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Preface

The information in this document is believed to be complete and accurate when the document  
is issued. However, Tidorum Ltd. reserves the right to make future changes in the technical 
specifications  of  the  product  Bound-T described here.  For the most  recent  version of  this 
document, please refer to the web-site http://www.bound-t.com/.

If you have comments or questions on this document or the product, they are welcome via  
electronic mail to the address info@tidorum.fi or via telephone or ordinary mail to the address 
given below.

Please note that our office is located in the time-zone GMT + 2 hours, and office hours are  
9:00 - 16:00 local time. In summer daylight savings time makes the local time equal GMT + 3 
hours.

Cordially,

Tidorum Ltd.

Telephone: +358 (0) 40 563 9186
Fax: +358 (0) 42 563 9186
Web: http://www.tidorum.fi/
E-mail: info@tidorum.fi

Mail: Tiirasaarentie 32
FI-00200 Helsinki
Finland

Credits

The Bound-T tool was first developed by Space Systems Finland Ltd. (http://www.ssf.fi/) with 
support  from  the  European  Space  Agency  (ESA/ESTEC).  Free  software  has  played  an 
important role; we are grateful to Ada Core Technology for the Gnat compiler, to William Pugh 
and his group at the University of Maryland for the Omega system, to Michel Berkelaar for the 
lp-solve program, to Mats Weber and EPFL-DI-LGL for Ada component libraries, and to Ted 
Dennison  for  the  OpenToken package.  Call-graphs  and  flow-graphs  from  Bound-T are 
displayed with the dot tool from AT&T Bell Laboratories. Some versions of Bound-T emit XML 
data with the XML_EZ_Out package written by Marc Criley at McKae Technologies.
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1 INTRODUCTION

1.1 What Bound-T is

Bound-T is a tool for developing real-time software - computer programs that must run fast  
enough, without fail.

The main function of  Bound-T is to compute an  upper bound on the  worst-case execution 
time of a program or subprogram.

The function, “bound time”, inspired the name “Bound-T” pronounced as “bounty” or “bound-
tee”.

Bound-T can also compute an  upper bound on the  stack usage, thus making sure that the 
program cannot fail due to stack overflow.

Real-time deadlines

A major difficulty in real-time programming is to verify that the program meets its run-time 
timing constraints, for example the maximum time allowed for reacting to interrupts, or to 
finish some computation.

Bound-T helps to answer questions such as

• What is the maximum possible execution time of this interrupt handler? Is it less than the  
required response time?

• How long does it take to filter a block of input data? Will it be ready before the output 
buffer is drained?

To answer such questions, you can use Bound-T to compute an upper bound on the execution 
time  of  the  subprogram  concerned.  If  the  subprogram  cannot  be  interrupted  by  other 
computations, and this upper bound is less or equal to the time allowed for the subprogram, 
we know for sure that the subprogram will always finish in time.

When the program is concurrent (multi-threaded), with several threads or tasks interrupting 
one another, the execution time bounds for each thread can be combined to verify the timing 
(schedulability) of the program as a whole.

Static analysis – all cases covered

Timing constraints are traditionally addressed by measuring the execution time of a set of test  
cases. However, it is often hard to be sure that the case with the largest possible execution time 
is tested. In contrast, Bound-T analyses the program code statically and considers all possible 
cases or paths of execution. Bound-T bounds are sure to contain the worst case.

Static analysis – no hardware required

Since Bound-T analyses rather than executes the target program, target-processor hardware is 
not required. With the static analysis  approach, timing constraints can be verified without 
complicated test harnesses, environment simulations or other tools that you would need for 
really running the target program.

Of course, thorough software-development processes should include testing, but with Bound-T 
the timing can be verified early, before the full test environment becomes available. In many 
embedded-system development projects the hardware is not available until late in the project, 
but Bound-T can be used as soon as some parts of the embedded target program are written.

Bound-T Assertion Language Introduction 9



It’s impossible, but we do it with assertions

The task  Bound-T tries to solve is generally impossible to automate fully.  Finding out how 
quickly the target program will finish is harder than finding out if it will  ever finish  – the 
famously unsolvable “halting problem”. For brevity and clarity, this manual generally omits to 
mention the possibility of unsolvable cases. So, when we say that  Bound-T will do such and 
such, it is always with the implied assumption that the problem is analysable and solvable with 
the algorithms currently implemented in Bound-T.

For difficult target programs, the user can always control and support  Bound-T's automatic 
analysis by giving  assertions. An assertion is a statement about the target program that the 
user knows to be true and that bounds some crucial aspect of the program's behaviour, for  
example the maximum number of a times a certain loop is repeated.

Approximations

Also bear in mind that Bound-T produces an upper bound for the execution time, which may 
be different from the exact  worst-case time. Various approximations in  Bound-T's analysis 
algorithms may give over-estimated, too conservative bounds. However, the bounds can be 
sharpened by suitable assertions.

Context and place

The figure below illustrates the context in which Bound-T is used. The inputs are the compiled, 
linked executable target program and an optional file of assertions. Another optional input file 
shows the positions of marks in the source-code; assertions can use such marks to identify the 
program  parts  (subprograms,  loops,  ...)  to  which  the  assertions  apply.  The  input  from 
command-line arguments and options is not shown in the figure.

The outputs are the bounds on execution time and stack usage (optional), as well as control-
flow graphs and call graphs (also optional).

The present document defines the language in which are written the assertions that, in the  
figure, enter the Bound-T tool from the left.

10 Introduction Bound-T Assertion Language



Figure 1: Inputs and outputs

1.2 Overview of this document

What the reader should know

This document defines and explains the Bound-T assertion language – the text that a user can 
give to Bound-T, in addition to the target program code, to support and constrain the analysis  
of  the execution time and stack usage of the target program. The reader is assumed to be  
familiar with the general usage of  Bound-T – for example from the  Bound-T User Guide, at 
http://www.bound-t.com/manuals/user-guide.pdf – and to know how to program in some 
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common procedural (imperative) language, such as C or Ada. Familiarity with real-time and 
embedded systems is  an advantage. Most  examples in the manual are presented in C,  but 
Bound-T is  independent  of  the  programming  language,  since  it  works  on  the  executable  
machine code.

Target program, target processor

To use Bound-T effectively, the user must also know the structure of the target program  − the 
program being analysed. In some cases, the user also needs to understand the architecture of 
the target processor that will run the target program.

Assertion language manual overview

This document is organised into chapters as follows:

• Chapter  2 shows in a tutorial and example-driven way how to write assertions to control 
and support Bound-T.

• Chapter 3 explains how to identify parts of the program – subprograms, loops, calls – for 
placing assertions on them.

• Chapter  4 shows how to use assertions to handle two special  cases:  eternal  loops, and 
recursive subprograms.

• Chapter 5 defines the formal syntax and meaning of the assertion language.

• Chapter  6 lists all warning messages and error messages from the assertion parser, with 
explanations and advice on solving the problems.

1.3 Other Bound-T documentation

This manual is supplemented by other Bound-T documentation as follows.

User Guide

The  Bound-T User  Guide  at  http://www.bound-t.com/manuals/user-guide.pdf introduces 
Bound-T's features and usage in an informal, tutorial way. It gives several simple examples of  
assertions. Read the User Guide to get started, then return to this manual for more examples 
and for the full definition of the assertion language. The User Guide ends with a glossary of  
terms and concepts related to Bound-T that you may find helpful.

Reference Manual

The  Bound-T Reference  Manual  at  http://www.bound-t.com/manuals/ref-manual.pdf 
explains  all  the  command-line  options,  including  those  that  tell  Bound-T to  use  certain 
assertions (assertion files) in the analysis. The Reference Manual also explains the outputs 
from Bound-T, including some warning and error messages that may be related to problems in 
the assertions. Still, for most assertion-related problems you should find the warning and error 
messages in the present manual, in chapter 6.

Target-Specific Application Notes

Bound-T is available for several target processors, with a specific version of Bound-T for each 
processor. Most features of the  Bound-T assertion language are general and target-indepen-
dent, but there are some details that can be target-specific:
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• The form of target-program identifiers – the names of subprograms, variables, and labels – 
may depend on the target  programming language and the cross-compiler,  for example, 
through compiler-specific “name mangling”.

• The set of target-processor registers and their names is evidently target-specific, and affects 
assertions on the usage and values of registers.

• Some assertions may refer to numeric addresses of code or data in the target computer. The  
form of numeric addresses is target-specific.

• For each target processor Bound-T defines a set of “properties” that can be asserted to have 
certain values for certain parts of the target  program. The names and meaning of such 
properties are target-specific.

• Assertions on execution time or stack usage use target-specific units (cycles, storage units).  
Their meaning in absolute units (seconds, bits, or octets) is target-specific.

Most target-specific aspects of assertions appear only in string literals: expressions of the form 
“_foo” that, for example, give the name of a subprogram as a string in quotes. The string may 
have to be different for different targets and cross-compilers – for example, some C cross-
compilers put an underscore '_' in front of C identifiers, others do not – but the higher-level 
form and meaning of the assertion is the same.

Additional information for specific targets is given in separate  Bound-T Application Notes. 
Please refer to http://www.bound-t.com/app_notes for a list of the currently supported target 
processors and the available Application Notes.

User Manual for find_marks

An assertion must identify the part(s) of the target program to which the assertion applies.  
One way to identify a program part is to insert a mark in the source code at that part. Tidorum 
provides a program called  find_marks that scans the source-code files, finds the marks, and 
creates a mark-definition file for Bound-T. The User Manual for find_marks explains how to 
write marks and how to use or modify this program, which is provided under the GNU Public 
Licence (GPL). The manual also defines the format of the mark-definition files – necessary 
information  should  you  decide  to  write  your  own  mark-finder  program.  Please  refer  to  
http://www.bound-t.com/manuals/find-marks-manual.pdf  for this manual.

Hard Real Time Programming Model

Bound-T contains special high-level support for target programs that follow the  Hard-Real-
Time (HRT) programming model, an architectural style for concurrent, real-time programs 
originally defined by the European Space Agency. There is a separate manual that explains 
how to use  Bound-T in HRT mode. See http://www.bound-t.com/manuals/hrt-manual.pdf. 
However, the assertion language is entirely independent of whether Bound-T is used in basic 
mode or in HRT mode.
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2 WRITING ASSERTIONS

2.1 What assertions are

When the looping structure of the target program is too complex for Bound-T to find good loop 
bounds  automatically,  the  user  can  help  with  user  assertions that  fill  in  the  gaps  in  the 
automatic  analysis.  These  assertions  can  directly  state  loop-repetition  bounds  or  other 
constraints on the execution paths. The assertions can also, or instead, state constraints on 
variable values or other items from which automatic analysis can derive loop bounds and other 
bounds on the execution path.

Assertions can also improve the precision of the automatic analysis by making the computed 
worst-case time-bounds closer to the real worst-case times. For example, an assertion can limit 
the number of times a computationally heavy branch in a conditional statement in a loop is 
chosen, giving a realistic mix of light and heavy executions of the statement.

