil.com/

2.1

THE AOMF FORMAT

AOMF Features

AOMF and OMF

The Absolute Object Module Format AOMF is a subset of the Object Module Format or
OMF [3]. OMF can represent relocatable code (compiled but not yet linked) but AOMF, as
defined in Appendix C of [3], is limited to absolute code that is both compiled and linked,
that is, placed at absolute addresses in memory. Bound-T analyses only absolute code and
therefore reads only AOMF, not OME

AOMF record types

AOMF as Intel defined it in [3] is a binary file format — not text. An AOMF file is a
sequence of records and each record is a sequence of 8-bit octets. There are several types of
record. In each type the octets are grouped into data fields in different ways. The names of
the record types and data fields reflect the fact that OMF and AOMF were first used with
the PL/M programming language.

Each AOMF record begins with a type octet that gives the record type. This is followed by a
two-octet record-length field, followed by type-specific fields. The last octet in each record
is a check-sum of the record's contents. The length field lets a reader skip records without
reading their contents or even knowing the structure of the contents.

A basic AOMF file can contain the following record types [3]:
« Module Header Record: Starts the file and defines the name of the module.

« Content Record: Defines a part of the program by giving code (or data) octets to be
loaded at a given address in a given program “segment”.

« Scope Definition Record: Names the procedure or block that contains the symbols defined
in following Debug Items Records. Another form of Scope Definition Record marks the end
of a procedure or block. Scopes can be nested.

- Debug ltems Record: Defines the address (or register) assigned to the symbol for a
procedure, label, or data variable. The name of the symbol is also given, of course.
Another form of Debug Items Record connects source-code line-numbers to the corres-
ponding machine-code addresses.

« Module End Record: Ends the file.

Keil extensions

The company Keil (now a part of ARM [2]) extended AOMF with more symbolic
debugging information and introduced the following record types [4] that Bound-T can
read and use:

+ Source Name Record: Provides the name of the source-code file that was compiled or
assembled to generate the following Content Records and Debug ltems Records.

Bound-T and AOMF The AOMF Format 3

- Type Definition Record: Defines the types of symbols mentioned in Debug Items Records.
The full, recursive type structure of the C language is supported. However, at present
Bound-T makes very little use of type infomation.

« Extended Debug Items Record: Associates type information from Type Definition Records
with each symbol.

Keil also extended AOMF to support “banked” code by means of the following new or
extended record types [4] that Bound-T does not support:

« BL51 Bank Head Record
« Banked Content Record
- Banked Scope Definition Record
Banked Debug Items Record
- Banked Extended Debug ltems Record.
According to [4] Keil also added, or will add, further record types for “source browse” and
other features. Bound-T tries to tolerate such records by skipping them.
Overall AOMF structure

The records in an AOMF file occur in an order that obeys the syntax defined in [3]
and [4]. We give only an outline here.

For non-banked code the file starts with a Module Header Record and ends with the
corresponding Module End Record. Between these records is a mixture of Content Records,
Scope Definition Records, Type Definition Records, Source Name records, and (Extended)
Debug Items Records.

Scope Definition Records occur in pairs. The first record opens a scope and the second
record closes the scope. Such scopes can be nested.

A Source Name record can come immediately after a scope-starting Scope Definition Record,
and only there.

The initial Module Header Record and the final Module End Record are also held to define a
scope — the module scope.

Banked AOMF structure

An AOMF file for banked code begins by a BL51 Bank Head Record which is followed by the
Module Header Record and other records as in a non-banked file, but using the extended,
Banked form of each record type.

As already said Bound-T does not support banked code. However, Bound-T will make an
attempt to read banked AOMF in the hope that the banking is irrelevant to the particular
analysis that is performed.

The AOMF Format Bound-T and AOMF

2.2

2.3

How Bound-T Reads an AOMF File

Auto-detecting AOMF

A given version of Bound-T can often read several forms of program files. If the user does
not specify the file-format with a command-line option Bound-T will try to determine the
format from the given program file itsef. This is called “auto-detecting” the format.

To determine if a given file is an AOMF file Bound-T tries to read one AOMF record from
the start of the file. Bound-T considers the file to be AOMF if it finds a valid Module Header
Record, BL51 Bank Head Record, or Keil “source browse” record at the start of the file.