Embedded  control  programs  often  have  several  “modes”  of  execution.  For  example,  the 
attitude-control software on a spacecraft may have a safe mode, a coarse-pointing mode and a 
fine-pointing mode. The active software tasks, their activation frequencies and their execution 
paths can be quite different for different modes. Thus, the worst-case execution time analysis  
and schedulability analysis should be done separately for each mode. You can use assertions to 
select the mode-specific execution paths.

Finally, you can use assertions to analyse special cases such as cases where the target program 
has empty inputs or invalid inputs. Sometimes it is useful to know the execution time of such 
special cases even if it is much less than the execution time of normal cases.

The assertion file

You write assertions in a text file, using the text editor of your choice, and use the option 
-assert filename to tell  Bound-T to use this assertion file in the analysis. You can repeat this 
option several times to combine assertions from several files in the same analysis.

The  Bound-T User  Guide shows some simple examples  of  assertions.  The present  chapter 
introduces the full assertion language by description and more examples. Chapter 3 goes into 
more detail  on how to focus your assertions on certain subprograms or other parts of the 
program. Chapter 4 talks about the special case of eternal loops and of recursive subprograms. 
Finally, chapter 5 defines the formal syntax and meaning of the assertion language.

The assertion language is “free format” and treats line separators and comments as white-
space. White-space can appear between any two lexical tokens (keywords, numbers, strings). 
You can thus lay out and indent the assertion text as you please. The examples in this chapter 
generally  use  indentation  systematically  but  divide  the  text  into  lines  less  systematically, 
depending on the length and structure of the assertion text.

It is a good idea to motivate and describe you assertions in the assertion file. Comments can be 
written anywhere in the file where white-space can appear. A comment begins with a double 
hyphen "--" and extends to the end of the line.

Target-specific issues

The assertion language is designed to be generic and independent of the target processor. 
Nevertheless,  the  types  of  assertion  that  can  be  handled  may  depend  on  the  target,  in 
particular on the compiler and linker and on the form and content of the symbolic debugging 
information in the executable file.

The target-specific Application Notes explain such limitations, which may also depend on the 
target compiler options, such as the optimisation level.
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While the assertion language is generic, the target processor and the target programming tools 
define how assertions should refer to subprograms and variables by name or by machine-level  
address. The target-specific Application Notes explain the naming rules. Likewise, the units of 
execution time (cycles) and stack usage (storage units) are target-specific and explained in the 
Application Notes.

Assertion pre-processing

Bound-T reads the assertions from one or more optional input text files named with the -assert 
option.  It  may  be convenient  to  combine  assertions  from several  files,  for  example  if  the 
program uses libraries for which assertion files already exist. However, for reusable libraries 
the assertions must often use different numbers, for example different loop bounds, depending 
on the application that uses the library. For such cases we recommend that a preprocessor 
such as cpp or m4 be used to preprocess the assertion files. This will allow the use of macros 
(#defines) to parametrise the assertions, for example by the size of the input-data assumed in 
the worst-case scenario.

2.2 Assertion = context + fact

An assertion expresses some fact that holds in or for some context, within the target program 
under analysis.

Facts

The following sorts of facts can be asserted:

• variable value range (minimum, maximum or both),

• number of repetitions of a loop,

• number of executions of a call, loop entry, or other instruction,

• worst-case execution time of a subprogram or a call,

• worst-case stack usage of a subprogram,

• final stack height of a subprogram,

• the possible callees of a dynamic (indirect, computed) call,

• invariance (constancy) of a variable in a part of the program,

• volatility of a variable or a range of memory locations,

• value or range for some target-specific property in a part of the program,

• the target-specific execution role performed by an instruction.

Contexts

The following sorts of contexts can be used in assertions:

• the whole program (global context),

• a subprogram,

• a set of loops,

• a set of calls,

• a single instruction.
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When the context is a single instruction, the instruction is identified by its machine address or 
by its offset, in machine-address units, from the start of the subprogram that contains the 
instruction.

When the context is a set of loops or calls, these loops or calls are identified by syntactic or  
semantic properties. Nesting the loop or call context within a subprogram context limits the 
set of loops or calls to those within this subprogram. Otherwise the set can contain loops or  
calls from any subprogram.

When the context is a subprogram, the subprogram is identified by its link-name which is  
usually the same as the source-code identifier or name of the subprogram, perhaps more or 
less altered by “mangling”. A subprogram can also be identified by its machine address.

There are actually two kinds of subprogram context: the subprogram entry point, where facts 
about the initial state (entry state) can be asserted, and the subprogram body, where facts that 
hold throughout the subprogram can be asserted.  Figure 2 below shows an example assertion 
file and points out the different kinds of facts and contexts in the file. Note that the figure does 
not include all the possible kinds of assertions.

The rest of this chapter discusses and gives examples of most types of assertions. We will first 
focus on the facts that can be asserted and the allowed combinations of fact and context. Then 
we will show in more detail how to define contexts, in particular loop and call contexts. For 
simplicity we will assume execution time (WCET) analysis but many of the examples are valid 
also for stack usage analysis. Stack usage analysis usually requires fewer assertions because 
loops do not have to be bounded.
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Figure 2: An assertion file
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)

variable value
in global context

variable in
call context

variable value on
subprogram entry

variable value
in subprog body

loop description

variable "factor" >= 20;

subprogram "route" ( variable "n" 10;

loop that calls "send"

variable "msglen" 12;

repeats 10 times;

end loop;

calls to "send"all that are in loop

repeat <= 1 time;

end calls;

call to "send"

variable "msglen" <= 20;

end call;

end "route";

variable "retry" 1 .. 5;

variable value
in loop context

repetition
count for loop

population for
call description

call description

execution
count for call

subprogram "signal"

time 312 cycles;
execution time
for subprogram

end "signal";
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all calls to "Halt"

repeat 0 times;

end calls;
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ll 
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ck

-- Assume Halt is never called.

comment

call block in
subprogram

starts 3 times;start count
for loop

marked “tick-msg”

call description 
using mark



2.3 Assertions on the repetition of loops

Why?

A repetition assertion for a loop bounds the number of times the loop is repeated (iterated) 
each time execution reaches this loop. The form of the assertion is “repeats N times” where N 
is a number or a range of numbers. (There is a nice point about which parts of the loop are  
repeated this number of times; see section 5.13 for an exact definition.)

For  analysing execution time,  you  must give  assert  a  repetition  bound for  each  loop that 
Bound-T does not bound automatically. Even for automatically bounded loops you may use a  
repetition assertion to set a smaller repetition bound if the automatically determined bound is  
unrealistically large.

Consider unrolling

Bound-T applies loop-repetition assertions to the machine-code form of the loop. There are  
several compile-time code optimizations that can alter the number of repetitions of the loop. 
For example, if the source-code loop copies 40 octets from one place to another, the compiler 
may decide to “unroll” the loop so that it instead copies 20 words of 16 bits or 10 words of 32 
bits. The source-code loop-bound of 40 may correspond to a loop bound of 20 or 10 in the 
machine  code.  Other  optimizations  or  code  transformations  may  reduce  the  number  of 
repetitions by one or change it in other ways.

Thus, to assert the correct repetition count you should look at the machine code and not only 
at the source code. See section 5.13 for a precise explanation of the meaning of a repetition-
count  assertion for  a  loop.  Instead of  loop-repetition assertions  you could  try  to  help the 
automatic  loop-bound  analysis  by  asserting  bounds  on  variable  values  as  explained  in 
section 2.12 below.

Looping in a subprogram

The most common assertion bounds the number of repetitions of a loop in a subprogram. The  
assertion must identify the subprogram (usually by name), the loop (or loops) in question 
(usually  by  some  properties  of  the  loops)  and  state  the  number  of  repetitions.  Thus,  the 
assertion  consists  of  a  “subprogram  block”  that  contains  a  “loop  block”  that  contains  an 
repetition-count fact.

Here is how to assert that in the subprogram Reverse_List the two loops that call Swap_Links 
repeat (each) exactly 100 times:

subprogram "Reverse_List"
all 2 loops that call "Swap_Links"

repeat 100 times;
end loops;

end "Reverse_List";

The part “all 2” says that we expect this assertion to match exactly two loops in Reverse_List. 
If there are less than two or more than two loops that call Swap_Links Bound-T will report an 
error in the assertion-matching phase.

Looping in any subprogram

If loops with certain properties have the same repetition bound in all subprograms, the same 
loop-block can be made to apply in all subprograms by writing the loop-block alone, in the  
global context, without an enclosing subprogram block.
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Here is how to assert that any loop in the whole program (or the part of the program we are  
now analysing) that uses (reads) the variable Polling_Count repeats at most 24 times:

all loops that use "Polling_Count"
repeat <= 24 times;

end loops;

The keyword all (without a following number) means that any number of loops can match this 
assertion.

Nested loops

Bound-T analyses nested loops independently. It may find bounds for all, none or any levels of 
a loop nest, so you may need to help by asserting bounds for all, none or any levels. The level 
that an assertion addresses is identified by saying whether the loop contains or is contained in 
another loop.

For example, assuming that the subprogram Add_Matrix contains a two-level loop nest, that 
is an outer loop that contains an inner loop, here is how to assert that the outer loop repeats 10 
times and the inner, 20 times:

subprogram "Add_Matrix"
loop that contains loop  -- The outer loop.

repeats 10 times;
end loop;
loop that is in loop     -- The inner loop.

repeats 20 times;
end loop;

end "Add_Matrix";

For deeper nesting,  the descriptions “contains loop” and “is  in  loop” must  be  extended to 
describe the nesting of the inner or outer loop, too. For example, here is how to assert bounds 
on a three-level loop nest in the subprogram Multiply_Matrix:

subprogram "Multiply_Matrix"
loop that contains (loop that contains loop)  -- Outermost loop.

repeats 10 times;
end loop;
loop that contains loop and is in loop        -- Middle loop.

repeats 15 times;
end loop;
loop that is in (loop that is in loop)        -- Innermost loop.

repeats 20 times;
end loop;

end "Multiply_Matrix";
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Non-rectangular loops

In some nested loops, the number of repetitions of the inner loop is not constant but depends 
on the iteration number of the outer loop. For example, here is an Ada loop that traverses the 
“lower triangle” of a 100 × 100 matrix M:

for I in 1 .. 100 loop
for J in 1 .. I loop  -- Note the upper bound!

Traverse (M(I,J));
end loop;

end loop;

The outer loop repeats 100 times. The inner loop repeats I times where I is the counter for the 
outer loop. On the first iteration of the outer loop (I = 1) the inner loop repeats once; on the 
last iteration of the outer loop (I = 100) the inner loop repeats 100 times. At present, it is not 
possible  assert  such a variable  bound for  the inner loop, nor can  Bound-T deduce  such a 
variable bound automatically.

As a work-around, you can assert an “average” bound on the inner loop such that the total  
number of repetitions of the inner loop is correct, or close. In this example, when the outer 
loop is finished the inner loop has been repeated a total of 100 × (100 + 1) / 2 = 5050 times. 
Thus, the average number of repetitions of the inner loop for each repetition of the outer loop 
is 5050 / 100 = 50.5. The closest possible assertion is 51 repetitions:

loop that is in loop repeats 51 times; end loop;

This  assertion  corresponds  to  a  total  of  51 × 100 = 5100  repetitions  of  the  inner  loop,  an 
overestimation of 50 repetitions compared to the true number of 5050 repetitions.

In this example you can remove this overestimation because the inner loop always calls the  
subprogram Traverse and you can assert the total number of times this call occurs as follows:

call to "Traverse" repeats 5050 times; end call;

This  assertion makes  Bound-T compute a  WCET bound that  corresponds  to  exactly  5050 
repetitions  of  the  inner  loop.  (However,  you  also  have  to  make  the  loop  assertion  unless 
Bound-T bounded  the  loop  automatically.)  The  next  section  shows  more  examples  of 
execution-count assertions for calls.

2.4 Assertions on the number of loop starts

Why?

We say that a loop starts when execution reaches the loop head, after which the loop repeats 
zero or more times. For example, when the following code is executed the outer loop starts 
once and the inner loop starts three times (when the outer-loop index I has the values 2, 4, 6):

for I in 1 .. 7 loop
Foo (I);
if I mod 2 = 0 then

for J in 1 .. 5 loop
Bar (I, J);

end loop;
end if;
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end loop;
A start-count assertion on a loop defines the number of times the loop starts in each execution 
of the subprogram that contains the loop. The form of the assertion is “starts N times” where N 
is a number or a range of numbers.

It is never necessary to assert the start count of loops, because Bound-T can determine a finite 
WCET bound without such assertions as long as the number of  repetitions of all  loops are 
bounded (automatically or by assertions). However, start-count assertions on loops can often 
improve (sharpen) the WCET bound. Without such assertions, the WCET bound may include 
an unrealistically (infeasibly) large number of executions of those loops, or even some loops 
that should not be included at all because they represent a scenario that you want to exclude 
from the analysis.

Start inner loop a given number of times

Consider the example above, where the inner loop (for J...) is entered only for even values of 
the index I of the outer loop, which happens three times as the outer-loop index runs from 1 
to 7.  However, at present Bound-T does not discover this on its own, so it will assume that the 
inner  loop  starts  and  runs  on every  iteration  of  the  outer  loop,  which  leads  to  an  over-
estimated execution-time bound. Assuming that these loops lie in the subprogram Nested, the 
following assertion text advises  Bound-T that the inner loop starts only three times in each 
execution of Nested:

subprogram “Nested”
loop that is in loop starts 3 times; end loop;

end “Nested”;

Don't enter that loop at all

You can use a start-count assertion to exclude a certain loop from the analysis by asserting that 
the loop starts zero times. For example,  assume that  the program under analysis,  in some 
cases, must wait for some event to happen, and does so by polling the function Event_Ready. 
That is, here and there in the program we find loops of this form:

if <some condition> then
loop

exit when Event_Ready;
end loop;

end if;

If you want to analyse the program under the assumption that this polling never happens, you 
can use the following assertion (with the global context) to exclude all these loops:

all loops that call “Event_Ready” start 0 times; end loops;

Careful with null checks and unpeeling

Start-count assertions can fail or have a distorted effect if the compiler changes the structure of  
the loop in a way that makes entry to parts of the loop conditional. Consider for example this  
simple C loop:

for (i = 0; i < m; i++) DoThat(i);

A simple compiler may generate code for this loop with the simple control-flow graph shown 
in Figure 3 below.
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Figure 3: Starting a loop, no unpeeling, no null check

Here, a start-count assertion bounds the number of executions of the edge marked “start loop” 
in Figure 3. This does not depend on the value of m, which is what one would expect from the 
source-code form of the loop.

However, if the compiler prefers to generate “bottom-test” code the machine code corresponds 
to the following C form:

i = 0;
if (i < m) do {DoThat(i); i++} while (i < m);

The control-flow graph then has the shape shown in Figure 4 below.

Figure 4: Starting a loop with null check

The  “start  loop”  edge  is  now executed  only  when  m > 0,  which  means  that  a  start-count 
assertion on this loop does not bound the number of times this code is entered with m < 1.

Furthermore, the compiler may decide to unpeel the first iteration, and then has to add more 
checks  on  the  value  of  m.  If  the  compiler  also  prefers  to  generate  “bottom-test”  code the 
machine code corresponds to the following C form:

i = 0;
if (i < m) {

DoThat(i);
i++;
if (i < m) do {DoThat(i); i++} while (i < m);

}
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The control-flow graph then has the complex shape shown in Figure 5 below.

Figure 5: Starting an unpeeled loop with null check

Note how the first iteration (i = 0) of the loop is not actually within the loop in the control-flow 
graph, which contains only the second and later iterations (i > 0). The “start loop” edge is 
executed only when  m is  at least  2, which means that a start-count assertion on this loop 
covers does not bound the number of times this code is entered with m < 2.

2.5 Assertions on the execution count of calls

Why?

An execution-count assertion for a call defines the number of times the call is executed in each  
execution of the caller. The form of the assertion is “repeats N times” where N is a number or a 
range of numbers.

It is never necessary to assert the execution count of calls, because Bound-T can determine a 
finite WCET bound without such assertions as long as all loops are bounded (automatically or 
by assertions). However, execution-count assertions on calls can often improve (sharpen) the 
WCET  bound.  Without  such  assertions,  the  WCET  bound  may  include  an  unrealistically 
(infeasibly) large number of some calls, or even some calls that should not be included at all  
because they represent a scenario that you want to exclude from the analysis.

You  can  use  an  execution-count  assertion  for  a  call  to  exclude  certain  execution  paths 
completely, or to limit the number of times certain execution paths are taken within loops.  
However,  sometimes  a  better  way  may  be  to  help  the  automatic  control-flow analysis  by 
asserting bounds on variable values as explained in section 2.12 below.

Don't take that path in that subprogram

Perhaps the most common assertion of this type is to exclude a certain path in a subprogram 
by asserting that a call in that path is executed zero times. The usual reason for this is to  
exclude certain unusual scenarios from the worst-case analysis.

The assertion must identify the subprogram (usually by name), the calls in question (usually 
by the name of the callee) and state that the call is executed zero times. Thus, the assertion 
consists of a “subprogram block” that contains a “call block” that contains an execution-count 
assertion.
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Assume that  the subprogram  Invert_Matrix calls the subprogram  Report_Singularity if  it 
detects an error. The following asserts that no such call is never executed, in other words, that  
the error case is excluded from the analysis:

subprogram "Invert_Matrix"
all calls to "Report_Singularity"

repeat 0 times;
end calls;

end "Invert_Matrix";

The resulting WCET bound for  Invert_Matrix will not include execution paths that involve 
calls to Report_Singularity.

Don't take that path in any subprogram

When all calls to a certain callee subprogram should be excluded everywhere (from all caller  
subprograms)  the  easiest  way  is  to  mark  the  callee  subprogram  unused as  explained  in 
section 2.17. That will also prevent the (useless) analysis of the callee subprogram itself.

If you want to exclude all calls to a subprogram from the analysis of the callers, but still want to  
analyse the callee subprogram itself, the call-block and its execution-count assertion can be 
made to apply in all  caller subprograms by writing the call-block alone (in global context) 
without an enclosing subprogram block. Here is how to assert that the subprogram  Halt is 
never called:

all calls to "Halt"
repeats 0 times;

end calls;

Whenever Bound-T finds a call to Halt this assertion makes the execution path that leads to 
the call infeasible. However,  Bound-T will still analyse the  Halt subprogram itself, although 
this analysis is not needed for the analysis of callers. To prevent this useless analysis, also give 
an execution-time assertion for Halt, for example

subprogram "Halt" time 0 cycles; end "Halt";

or simply assert that Halt is unused:

subprogram "Halt" unused; end "Halt";

and then you can drop the assertion on calls to Halt as redundant.

Don't call every time

It is common for loop bodies to include call statements that are conditional, so they are not 
necessarily executed on every iteration of the loop. If there are no assertions to prevent it, 
Bound-T will compute a WCET bound that assumes that every loop iteration takes the longest 
path through the loop-body. If the longest path includes a conditional call that in reality is 
executed rarely, for example only once for every 100 loop iterations, the WCET bound may be 
strongly overestimated.  To make the WCET bound more precise,  you can assert  a  smaller 
execution count on the call.

Assume that the subprogram Emit_Message contains a loop that stores bytes in a buffer one 
by one and  calls  Flush_Buffer when  the buffer  becomes full,  as  in  the following Ada-like 
pseudocode:
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procedure Emit_Message is
begin

for K in 1 .. Message_Length loop
put message byte number K in Buffer;
if Buffer is full then

Flush_Buffer;
end if;

end loop;
Flush_Buffer;

end Emit_Message;

(The purpose of the final call to Flush_Buffer is to emit the partially filled buffer.) Assume that  
Message_Length is at most 1000 and that the  Buffer can hold up to 100 bytes. The longest 
path through the loop body includes the call of Flush_Buffer, so by default the WCET bound 
for the loop will include 1001 calls of Flush_Buffer (1000 in the loop plus the one at the end). 
However, at most 11 calls can occur in a real execution (10 in the loop plus the one at the end).  
The WCET bound will probably become much more accurate if we assert this:

subprogram "Emit_Message"
call to "Flush_Buffer" that is in loop

repeats <= 10 times;
end call;

end "Emit_Message";

Note that this assertion does not apply to the last call of Flush_Buffer because it specifies the 
call  property  “is  in  loop”.  However,  the  effect  would  be  the  same without  this  restriction 
because  the  automatic  analysis  knows  that  the  last  call  executes  once,  so  an  additional 
assertion that it executes at most 10 times has no effect.

No totalisation

We can build  on the last  example,  Emit_Message and  Flush_Buffer,  to illustrate  a  short-
coming of the current assertion language. A real implementation of  Emit_Message could be 
more complex and have several statements that put bytes in the Buffer followed by conditional 
calls to Flush_Buffer. For example, the message might be divided into a header and a trailer 
with one loop generating the header and another loop generating the trailer. If the header and 
trailer lengths can vary independently, but the total message length is still at most 1000 bytes,  
we know that the total number of calls of Flush_Buffer is still at most 10, but we cannot assert 
this because an assertion like

all calls to "Flush_Buffer" repeat <= 10 times; end calls;

applies separately to  each statement that calls  Flush_Buffer. The call in the header loop will 
contribute 10 calls to the WCET bound and so will the call in the trailer loop, for a total of 20 
Flush_Buffer calls in the WCET bound for Emit_Message.

You  can  work  around  this  problem  by  asserting  a  smaller  number  of  call  repetitions,  for 
example 5 repetitions for each call.
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2.6 Assertions on the execution count of an instruction

Why?

An execution-count assertion for an instruction defines the number of times the instruction is 
executed in each execution of the subprogram that contains this instruction. The form of the 
assertion is “repeats N times” where N is a number or a range of numbers.

The reasons for using such assertions are the same as for start-count assertions on loops or  
execution-count assertions on calls, just explained in section 2.5. In fact, any execution-count 
assertion for a call is equivalent to the corresponding execution-count assertion for the call 
instruction. (The same is not true for loop-start assertions because there may be several paths 
to the loop head, in which case there is no single instruction that “starts” the loop.)

Why not?