Reading and loading an AOMF file

Bound-T reads an AOMF file in one pass from the first record (Module Header or BL51 Bank
Head) to the last record (Module End). Any data in the file after the Module End Record is
ignored. While reading the file, Bound-T:

+ checks the check-sum field of each record,

« checks that scope-starting Scope Definition Records pair up with matching scope-ending
Scope Definition Records, with nested scopes started and ended in last-in-first-out order,

loads code/data bytes from Content Records into a memory-image data structure that
Bound-T will later analyse as the code and initial data of the target program,

- loads type definitions from Type Definition Records into a type data-base for use by later
symbol definitions,

+ records source-file names from Source Name records for use by later source-line/code-
address connections,

+ loads symbol definitions and source-line/code-address connections from (Extended)
Debug ltems Records into a symbol-table data structure that Bound-T will use to display
analysis results in source-code terms and to translate assertions expressed in source-
code terms into assertions on machine-code entities.

The following sections explain some details of these steps and actions.

Scopes for Symbols and Line Numbers

Constructing Bound-T scopes for symbols

The Bound-T symbol table attaches a static, lexical scope to each symbol (the name of a
subprogram or a variable) and to each connection between a source-code line number and
a code address. The scope is a list of zero or more strings that are the names of the
program parts (modules, subprograms, etc.) that lexically contain the symbol. The strings
in the list are called the levels of the scope.

When Bound-T reads an AOMF file it maintains a current symbol scope that reflects the
current nesting of Scope Definition Records. The scope levels are simply the Block Name
fields of the nested Scope Definitions from outermost to innermost.

Bound-T and AOMF The AOMF Format 5

2.4

For example, symbols defined in a Debug ltems Record that is not within a Scope Definition
have a null Bound-T scope. Symbols defined in a Debug ltems Record that is within a Scope
Definition with Block Name = “Foo” have the Bound-T scope “Foo”. If there is a nested
Scope Definition with Block Name = “B1k1” then symbols defined in this scope have the
Bound-T scope “Foo | B1k1” where the '|' separates levels in the scope.

The module name, as defined in the Module Header Record, is not usually entered in the
Bound-T scope for a symbol.

The above explains the general or default construction of scopes for symbols. This default
can be overriden in versions of Bound-T for some target processors. More below on target-
specific parts of AOMF processing.

Constructing Bound-T scopes for source-line numbers

The Bound-T symbol table attaches a static scope to each connection between a source-
code line number and a code address. These scopes differ from the scopes for symbols. The
scope for a line-number/code-address connection usually has two levels where the first
(outer) level is the name of the source-code file and the second (inner) level is the name of
the subprogram that contains the source line.

When Bound-T reads an AOMF file it creates a current line scope that reflects the content of
the Module Header Record, the most recent Source Name Record, and the most recent scope-
starting Scope Definition Record for a procedure (a subprogram), as follows:

- First (outermost) scope level (~ source file name):

« the source-file name from the most recently preceding Source Name record, if there is
such a record; otherwise

« the module name from the Module Header Record, if not null; otherwise
« anull string (and a warning message).
Second (next inner) scope level (~ subprogram name):

« the procedure name (Block Name field) from the most recently preceding Scope
Definition Record that starts a procedure scope, if there is such a record; otherwise

« anull string (and a warning message).

This construction of scopes for line-numbers is fixed and cannot be overridden in a target-
specific way.

Target-Specific Parts of AOMF Processing

The process described above for reading and loading an AOMF file invokes some
operations that are specific to the target processor for which the AOMF program is
compiled and linked. The actions that can be defined in a target-specific way are the
following:

Deciding whether a Content Record for a given segment should be loaded into the
Bound-T memory image, and if so, in what octet order (big-endian, little-endian, word
size).

The AOMF Format Bound-T and AOMF

« Deciding whether a data symbol (variable) defined in an (Extended) Debug ltems Record
should be loaded into the Bound-T symbol table, and whether it should be modelled as
an arithmetic “storage cell” that can hold an integer value. For example, floating-point
variables are usually not loaded or modelled.

+ Defining the Bound-T scope for symbols. Target-specific operations can override the
default symbol-scope construction explained above.

Translating the 16-bit memory addresses in (Extended) Debug ltems Records to the kind
of code/data address used in the target processor. Likewise for data register names.