The identification of calls (using symbolic names) is much easier and more robust than the 
identification of  instructions (using addresses or  offsets).  Thus,  you should use execution-
count assertions for instructions only as a last resort when you need to limit the analysis to  
paths through or around this instruction and only if the same cannot be done with execution-
count assertions for calls because there are no suitable (and identifiable) calls in this part of 
the target program.

Where?

An instruction block  in the  Bound-T assertion language can be global  (not contained in a 
subprogram block) or lie within a subprogram block. The placement has some effects on the 
syntax and meaning of the instruction block, as follows.

For a global instruction block:

• the instruction must be identified by its absolute address, not by an offset;

• the assertions apply to the analysis of all subprograms that contain the instruction.

For an instruction block that is nested in a subprogram block:

• the instruction can be identified by an absolute address or by an offset (from the entry point 
of the subprogram named in the containing subprogram block);

• the  assertions  apply  only  to  the  analysis  of  the  subprogram  named  in  the  containing 
subprogram block.

You may wonder how a given instruction can be contained in more than one subprogram. This 
is not uncommon. The most  common cause is the optimization of tail calls into jumps,  in 
which case Bound-T usually considers the tail callee to be a part of the calling subprogram, as 
if the tail call were “integrated” (see section 2.17). The instructions in the tail callee are then 
considered to be contained in all the callers. The same happens, of course, if there is an explicit 
integrate assertion or if Bound-T by default integrates certain routines, such as prologues and 
epilogues, into their callers.

Integrated  routines can also  make the same instruction  appear  several  times  in the  same 
subprogram.  Execution-count  assertions  on  such  instructions  are  rejected  with  an  error 
message because the mapping from the instruction address to a place in the subprogram's 
control-flow graph is ambiguous.

How to find the address or offset of an instruction

Here are some ways:
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• Use compilation options that create a listing file including assembly code. Such files usually 
give the offsets from the start of the subprogram (or from the start of the module) to each 
instruction.

• Disassemble the target program. This will show absolute instruction addresses. One way is 
to run Bound-T with the option -trace decode.

• Make  Bound-T draw the control-flow graph of the subprogram: use the options  -dot and 
-draw. The option  -draw decode makes  Bound-T show the disassembled instructions and 
their absolute addresses in the basic blocks of the graph. Use also the option -draw cond to 
show the condition-flag values for each conditional control-flow edge.

The last method has the advantage that it shows the places of all instructions in the control 
flow, which is necessary knowledge for controlling the analysis with execution-count assertions 
on instructions.

2.7 Assertions on the execution time of a subprogram

Why?

If you assert an execution time for a subprogram Bound-T will not analyse the subprogram at 
all (unless it needs to do so for the stack analysis). Instead, Bound-T assumes that any call to 
this subprogram takes the asserted time. There are several situations in which this is useful:

• The subprogram is not yet implemented, but it has an execution time budget and you want 
to analyse the overall execution time under this budget.

• Bound-T cannot  analyse  the  subprogram  for  some  reason  (for  example  due  to  an 
irreducible flow-graph or recursive calls), but the subprogram's execution time has been 
determined in some other way.

• The subprogram was already analysed and its WCET bound is known, but you do not want  
to re-analyse the subprogram, perhaps because the analysis takes a long time. For example, 
library subprograms or kernel subprograms may be handled in this way.

If you know that the subprogram is never called, and so there is no need to analyse it, you  
should assert  that  the subprogram is  unused;  see  section 2.17.  If  you want  to  exclude the 
subprogram from the analysis, but do not want to assert an execution time for it, you should  
use the omit assertion; see section 5.6.

Time of a subprogram

An assertion of this kind consists of a subprogram block that contains a time fact. Here is how 
to assert that any call of the subprogram Change_Priority takes 23 cycles:

subprogram "Change_Priority"
time 23 cycles;

end "Change_Priority";
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2.8 Assertions on the execution time of a call

Why?

The  execution  time  of  subprograms  often  depends  on  the  calling  context.  Bound-T can 
sometimes analyse this dependency automatically, for example when loop-bounds depend on 
parameter  values  in  a  simple  way.  When  an  automatic  context-dependent  analysis  is  not  
possible  you  can  assert  a  context-dependent  execution  time  manually,  by  asserting  the 
execution time of a specific call of the subprogram. This makes the overall WCET bound more 
accurate than if a context-independent worst-case time were used for all calls.

You  would  typically  determine  the  execution  time  for  a  specific  call  by  analysing  the 
subprogram separately under specific assertions for this call. For example, you may assert that 
some paths  in  the  subprogram cannot  occur  in  this  call.  Then you  translate  the resulting 
WCET bound into an execution-time assertion for the call and analyse the caller under this  
assertion.

Calling from one subprogram

Suppose that the subprogram Find_Angle contains a conditional call to Reduce_Argument as 
in the following C code:

void Find_Angle (double arg; double *angle)
{

if (fabs(arg) > PI) Reduce_Argument (&arg);
*angle = Find_Normal_Angle (arg);

}

The execution time of a call to Find_Angle may depend greatly on whether or not it actually 
calls  Reduce_Argument, that is, on the magnitude of the arg parameter. However,  Bound-T 
does not analyse floating-point computations and so it cannot solve this context dependency 
and will use the worst-case time (including Reduce_Argument) for all calls of Find_Angle. On 
the other hand, for a given call of Find_Angle you may know that arg will be small enough so 
that Reduce_Argument is not called. For example, such a constraint may be a precondition as 
in the following subprogram:

void Compute_Shadows (double *args[]; double main_arg)
/* Precondition: All args[0..255] are between -PI and PI. */
/* Note that this precondition does not apply to main_arg. */
{ double angles[256], main_angle;

...
Find_Angle (main_arg, &main_angle);
...
for (i=0; i<255; i++) Find_Angle (args[i], &(angles[i]));
...

}

The subprogram Compute_Shadows contains two calls to  Find_Angle. The first call (before 
the loop, for main_arg) may call  Reduce_Argument. The assumed precondition on the args 
parameter means that the second call (in the loop) never leads to a call of Reduce_Argument. 
This means that the WCET bound for Compute_Shadows may be greatly over-estimated if the 
context-independent WCET bound for Find_Angle is used for  both calls.

To  make  a  context-dependent  analysis,  analyse  Find_Angle separately  (that  is,  as  a  root 
subprogram) under an assertion that excludes the call of Reduce_Argument:
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subprogram "Find_Angle"
call to "Reduce_Argument" repeats 0 times; end call;

end "Find_Angle";

Assume that this gives a WCET bound of 127 cycles for  Find_Angle.  Now we can analyse 
Compute_Shadows with a context-specific time for the second call of Find_Angle. The context 
of the assertion is  Compute_Shadows and this call, while the asserted fact is the execution 
time of the call:

subprogram "Compute_Shadows"
call to "Find_Angle" that is in loop

time 127 cycles;
end call;

end "Compute_Shadows";

Thanks  to  the  part  “that  is  in  loop”  the  execution  time  of  127  cycles  applies  only  to  the 
Find_Angle call that is in the loop where we know that Reduce_Argument is not called. The 
other call (for  main_arg) uses the context-independent WCET bound for  Find_Angle that 
includes a possible call to Reduce_Argument. If this bound for Find_Angle is 321 cycles, for 
example, the context-dependent analysis improves the WCET bound for  Compute_Shadows 
by 256 × (321 - 127) = 49 664 cycles.

Calling from any subprogram

If the same execution time assertion should apply to all calls with certain properties within any 
subprogram, the call-block and time-fact can be written in a global context and not within a 
subprogram block. For example, here is how to assert that anywhere in the program, any call 
of the subprogram Copy_Block that is executed within a loop that defines (writes to, assigns 
to) the variable short_counter takes at most 912 cycles:

all calls to "Copy_Block"
that are in (loop that defines "short_counter")
time 912 cycles;

end calls;

Remember that Bound-T can only detect that a loop defines short_counter if the code in the 
loop uses a static addressing mode to assign a value to short_counter, or a dynamic addressing 
mode that Bound-T can resolve to a static address for short_counter.

Problems with manual work

This manual method of context-dependent analysis is not elegant and causes extra work if the 
program must be analysed again. In the future,  Bound-T may offer a way to write specific 
assertions for the analysis of a callee subprogram in the context of a specific call. Bound-T will 
then automatically find a specific WCET bound for this call by re-analysing the callee under 
these assertions.

2.9 Assertions on the stack usage of a subprogram

Why?

Stack usage assertions may be necessary or useful when you use Bound-T for stack analysis. 
They are never needed for the analysis of execution time.
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If you assert the stack usage and the final stack height (see section 2.10) for a subprogram 
Bound-T will not analyse the subprogram at all (unless it needs to do so for the execution-time  
analysis). Instead, Bound-T assumes that any call to this subprogram uses the asserted amount  
of stack space and leaves the stack at the asserted final height. There are several situations in 
which this is useful:

• The subprogram is not yet implemented, but it has a stack budget and you want to analyse  
the overall stack usage under this budget.

• Bound-T cannot analyse the subprogram for some reason (for example due to recursive 
calls), but the subprogram's stack usage has been determined in some other way.

• The subprogram was already analysed and its stack usage bound is known, but you do not 
want to re-analyse the subprogram, perhaps because the analysis takes a long time. For 
example, library subprograms or kernel subprograms may be handled in this way.

If the stack in question is a "stable" stack, in other words a stack for which the final stack  
height is always known to be zero, you do not need to assert the final stack height; it is enough 
to assert the stack usage to make Bound-T exclude the subprogram from stack analysis.

If you know that the subprogram is never called, and so there is no need to analyse it, you  
should assert that the subprogram is unused. If you want to exclude the subprogram from the 
analysis, but do not want to assert a stack usage and final stack height for it, you should use the  
omit assertion. See section 2.17 for more about unused and omit.

Stack usage of a subprogram

An assertion of this kind consists of a subprogram block that contains a stack-usage fact. Here 
is how to assert that any call of the subprogram  Change_Priority uses at most 127 (target-
specific) units of stack space, assuming that the target program uses only one stack:

subprogram "Change_Priority"
stack usage 127;

end "Change_Priority";

Programs with several stacks

When the program has several stacks, the (target-specific) name of the stack must be inserted 
after  the  stack keyword.  Here  is  the  above  example  for  a  stack  named  “SP”,  adding  the 
assertion that the usage of another stack, named “Data”, is 32:

subprogram "Change_Priority"
stack “SP”   usage 127;
stack “Data” usage  32;

end "Change_Priority";

The stack name can be included also when this is the only stack in the program. It is advisable  
to do so when your cross-compiler has an option to use one stack, or several stacks; even if  
your program starts out using only one stack, it may later evolve to use several stacks, in which 
case assertions must use the stack name.
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2.10 Assertions on the final stack height of a subprogram

Final stack height in stable and unstable stacks

When one subprogram calls another, the final stack height of the callee defines the amount by 
which the call changes the local stack height in the caller – in other words, the net change in 
the stack pointer, over the call. This is important for the analysis of the computations in the 
caller when these computations refer to data in the caller's stack frame. The program usually 
refers to such data by means of static offsets to the stack pointer. The effective address (the  
datum referred to) therefore depends on the value of the stack pointer, so to have a consistent 
analysis of stack-pointer-based data references before and after a subprogram call one must 
know by how much the call changes the stack pointer.

Bound-T considers a stack, as used in a target program under analysis, to be either a  stable 
stack or an  unstable stack.  The choice  may  depend on the target  processor,  on the cross-
compiler used to generate the target program, and on the compilation options, as explained in 
the relevant Application Note documents. A  stable stack is a stack for which the final stack 
height on return is always zero, which means that a call has no net effect on the stack pointer. 
This means that there is no need to assert a final stack height because Bound-T knows it to be 
zero. An unstable stack, in contrast, is a stack for which the final stack height on return may 
not be zero, which means that a call may have a significant net effect on the stack pointer and 
thus affect the stack accesses in the caller. For an unstable stack it may be useful to assert the 
final stack height on return from a specific subprogram.

Why?

Assertions  on  the  final  stack  height  for  an  unstable  stack  may  be  necessary  or  useful  in 
execution time analysis or stack usage analysis.

When Bound-T analyses a subprogram it always attempts to compute the final stack height for 
unstable stacks. However, this does not always succeed, or may produce only bounds on the 
final stack height but not a single value.

Asserting the final stack height of a subprogram is thus useful when:

• The subprogram is  omitted from the analysis  by  an  explicit  omit assertion  or  because 
sufficient assertions on its execution time or stack usage make an analysis unnecessary.

• The subprogram changes the stack pointer in ways too complex for Bound-T to analyse, so 
that Bound-T cannot compute the final stack height.

Still,  even in those cases an assertion on the final  stack height  is  necessary  only when its 
absence makes some necessary analysis of the callers fail, due to the unknown effect of the call 
on the stack pointer and thus on the computations in the caller.

If the final stack height of a subprogram is unknown, the local stack height in any caller of this 
subprogram will be unknown after the call. This usually makes the stack usage and the final 
stack height unknown for the caller, too, which effectively disables the stack usage analysis.

Final stack height of a subprogram

An assertion of this kind consists of a subprogram block that contains a final-stack-height fact. 
Here is how to assert that any call of the subprogram Change_Priority has a final stack height 
of -1 stack unit, assuming that the target program uses only one stack:

subprogram "Change_Priority"
stack final -1;

end "Change_Priority";
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Programs with several stacks

When the program has several stacks, the (target-specific) name of the stack must be inserted 
after  the  stack keyword.  Here  is  the  above  example  for  a  stack  named  “SP”,  adding  the 
assertion that the final height of another stack, named “Data”, is zero:

subprogram "Change_Priority"
stack “SP”   final -1;
stack “Data” final  0;

end "Change_Priority";

The  stack  name  can  be  included  also  when  these  is  only  one  stack  in  the  program.  It  is 
advisable to do so when your cross-compiler has an option to use one stack, or several stacks; 
even if your program starts out using only one stack, it may later evolve to use several stacks, 
in which case assertions must use the stack name.

Combining stack-usage and final-height assertions

Facts on stack usage and final height can be combined in the same clause. For example, here is 
an assertion that combines the stack usage assertion from section 2.9 with the final-height 
assertion above:

subprogram "Change_Priority"
stack usage 127 final -1;

end "Change_Priority";

and here is the same with the stack names included:

subprogram "Change_Priority"
stack “SP”   usage 127 final -1;
stack “Data” usage  32 final  0;

end "Change_Priority";

2.11 Assertions on the callees of a dynamic call

Why?

Most programming languages support subprogram calls where the called subprogram – the 
callee  –  is  determined  at  run-time  by  some  dynamic  computation,  and  not  statically  at 
compile-time. Calls of this sort are known as dynamic calls in contrast to static calls.

On the source-code level static calls state the name (identifier) of the callee directly,  while  
dynamic calls generally dereference a function pointer variable (in C terms) or an access-to-
subprogram variable (in Ada terms). In the machine code, a static call instruction defines the 
entry address of the callee by an immediate (literal)  operand, while  a dynamic call  uses a  
register operand or other dynamic operand.

A  static  call  has  exactly  one callee;  every  execution  of  the  call  invokes  the  same callee 
subprogram. In contrast, a dynamic call may invoke different subprograms on each execution,  
depending on the entry address that is computed, so a dynamic call in general has a  set of 
possible callees.
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While Bound-T can try to analyse the computation that defines the callee(s) of a dynamic call, 
this (currently) succeeds only in very simple cases where the dynamic computation is local to  
the calling subprogram. Thus, to analyse a program that  includes dynamic calls, you must 
usually tell Bound-T what the possible callees are, based on your understanding of the target 
program.

Where?

An assertion giving the possible callees obviously must be given in the context of a dynamic 
call. This dynamic call is usually located in a specific subprogram body, but it can, in principle, 
also be in a global context.

Dynamic call from a subprogram

Here is how to assert that the (only) dynamic call in the subprogram Take_Action always calls 
one of the subprograms Stop, Brake or Shut_Down:

subprogram “Take_Action”
dynamic call calls “Stop” or “Brake” or “Shut_Down”;
end call;

end “Take_Action”;

Any dynamic call in a certain kind of loop

If  an  assertion  on  the  callees  of  a  dynamic  calls  is  written  in  a  global  context  (without 
specifying the containing subprogram) it is usually necessary to limit its application to calls 
with some specific properties; otherwise the same assertion would apply to all dynamic calls in 
the whole program.

As a (contrived) example, the following asserts that when a dynamic call is contained in a loop 
that (statically) also calls the subprogram  Start_Speed_Change,  then the possible dynamic 
callees are Slow_Down or Speed_Up:

all dynamic calls
that are in (loop that calls “Start_Speed_Change”)
call “Slow_Down” or “Speed_Up”;

end calls;

2.12 Assertions on variable values

Why?

You use assertions to control the execution paths that  Bound-T includes in its analysis. As 
shown in the preceding sections, assertions on the repetition of loops or the execution count of 
calls give direct control over the path. However, there are some problems with such assertions. 
Firstly, they require you to study the code of the subprogram under analysis, to identify the 
loops  and  calls  for  which  such  bounds  should  be  asserted  and  to  compute  these  bounds 
yourself. Secondly, Bound-T interprets loop-repetition assertions relative to the machine code 
of  the  loop,  which  means  that  the  assertion  should  take  into  account  any  compiler 
optimizations as discussed in section 2.3. Optimizations that duplicate code or merge similar 

Bound-T Assertion Language Writing Assertions 33



code may duplicate or merge call instructions and should be taken into account in execution-
count assertions for calls. Thirdly, it may be hard or impossible to identify (describe) the loop 
or call context for an assertion because the loops or calls have no distinguishing properties.

You can avoid these problems with direct repetition or execution-count assertions by instead  
asserting bounds on the values of the variables that determine the execution path, for example 
the  number  of  loop  repetitions,  and  letting  Bound-T's  analysis  deduce  loop-bounds  and 
feasible paths. On the other hand, this indirect control over execution paths works only if the 
variables determine the path in a way that is simple enough for  Bound-T to analyse and if 
Bound-T actually  performs  this  analysis.  In  particular,  if  Bound-T has  found  a  context-
independent WCET bound for a subprogram it will not try to find context-dependent bounds 
even if more assertions on variable values apply in specific contexts.

Where?

Bounds on variable  values can be asserted  in all  contexts:  subprogram body,  subprogram 
entry,  loop,  call,  or  global  context.  The  variable  in  question  can  be  a  global  variable,  a  
subprogram parameter or a local variable. Note that an assertion on a global variable can be 
given for a non-global context, for example for a subprogram or a call, and then applies only in 
this context.

In fact, Bound-T does not really distinguish between global variables and local variables; it just 
maps the variable identifier to a memory location or a register and applies the assertion there.  
Global variables are usually statically allocated (static memory address) while local variables 
are often kept on the stack or in registers, but this distinction is not universal.

Globally

The simplest kind of variable-value assertion applies to a global variable in the global context.  
For  example,  assume  that  a  data-logger  program  has  a  global  variable  num_sensors that 
shows from how many sensors it collects data. Here is how to assert that at most 15 sensors are 
active at any point in the program:

variable "num_sensors" <= 15;

This assertion should let Bound-T analyse and bound automatically any loops in the program 
that run from 1 to num_sensors, for example.

In a subprogram body

Continuing  the  above  example,  assume  that  the  data-logger  program  has  a  subprogram 
Initialize that  executes  additional  statements  when  there  are  no  sensors,  that  is  when 
num_sensors is zero. If you want to exclude this case from the analysis, here is how to assert 
that num_sensors is greater than zero within this subprogram:

subprogram "Initialize"
variable "num_sensors" > 0;

end "Initialize";

If  this  assertion is  given together  with  the earlier  global  assertion that  num_sensors is  at 
most 15,  the  global  assertion  applies  in  all  subprograms,  including  Initialize,  but  within 
Initialize the local assertion also holds. Thus, within Initialize the num_sensors variable must 
be in the range 1 .. 15. This could also be asserted directly as follows:
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subprogram "Initialize"
variable "num_sensors" 1 .. 15;

end "Initialize";

Note that these assertions let Initialize change num_sensors, but they do claim that the value 
will never be greater than 15 or less than 1 within Initialize.

On subprogram entry

Perhaps you know the value that a variable has at the start of a subprogram, but not how the  
variable changes within the subprogram. You can make a variable-value assertion apply only 
on entry  to  the subprogram by writing  the assertion in parentheses after  the subprogram 
name,  at  the  start  of  a  subprogram  block.  Still  continuing  with  the  data-logger  example 
introduced above,  here  is  how to  assert  that  num_sensors is  less  than 5  on  entry  to  the 
subprogram Initialize:

subprogram "Initialize" (variable "num_sensors" < 5;)
end "Initialize";

Since the assertion applies  only on entry to  Initialize,  it  says nothing about how  Initialize 
changes  num_sensors.  For  example,  Initialize can  increase  num_sensors to  11  without 
violating this assertion.

If  this  assertion is  given together  with  the earlier  global  assertion that  num_sensors is  at 
most 15,  the  global  assertion  also  holds  on  entry  to  Initialize,  giving  an  upper  bound  of 
min (15, 4) = 4 for num_sensors on entry to Initialize.

In a loop

As an example of a variable-value assertion in a loop context, here is how to assert that the 
variable  N is  greater  than  2  during  any  execution  of  the  (only)  loop  in  the  subprogram 
Fill_Buffer:

subprogram "Fill_Buffer"
loop

variable "N" > 2;
end loop:

end "Fill_Buffer";

This assertion does not constrain the value of N at any point outside the loop. The loop can 
change N as long as the new value is also greater than 2.

Note that the set of statements that belong to the loop are defined by the loop logic rather than 
by the syntax. For example, in the following Ada loop the statement that sets  N to 1 is not 
within the logical loop because it is followed by an exit statement and so is not repeated:

for k in 1 .. num_sensors loop
Sample_Sensor (k);
if Done then

N := 1;
exit;

end if;
end loop;

Thus, this loop conforms to the assertion that N is greater than 2 in the loop.
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For calls

When the time or space usage of a subprogram depends on its parameters, or on some global  
variables  that  have  different  values  in  different  calls,  you  may  want  to  assert  that  these  
parameters or variables have certain values at a specific call or set of calls. You can do so by 
writing variable-value assertions in the context of this call or set of calls. Here is how to assert  
that the variable N equals 8 at any execution of any call to the subprogram Clear that occurs in 
the subprogram Fill_Buffer:

subprogram "Fill_Buffer"�
all calls to "Clear"

variable "N" 8;
end calls;

end "Fill_Buffer";

Variable value bounds asserted in a call context apply in the caller, immediately before the 
execution  flows  from  the  caller  to  the  entry  point  of  the  callee.  They  do  not  imply  any 
constraints on variable values during the further execution of the callee.