These steps in AOMF processing should be explained in the Bound-T Application Note for
the relevant target processor, as should be the warning or error messages that may issue
from these steps.

Bound-T and AOMF The AOMF Format 7

AOMF WARNING MESSAGES

The following table lists the warning messages that Bound-T may emit to highlight some
problems or unsupported features in an AOMF file. The messages are listed in alphabetical
order, perhaps slightly altered by variable fields in the message; such fields are indicated
by italic text. The Bound-T User Manual [1] explains the general form of warning
messages. The Bound-T Application Note for the relevant target processor may describe
additional warning messages relating to the target-specific steps in AOMF processing.

The probable reason for any of these warnings is either a damaged AOMF file, or a file that
uses a version of AOMF that Bound-T does not support. To correct the problem you should
obtain an undamaged program file, in a supported version of AOMF, or in some other

format that Bound-T supports for your target processor.

Table 1: Warning messages for AOMF

Warning Message

Meaning

AOMF record with code C (hex)
skipped; end-of-scope out of
context

The file contains a scope-ending Scope Definition Record at the
outermost scope level. Thus the record cannot and does not pair up
with any earlier scope-starting Scope Definition Record.

AOMF record with code C (hex)
skipped; invalid in a module

The file contains, between the initial Module Header Record and the
final Module End Record, but not within a scope defined by a pair of
Scope Definition Records, a record that is not allowed at such a place,
namely another Module Header Record, a Source Name record, a BL51
Bank Head Record, or a Keil “source browse” record.

AOMF record with code C (hex)
skipped; invalid in a scope

The file containts, between a scope-starting Scope Definition Record
(after the optional Source Name Record for this scope) and the
matching scope-ending Scope Definition Record, but not within a
nested scope, a record that is not allowed at such a place, namely
another Source Name Record, a Module Header Record, a BL51 Bank
Head Record, a Module End Record, or a Keil “source browse” record.

AOMF record with code C (hex)
skipped; unknown content

The DEF TYP field in this Debug ltems Record has a value that does
not represent a known kind of debug items: local symbols, public
symbols, segment symbols, or source-line numbers.

AOMF source-file name unknown
for line numbers

This Debug ltems Record contains source-line number/code-address
connections, but Bound-T finds no information on which source file
contains these source lines because there is no preceding Source
Name Record and the Module Header Record defines no module name.
Therefore the source-file part of the Bound-T scope (see [1]) will be
a null string for these source-line numbers.

AOMF subprogram name unknown
for line numbers

This Debug ltems Record contains source-line number/code-address
connections, but Bound-T finds no information on which subprogram
contains these source lines because there is no preceding Scope
Definition Record that starts a procedure. Therefore the subprogram-
name part of the Bound-T scope (see [1]) will be a null string for
these source-line numbers.

Skipping AOMF BL51 Bank Head
record; not implemented

The AOMF file begins with a BL51 Bank Head Record. Bound-T does
not support banked code, but continues reading the file in the hope
that banking is not relevant to this analysis.

8 Warning Messages

Bound-T and AOMF

Warning Message Meaning

Unknown AOMF Record The file contains a record with a record-type field that has a value (T,
Type =T in hex) that Bound-T does not know about.
Unknown Pointer Kind = K This Type Definition Record defines a Generic Pointer Descriptor [4], but

the field that denotes the kind of pointer (pSpec_8) contains the
number K (in decimal) that Bound-T does not know about.

Unknown Pointer Space = S This Type Definition Record defines a Spaced Pointer Descriptor or a
Generic Pointer Descriptor [4], but the field that denotes the kind of
memory space that the pointer points to (Mspace_C51_n8 or
MSpace_8) contains the number S (in decimal) that Bound-T does
not know about.

Bound-T and AOMF Warning Messages 9

AOMF ERROR MESSAGES

The following table lists the error messages that Bound-T may emit to highlight severe
problems or unsupported features in an AOMF file. The messages are listed in alphabetical
order, perhaps slightly altered by variable fields in the message; such fields are indicated
by italic text. The Bound-T User Manual [1] explains the general form of error messages.
The Bound-T Application Note for the relevant target processor may describe additional
error messages relating to the target-specific steps in AOMF processing.