Variable bounds asserted in a call context are used only for the context-dependent analysis of 
the callee for this call. Such assertions are thus useful only if Bound-T has not found context-
independent bounds on the callee, because only in this case does  Bound-T attempt context-
dependent analysis of the callee. The presence of call-context assertions currently does not  
force a context-dependent analysis of the callee.

Global variables in calls

An assertion on the value of a global variable in a call context has the same effect as the same 
assertion in the entry context of the callee subprogram. Call-context assertions are however 
more  flexible  since you can use different  values  for  different  calls.  Moreover,  call-context  
assertions may imply bounds on the actual parameter values for this call as explained below.

Local variables in calls

When there are assertions on variable values in a call context, and some of these variables 
occur in the call's actual parameter expressions, the parameter-passing mechanism of the call  
translates the asserted bounds on the caller's variables into bounds on the callee's (formal) 
parameters. For example, consider an Ada call of the form

Send_Nulls (N => K + 1);

where N is a formal parameter to  Send_Nulls and K is a local variable in the caller. Assume 
that  the  code  for  the  caller  keeps  the  caller's  variable  K in  register  r6,  but  the  code  for 
Send_Nulls expects the parameter N to be passed (by value) in register r0, and that we assert

call to "Send_Nulls" variable "K" 4; end call;

The result is to assert that r6 at the call has the value 4 and so r0, representing the parameter 
N of Send_Nulls, has the value 4 + 1 = 5 on entry to this invocation of Send_Nulls.

Do not assert foreign local variables in calls

Take care to assert call-specific bounds only on global variables or variables that are local to 
the caller or formal parameters of the caller. Assertions on the value of a variable that is local 
to other subprograms (such as the callee) will probably not work correctly, because Bound-T 
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translates the variable name to a machine-level local variable reference (such as a stack offset 
or a register reference). Bound-T then applies this machine-level reference in the caller, so that 
the assertion in fact bounds an unrelated local variable of the caller.

In particular, do not use the callee's formal parameter names in a call-context assertion. For 
example, assume that the formal parameter N of Send_Nulls (see the example in the preceding 
subsection) is passed via the stack and not in register r0 as assumed above. Now, although the 
above  assertion  on  K for  the  call  to  Send_Nulls has  the  effect  of  bounding  the  formal 
parameter N, it cannot be written as follows:

call to "Send_Nulls" variable "N" 5; end call;   -- Wrong!

Since the symbol table maps N to “the first stacked parameter”, this (wrong) assertion in fact 
bounds the value of the first stacked parameter of the caller, which probably has nothing to do 
with K or N.

You can break this rule only if you are sure that the formal parameter is mapped to a statically 
addressed memory location or a statically named register so that the machine-level parameter 
reference points to the same physical storage location when interpreted in the caller and in the 
callee.

2.13 Assertions on variable invariance

Why?

When Bound-T analyses the computations in a subprogram or a loop it is often important to 
know if some part of the code, such as the loop body or a call, can change the value of a certain  
variable,  or whether the variable is invariant (unchanged) over that code.  Bound-T tries to 
detect invariant variables automatically but this analysis, like many others in Bound-T, is not 
complete  and can miss  some invariances.  This  can cause  some other  analysis  to  fail.  For  
example,  Bound-T may fail to find repetition bounds for a loop if it does not detect that the  
loop-counter variable is invariant over a call  in the loop body.  You can work around such 
problems by asserting the invariance of the variable.

However, using invariance assertions is difficult: it is not easy to understand when they can fix  
a  problem  and  which  invariances  should  be  asserted.  We  aim  to  strengthen  Bound-T's 
automatic invariance analysis to reduce the need for invariance assertions.

An invariance assertion can apply to a subprogram context, a loop context or a call context. We 
will discuss the subprogram context last because it is the strongest form.

Running example

Assume that num_data is a global integer variable and consider the C subprogram Scan_Data 
that has a loop that counts from 1 to num_data and calls Check:

void Scan_Data
{ int n;

num_data = 100;
for (n = 1; n <= num_data; n++) Check(n);

}
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Assume  further  that  Check has  a  conditional  assignment  to  num_data.  Since  Check may 
change  num_data,  Bound-T cannot deduce that the loop in  Scan_Data repeats 100 times. 
However, suppose that we know that the condition in Check is false in this context so that in 
fact num_data is unchanged. Below you will see different ways to assert this invariance and let 
Bound-T analyse the loop.

In a call

An invariance assertion for a call context means that this call does not change the variable in  
question, although other calls of the same subprogram may change it. Here is how to assert  
that num_data is invariant in the call from Scan_Data to Check:

subprogram "Scan_Data"
call to "Check"

invariant "num_data";
end call;

end "Scan_Data";

In any call

An invariance that holds for all calls of a subprogram can be asserted in a global call context, 
without an enclosing subprogram block. Here is how to assert that no call of  Check changes 
num_data:

all calls to "Check"
invariant "num_data";

end calls;

In a loop

An invariance assertion with a loop context means that the variable retains its value in any 
repetition of the loop body. In other words, when execution enters the loop head with a certain 
value for this variable and goes through the loop body and back to the loop head,  the variable 
has the same value again, even if it had different values in between.

For the above example with Scan_Data, Check and num_data, another way to assure Bound-
T that num_data is invariant in the loop-counter code is this:

subprogram "Scan_Data"
loop

invariant "num_data";
end loop;

end "Scan_Data";

Note that the final pass through the loop – the pass that ends the loop and does not return to 
the loop head – can change the variable. For example, num_data can be asserted as invariant 
in the following Ada loop, although its value on exit from the loop is different from its value on 
entry to the loop:

loop
num_data := num_data + 1;
exit when <some condition>;
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num_data := num_data − 1;
end loop;

In any loop

An invariance that  holds for all  loops can be asserted in a global loop context,  without an 
enclosing  subprogram  block.  Here  is  how  to  assert  that  num_data is  invariant  in  any 
repetition of any loop that contains a call of Check:

all loops that call "Check"
invariant "num_data";

end loops;

In a subprogram

An invariance assertion with a  subprogram context  means that  the variable in question is  
invariant  in  all calls  and  all loops  within  this  subprogram.  The  subprogram  may  contain 
assignments to the variable as long as the variable remains invariant in loop repetitions. Other 
subprograms called from this subprogram may change the variable temporarily as long as they 
restore its original value on return.

Here is how to assert that num_data is invariant in this sense within Scan_Data:

subprogram "Scan_Data"
invariant "num_data";

end "Scan_Data";

This assertion implies those call-context and loop-context invariance assertions shown above 
as nested in subprogram blocks for Scan_Data. In fact, it implies the following:

subprogram "Scan_Data"
all loops invariant "num_data"; end loops;
all calls to "Check" invariant "num_data"; end calls;

end "Scan_Data";

It  also  implies  the  analogous  "all  calls"  invariance  for  any  call  from  Scan_Data to  any 
subprogram, not just for calls of Check.

Note that the invariance in the subprogram context of  Scan_Data does not conflict with the 
assignment of 100 to  num_data in  Scan_Data. Note also that it does  not imply invariance 
over a call of Scan_Data. In fact, a call of  Scan_Data probably changes num_data with this 
assignment.
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2.14 Assertions on volatility

What does "volatility" mean?

Most  memory  locations  are  "persistent"  in  the  sense  that  reading  the  memory  location 
produces  the  value  that  was  last  written  into  the  memory  location.  That  is,  the  memory 
location really remembers what the program stored there. However, some memory locations 
do not behave in this way, and reading the location can return a different value. We call such 
locations volatile. Common examples of volatile memory locations include the following.

• Memory-mapped peripheral control registers. The value read from the register may 
bear  no relation  to  the  last  value  written,  either  because activity  in  the  peripheral 
changes the register contents, or because writing to the register is not even meant to 
store a value for later reading, but to issue some command to the peripheral.

• Variables shared with other, concurrently executing threads. While the value read from 
the variable may equal the value last written, the last write may have been executed in 
another thread, and therefore the value may be different from the last value written in 
the thread that Bound-T is analysing.

Why assert volatility?

The data-flow and value-analyses in  Bound-T by default assume that all  memory locations 
(registers and variables) are non-volatile (unless there are some target-specific address ranges 
known to be volatile). These analyses can therefore track values from write instructions to read 
instructions, and so bound the values of computations and logical conditions. If some of these 
locations are in fact volatile, the analysis may be wrong, and may lead to incorrect (unsafe) 
"bounds" on execution-time and stack-usage.

For example, if the program uses the value of a volatile variable in a branch condition or loop  
repetition/termination condition,  but  Bound-T is  not  told that  the variable is  volatile,  the 
incorrect value analysis may incorrectly conclude that the condition always has a certain value, 
and therefore wrongly consider that one path from the branch is infeasible, or that the loop 
terminates immediately, or never terminates.

When a  memory location is  known to be volatile,  the analyses considers that  reading the 
location  returns  an  unknown value,  which is  not  defined by  the  value  last  written  to  the 
location. This prevents the analysis errors described above.

For example,  consider  a  processor  with  a  built-in  Analog-to-Digital  Converter  (ADC),  also 
known as a digital voltmeter. Assume that the ADC has two memory-mapped 8-bit registers: a 
Command/Status register and a Value register, with the following functions:

• Writing to the Command/Status register sets the number of the input channel to be 
converted (0..15) and starts the conversion (measurement) process, which may last 
for several instruction times.

• Reading the Command/Status register returns the status of the ADC, where bit 0 (the 
least significant bit) shows if  a  conversion is  going on (bit 0 = 0),  or is  completed 
(bit 0 = 1).

• Writing the Value register has no effect (and should be considered an error).

• Reading the Value register returns the result of the last (completed) conversion. It is 
an error to read the Value register when a conversion is going on.
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The C statements to measure the voltage on channel 8, say, could look like this, where the 
variable "adc_cmd_stat" represents the Command/Status register, and "adc_value" represents 
the Value register:

adc_cmd_stat = 8; // Start conversion of channel 8.
while (adc_cmd_stat & 1) {}; // Loop (delay) until conversion completed.
result = adc_value; // Read the conversion result.

If  Bound-T analyses this code without knowing that  adc_cmd_stat  should be treated as a 
volatile memory location, it would propagate the value 8 assigned to adc_cmd_stat in the first 
statement to the use of adc_cmd_stat in the "while" condition. Since "8 & 1" is false (zero), the 
loop appears to terminate at once, which leads to an underestimation of the execution time.

The assertion language lets you assert variables as globally volatile, using the variable's name 
or  address.  Volatility  assertions  cannot  (yet)  apply  in  a  non-global  context.  The  assertion 
language also lets you assert entire address ranges as volatile, which means that Bound-T will 
consider as volatile any memory access that the analysis finds to lie in that address range. 
However, remember that Bound-T does not resolve all dynamic memory addresses.

Globally volatile variables

To  make  Bound-T analyse  the above  example correctly,  you  can  mark  "adc_cmd_stat"  as 
volatile with this assertion, in the global context:

volatile "adc_cmd_stat";

If you also want to mark "adc_value" as volatile, you can either write two volatile assertions in 
the above form, or write both variable names in the same assertion, separated by a comma:

volatile "adc_cmd_stat", "adc_value";

Globally volatile address ranges

In some processors or systems, specific ranges of memory addresses are reserved for memory-
mapped I/O registers. If, for example, the range  0x1000 ..0x 1FFF refers to I/O registers, you 
can make  Bound-T consider as volatile any (identified) access to this range by writing this 
assertion in the global context:

volatile range "0x1000" .. "0x1FFF";

This assumes that memory addresses for the target processor in question can be written in the 
C hexadecimal form. The syntax for memory addresses is target-specific as described in the 
Application Note for the target. Note also that targets which have several separate address 
spaces may not let you write an address range that crosses over from one space to another.

Note that you cannot define an end-point of a  range by a variable-name; you must use an 
address.

One and the same volatile assertion can list any number of variable names and/or memory 
address ranges, separated by commas.
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2.15 Assertions on target-specific properties

Why?

For some target processors, the behaviour or timing of instructions depends on target-specific  
factors  that  Bound-T cannot  analyse  in  general.  For  example,  accessing  certain  memory 
locations may be delayed by “wait states” and the number of wait states may depend on the 
memory area or on processor configuration. The version of Bound-T for each target processor 
defines a set of such "properties" for the target (this set may be empty). Each property has a  
name and you can assert the value or range of values the property has in a certain context.

The available properties and their meanings are completely target-specific and are explained in 
the relevant Application Notes.

Bounds  on properties  can be  asserted  in  all  contexts  except  subprogram entry.  However,  
properties for call contexts are currently not used (they have no effect).

Globally

Assuming that the current target processor has a property  read_ws, perhaps expressing the 
number  of  wait-states  necessary for  reading memory,  here  is  how to  assert  that  Bound-T 
should assume the value 1 for this property globally:

property "read_ws" 1;

Inner context overrides outer context

Property assertions differ from variable-value assertions in that property assertions for inner 
(more local) contexts  override assertions for outer (more global) contexts. For example, you 
can mix global context, subprogram context and loop context as follows:

property "read_ws" 1; -- Global context.

subprogram "Copy"
property "read_ws" 2;  -- Subprogram context.
loop

property "read_ws" 3;  -- Loop context.
end loop;

end "Copy";

The result is that Bound-T will use, for read_ws, the value 3 in the (single) loop in the Copy 
subprogram, the value 2 elsewhere within Copy, and the value 1 everywhere else.

2.16 Assertions on instruction roles

Why?

Some instructions  can perform several  roles in  the execution of  a  program.  For example, 
consider a "return" instruction that pops a return address off the stack and transfers control to 
that address. Most "return" instructions perform just that role, of returning control from a  
callee  subprogram to  the  caller  subprogram.  However,  a  compiler  can also  use  a  "return" 
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instruction  to  perform some  other  kind  of  transfer  of  control.  For  example,  a  jump to  a  
dynamically computed address can be performed by pushing the address value on the stack 
and executing a "return".

To  analyze  such  multi-role  instructions  Bound-T must  decide  which  role  the  instruction 
performs, because Bound-T uses different data structures and different analysis methods for 
different roles. The automatic algorithms built into Bound-T can sometimes choose the wrong 
role, which may make the analysis fail. In such cases you can tell Bound-T which role to use for 
that instruction.

An instruction that performs a tail call

For  a  concrete  example,  consider  the  way  some  compilers  implement  calls  via  function 
pointers on the Intel-8051 processor. This processor has a stack that is normally used to hold 
return addresses. The ret instruction pops a 16-bit address off the stack and into the Program 
Counter  PC.  Assume  now  that  the  16-bit  DPTR register  holds  the  dynamically  computed 
address  of  a  subprogram  (a  function  pointer,  in  C  language  terms).  One  way  to  call  the 
subprogram at this address is to call an intermediate subprogram that we name  ICall which 
contains instructions that push the  DPTR on the stack, followed by a  ret. In 8051 assembly 
language:

ICall: push DPL
push DPH
ret

Note that although the  ret instruction occurs in its usual place at the end of a subprogram 
(ICall), its role is not just to return from this subprogram. What it does is to transfer control to 
the address in DPTR, the entry point of the subprogram we want to call. However, the return 
address for ICall is still on the stack, so when the subprogram at  DPTR eventually returns, it 
returns to that address (the instruction following the call of  ICall). This kind of "trampoline" 
call is often termed a tail call,  and here is how you can assert to the Intel-8051 version of  
Bound-T that this ret instruction performs a tail call, not an ordinary return:

subprogram "ICall"
instruction at offset "4"

performs a "tail call";
end instruction;

end "ICall";

Note that the name of the instruction role is written in quotes as "tail call". This is because the  
instruction roles are target-specific and are not standard keywords of the assertion language.

To find out which offset to use to identify an instruction you can disassemble the subprogram 
(for  example  with  the  Bound-T option  -trace  decode)  and  compute  the  difference  of  the 
instruction address and the subprogram entry point address. In the example, the offset is 4  
octets because each of the push instructions is 2 octets long.

The roles that instructions can perform

The instructions and their roles are of course target-specific. Moreover, most instructions have 
fixed roles that cannot be changed with role assertions. For example, an instruction that just 
adds two data registers and puts the sum in a third data register can hardly be required to 
perform a call. The role-instruction combinations for a given target processor are listed in the 
Bound-T Application Note for that target. If you assert a role for an instruction that Bound-T is 
not willing to model for that instruction, the result will be an error message to this effect, or a 
warning message saying that the assertion was not used at all.
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2.17 Special assertions on subprograms

Whether the subprogram returns

Some subprograms never return to the caller; the best known example is the exit function in C. 
Knowing that a subprogram never returns can simplify the analysis of other subprograms that  
call the non-returning subprogram. Here is how to assert that exit never returns:

subprogram "exit"
no return;

end "exit";

Whether the subprogram returns to an offset address

Some subprograms do not return to the return address offered by the caller, but to some later  
(or perhaps earlier) point in the code. This is often the case for special library subprograms 
that access constant data, stored in the program code immediately after the call instruction.

Consider,  for  example,  a library for 64-bit  floating-point  arithmetic  on an 8-bit  processor. 
Floating-point computations often use constants, in this case 64-bit constants. A convenient 
way to encode such an 8-octet constant in the program is to put it in the code and precede it by  
a call to a helper subprogram, with the name fcload, say. This subprogram takes its own return 
address (from the stack, for example); uses it as a pointer to read the 8-octet floating point 
constant from the code; does whatever is necessary with the floating-point value (for example, 
writes it to some working registers of the floating-point library); and increments the return 
address by 8, thus returning to the instruction after the 8-octet constant. For example, in the 
Intel-8051 assembly language (as used in the SDCC compiler), a call to fcload could look like 
this:

lcall fcload
.byte 0x22 ; This is the offered (normal) return point,
.byte 0xA1 ; but for "fcload" we have instead 8 constant
.byte 0x52 ; data octets.
.byte 0x10 
.byte 0x12 
.byte 0x31 
.byte 0x00 
.byte 0xFF ; This is the last (8th) data octet.
; The call of "fcload" actually returns to the instruction
; following this comment.

When Bound-T is constructing the flow-graph of some subprogram that calls fcload, it needs to 
know  the  return  point  of  the  call,  even  before  analysing  fcload itself.  In  the  absence  of 
assertions  Bound-T assumes that  fcload follows the normal calling  protocol,  which usually 
means that the call returns to the point immediately after the call instruction. However, for 
fcload that  point  contains  the  8-octet  constant,  not  instructions,  so  Bound-T would try  to 
decode the constant as executable instructions, which would be quite wrong and could lead to 
too large or too small time and space bounds. For example, if the first octet of the constant 
happens to be the machine code for a "return" instruction Bound-T will assume that the calling 
subprogram  ends  after  the  call  of  fcload,  which  could  omit  much  of  the  code  of  this 
subprogram from the analysis. (This is the case in the Intel-8051 example above, because an 
8051 return instruction is one octet with the value 22 hexadecimal, which also happens to be 
the value of the first octet of the constant.)
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The following assertion tells Bound-T that the true point of return from calls to  fcload is the 
offered return address (immediately after the call) plus 8 octets (to skip the 8-octet constant):

subprogram "fcload"
returns to offset "8";

end "fcload";

The  precise  meaning  of  the  offset  string  (here  "8")  is  target-specific.  The  example  above 
assumes that offsets are measured in octet units. Some target processors may use larger units 
such as 16-bit or longer words.

Whether to use arithmetic analysis

The Presburger-arithmetic analysis that Bound-T uses to find loop-bounds and other facts can 
be quite expensive in time and space. There is a command-line option (-arithmetic) to enable or 
disable this analysis globally for all analysed subprograms, but it is sometimes useful to enable 
or disable it for individual subprograms. Therefore, the assertion language lets you override 
this  command-line option.  Here  is  how to  enable  arithmetic  analysis  for  the subprogram 
Involutor:

subprogram "Involutor"
arithmetic;

end "Involutor";

And here is how to disable it:

subprogram "Involutor"
no arithmetic;

end "Involutor";

Whether to integrate the callee into the caller's analysis

In special cases it may be useful to tell Bound-T not to analyse a subprogram separately, but as 
a part of the code of every caller, as if the called subprogram were “inlined” in the caller. Such 
integrated analysis may be necessary for subprograms that do not follow the normal calling 
conventions, for example library routines that the compiler invokes as part of the “prelude” or 
“postlude” code to set up or tear down local stack frames.

The following assertion shows how to specify integrated analysis for the subprogram C$setup:

subprogram "C$setup"
integrate;

end "C$setup";

Bound-T may default  to  use  integrated analysis  for  some predefined routines under  some 
target processors and target compilers; if so, it will be explained in the relevant Application 
Notes. Such a default cannot be disabled by an assertion.

An integrated subprogram does not,  in fact, appear as a “subprogram object” in  Bound-T's 
model  of  the  program  structure.  Thus  it  is  not  useful  to  assert  anything  else  for  such  a 
subprogram. Moreover, since the subprogram is not analysed on its own,  Bound-T does not 
report any analysis results such as a WCET bound or stack usage bound for the subprogram.  
Instead Bound-T includes the subprogram's execution time and stack usage in the results for 
the calling subprograms.
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Likewise, a call to an integrated subprogram does not appear as a “call object” in  Bound-T's 
model of the program structure. Thus, it is not possible to assert anything for such a call, nor  
to use the existence of the call as a property that identifies a containing loop, for example.