The probable reason for any of these errors is either that the AOMF file is damaged or that
the file uses a version of AOMF that Bound-T does not support. To correct the problem you
should obtain an undamaged program file, in a supported version of AOMF, or in some
other format that Bound-T supports for your target processor.

Table 2: Error messages for AOMF

Error Message

Meaning

AOMF level 0 scope should be
BEGIN_MODULE, not S

The file contains an outermost Scope Definition Record (one that
is not nested in another scope) in which the BLK TYP field
denotes the start of some nested kind of scope, S, instead of a
module scope as expected at level 0.

AOMF level 1 scope should be
BEGIN PROCEDURE, not S

The file contains a level-1 Scope Definition Record (one that is
nested only within the module, not in a procedure or a block) in
which the BLK TYP field denotes the start of some deeper
nested kind of scope, S, instead of a procedure scope as
expected at level 1.

AOMF level L scope should be
BEGIN DO, not S

The file contains a Scope Definition Record nested at level L > 1
in which the BLK TYP field denotes the start of some other kind
of scope, S, instead of a DO-block scope as expected at this
level.

AOMF Module Header.Name /=
Module End.Name

The Block Name field in the Module End Record is not equal to
the Block Name field in the Module Header Record.

AOMF kind record invalid or out of
context. Detail.

The file contains a record of the given kind that is invalid in
some way (usually reported by preceding error messages) or
appears in the wrong context for this kind of record, according
to the overall syntax of AOMF. The Detail field gives more
information on the context.

AOMTF record has wrong check-sum

The trailing check-sum octet in a record does not match the
check-sum computed from the record's other content.

Unknown AOMF Compound Type Tag
=T

The file contains a Type Definition Record with a value T (hex) in
the Tl field that is in the range of compound type descriptors
but is not a valid such value.

Too short AOMF Content.Length = L

The value L (octets, in decimal) in the Record Length field of a
Content Rcord is shorter than the least possible length for this
type of record.

Unknown AOMF
Debug Items.Def Type = B; skipping
record

The file contains a Debug ltems Record [3] with an invalid value
B (decimal) in the DEF TYP field.

Unknown AOMF
Scope_Definition.Block Type =B

The file contains a Scope Definition Record with an invalid value
B (decimal) in the BLK TYP field.

10 Error Messages

Bound-T and AOMF

Error Message

Meaning

Unknown AOMF
Segment Info.Seg Type = S

This Debug Items Record defines segment symbols but the SEG
TYPE part of the SEG INFO field contains the number S (in
decimal), a number unknown to Bound-T for this field.

Unknown AOMF Symbol Info.Usage =
U

This Debug Items Record defines local, public or segment
symbols, but the USAGE TYPE part of the SYM INFO field
contains the number U (in decimal), a number unknown to
Bound-T for this field.

Bound-T and AOMF

Error Messages

11

Tidorum Ltd

Tiirasaarentie 32
FI-00200 Helsinki, Finland
www.tidorum.fi

Tel. +358 (0) 40 563 9186
VAT F1 18688130

12

TR-TN-AOMF-001

Version 1

2007-09-27

	1Introduction
	1.1Purpose and Scope
	1.2Overview
	1.3References
	[1]Bound-T User Manual.
Tidorum Ltd, Doc. ref. TR-UM-001.
http://www.bound-t.com/user-manual.pdf.
	[2]Keil – an ARM company. http://www.keil.com/.
	[3]External Product Specification for the MCS-51 Object Module Format.
Intel Corporation, V5.0, Sept 05, 1982.
	[4]Additions to the 8051 Object Module Format (OMF-51).
Keil Elektronik GmbH, 05/07/2000.

	1.4Typographic Conventions
	1.5Abbreviations and Acronyms

	2The AOMF Format
	2.1AOMF Features
	AOMF and OMF
	AOMF record types
	Keil extensions
	Overall AOMF structure
	Banked AOMF structure

	2.2How Bound-T Reads an AOMF File
	Auto-detecting AOMF
	Reading and loading an AOMF file

	2.3Scopes for Symbols and Line Numbers
	Constructing Bound-T scopes for symbols
	Constructing Bound-T scopes for source-line numbers

	2.4Target-Specific Parts of AOMF Processing

	3AOMF Warning Messages
	4AOMF Error Messages