Whether the subprogram is used at all

A program is often analysed under certain assumptions that define (limit) the scenarios to be 
included in the analysis. For example, one often wants an analysis of the “nominal” scenarios 
in which no run-time errors happen. One aspect of such scenarios may be that they never use 
(call)  certain  subprograms,  for  example  error-handling  subprograms.  Bound-T provides  a 
dedicated form of assertion, as in this example that states that subprogram “Show_Error” is  
never used:

subprogram “Show_Error”
unused;

end “Show_Error”;

An unused assertion has two effects: firstly, Bound-T considers all calls to this subprogram to 
be  infeasible (never  executed);  secondly  and consequently,  Bound-T does  not  analyse  this 
subprogram. The analysis results would be irrelevant.

The keyword unused can also be written as not used.

Whether to omit the subprogram from the analysis

It  may  be  impossible  or  undesirable  to  analyse  some  subprograms  at  all,  even  if  the 
subprogram is  used by the  target  program.  It  is  simple  to  tell  Bound-T to  omit  a  certain 
subprogram from its analysis, as in this example for the subprogram “Switch_Task”:

subprogram “Switch_Task”
omit;

end “Switch_Task”;

However, such an assertion does not omit calls to the omitted subprogram, so the calls (and 
callers) will be unbounded (have unknown execution-time and stack-usage bounds) unless you 
also assert bounds on time and/or stack usage for the subprogram or for each call.

If you assert sufficient time bounds, stack usage bounds, and (for unstable stacks) final stack  
height  bounds  for  a  subprogram,  Bound-T automatically  omits  the  subprogram  from the 
analysis. In this case an omit assertion is allowed but is redundant.

The combination of  unused and  omit is redundant since  unused implies  omit. But note that 
omit does not imply unused because the calls to an omitted subprogram remain in the analysis.

Whether other assertions are enough for time analysis

Subprograms with  irreducible  flow-graphs are  problematic  for  Bound-T because,  for  such 
subprograms,  Bound-T can  neither  find  loop  repetition  bounds  automatically  nor  accept 
assertions on loop repetition bounds – because Bound-T is unable to structure the flow-graph 
into loops and non-loop parts. However, it is still possible to assert repetition bounds on some 
parts of such subprograms – calls or instructions – and these assertions may be strong enough 
to constrain the number of repetitions of all parts of the flow-graph. Consider, for example, a  
subprogram Irred with the flow-graph shown in the figure below.
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Figure 6: An irreducible flow-graph

The nodes labeled 3, 4, 5, and 6 can be repeated, but they cannot be collected into a “natural” 
loop with a single entry point (the loop head). Thus, the flow-graph is irreducible. However, all 
repeated execution paths must pass through nodes 4 or 6, and both nodes (we assume) contain 
calls, as indicated in the figure. Assertions that bound the number of times these calls are 
repeated are enough to bound the number of repetitions of all  nodes.  However,  you must 
explicitly tell Bound-T that this is so, as in the example below:

subprogram “Irred”
call to “Foo” repeats 15 times; end call;
call to “Bar” repeats 27 times; end call;
enough for time;

end “Irred”;

The assertion enough for time makes Bound-T try to find an execution-time bound (using the 
IPET method) even though the flow-graph is irreducible, and in this example it will succeed 
because the other two assertions, on the calls, are strong enough.

Whether to show the subprogram in the call-graph drawing

Bound-T can help you understand your program by drawing the call-graph as explained in the 
Reference  Manual.  However,  sometimes  the  call-graph  is  cluttered  because  some  utility 
subprograms are called from many places. For example, on some processors multiplication or 
division are implemented by library subprograms so the drawing may have a multitude of call-
arcs  to  these  subprograms.  You  can  make  the  call-graph  clearer  by  asserting  that  certain 
subprograms should be hidden (omitted). For example, the following hides the subprogram 
m$divi:

subprogram “m$divi”
hide;

end “m$divi”;
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The hiding assertion does not apply “recursively”: if  m$divi calls some other subprograms 
these are not automatically hidden but will appear in the call-graph drawing unless you assert 
that they should be hidden too.

Note that  hide has no effect on the actual analysis, only on the call-graph drawings. Indeed 
hide is independent from the unused and omit assertions.
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3 IDENTIFYING PROGRAM PARTS

3.1 Why and how: the different ways

When  you  write  an  assertion  you  must  identify  its  context,  which  means  the  part  of  the 
program under analysis to which the assertion applies. For assertions on variable values you 
must  also  identify  the  variable  or  storage  cell  to  be  constrained.  The  Bound-T assertion 
language provides three ways to identify a program part or entity:

• by its name, for example the name of a subprogram or variable,

• by its relationship to other parts, for example that it is contained in a known subprogram,

• by its position in the source code, given by a source-file name and source-line number,

• by its position in the machine code, given by a machine address for code or data.

Some of these identification methods cannot be used for some kinds of program entities, as  
currently implemented in Bound-T. Table 1 below shows the allowed combinations. Table cells 
shaded grey indicate  the unavailable  methods.  Some entities have obligatory identification 
methods: a static call must always be identified by its callee (by name or address),  and an 
instruction by its address; the other methods can be added to constrain the assertion to apply 
only to some calls with this callee, or some instances of the instruction at this address.

Table 1: Allowed means of identification of program parts

Entity By name of By relationship to By source line # of By address of

subprogram the subprogram the entry point

loop the label of a 
statement in the 
loop

the containing subprog-
ram, or a call in the loop, 
or an access to a variable in 
the loop, or an inner or 
outer loop

the loop head, or any 
code in the loop, or 
any line in the range 
of lines spanned by 
the loop

any instruction 
in the loop

call, static the callee the containing subprogram 
or loop

the call instruction the callee

call, 
dynamic

the containing subprogram 
or loop

the call instruction

instruction the containing subprogram the instruction

variable or 
other cell

the variable a scope (a block of local 
variable declarations)

the register or 
memory 
location

Section 3.2 below describes,  in a general way,  how program entities are identified by their 
names, possibly qualified by scope information. Section 3.3 describes, again generally, how 
entities  can  be  identified  by  their  source-code  position.  The  later  sections  in  this  chapter  
discuss each kind of entity (subprogram, loop, ...) and how such entities can be identified using 
any allowed method.

Bound-T Assertion Language Identifying parts 49



3.2 Names, scopes, and qualified names

Scopes qualify names

Assertions can refer to program entities by names (identifiers,  symbols). A name can be a 
subprogram name, a variable name or the name of a statement label. It is common to use the 
same basic name for many different variables in a program, for example, many loop counters 
may be called i or count. Sometimes the same basic name is used for different subprograms, 
for example in different modules. Bound-T tries to separate such synonyms by adding scopes 
to the names.

Scopes are nested hierarchically. The scope levels that are used depend to some extent on the  
target processor and the target compiler and linker, but typically the top level identifies the 
module (source-code or object-code file) and the next level (if any) identifies the subprogram 
that contains the entity in question. The scope system is explained in the relevant Application 
Notes.

The “fully qualified” name of an entity consists of the scope names followed by the basic  name,  
all enclosed in quotes and separated by a delimiter character that is usually the vertical bar '|'.  
For example, the local variable i defined in the subprogram fill_buffer defined in the module 
(file)  buffering would  have  the  fully  qualified  name  “buffering|fill_buffer|i”.  If  the  buffering 
module contains another subprogram initialize that has its own local variable i, this would be 
“buffering|initialize|i”. If another module sink contains another subprogram initialize that has its 
own local variable i, this would be “sink|initialize|i”.

Unique suffix suffices

You can always use the fully qualified name to identify a subprogram or a variable, but it is 
enough  to  give  those  scope  levels  (starting  from  the  bottom)  that  make  the  name 
unambiguous.

In the examples above, the variable name “i” is clearly ambiguous. The partially qualified name 
“initialize|i” is also ambiguous because it  occurs in two modules,  buffering and  sink,  so you 
must use the fully qualified names “buffering|initialize|i” and “sink|initialize|i” to refer to these two 
i variables.

The  partially  qualified  variable  name  “fill_buffer|i” is  enough to  identify  the  i in  fill_buffer 
because (in this example) there is only one subprogram called fill_buffer.

The unqualified subprogram name “fill_buffer” is also unambiguous for the same reason. The 
two  initialize subprograms  have  to  be  qualified  as  “buffering|initialize” and  “sink|initialize” 
respectively.

Default scope

The assertion  language  provides  the  keyword  within to  let  you  set  a  default  scope that  is 
prefixed to all names. Continuing on the examples above, after the default scope definition

within "buffering|initialize";

you can write just “i” instead of “buffering|initialize|i”.

When  a  default  scope  is  defined  it  applies  to  all  name  strings  that  start  with  a  normal 
character.  Here the name  ”fill_buffer|i” would be interpreted as  ”buffering|initialize|fill_buffer|i” 
which would probably not be a valid name. To ignore (escape) the current default scope, put 
the delimiter character at the start of the name, as in “|fill_buffer|i”.
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The default scope can be cleared by defining a null string as the default scope: within “”.

Different delimiters

Some target compilers may use the vertical bar character '|' within names which means that it 
cannot be used to delimit scope levels. The assertion language provides the keyword delimiter 
for changing the scope delimiter, for example to a diagonal slash as follows:

delimiter '/';

Afterwards  you  would  write  for  example  ”fill_buffer/i” to  refer  to  the  variable  i in  the 
subprogram fill_buffer.

3.3 Source-code positions

The source-to-object mapping

Bound-T itself never reads the source-code files of the program under analysis, but the symbol 
table (debugging information) embedded in the executable program file  usually contains a 
compiler-generated line-number mapping that connects the machine addresses of instructions 
to  the  source-code  lines  that  gave  rise  to  those  instructions.  This  gives  Bound-T some 
knowledge of the source-code lines that correspond to specific instructions, for example all the 
instructions in a loop, or the call instruction that transfers control from a calling subprogram 
to a callee subprogram. Bound-T can use this mapping in reverse to identify the loop or call 
that corresponds to given source-code lines.

However, the mapping between source-code and machine-code positions is often incomplete 
and inexact, simply because the relationship is complicated by the extensive transformations 
that powerful compilers apply to the code – optimizations, reorderings, code sharing, and so 
on.

Source-line numbers versus marks

There are two ways to specify the source-code position of a program part:

• directly,  by  the  actual  number of  the  source-code  line  and  (perhaps)  the  name  of  the 
source-code file, or

• indirectly, by the name of a marker embedded in the source code at this place.

The  direct  method  can  be  used  without  any  alteration  or  annotation  of  the  source  code.  
However, if the source code is then changed, the line numbers may also change, which may  
force you to update the assertions.

The  indirect,  marker-based method requires  adding marks  to  the  source code.  Marks  are 
usually written as comments in a special form. As comments, they should have no effect on the 
generated code.  However,  you need a  program of some sort  to  scan the source-code files,  
recognize  the  marks,  and  create  a  mark-definition  file that  Bound-T can  use.  Tidorum 
provides one such program called find_marks.

The same marker name can mark several places in the same source file or in several files. An 
assertion using this marker name applies to all those places, for example to all calls marked by 
this marker name. This cannot be done easily by direct use of source-code line numbers.
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Example

For example, consider the following C function add_up, where line numbers are shown on the 
left and only the start of the function is shown in detail.

1 int add_up (int A[], int n)
2 {
3 int sum = 0, i;
4 for (i = 0; i < n; i++)
5 {
6 sum += A[i];
7 A[i] = 0;
8 }
9 if (sum < 0)

10 normalize (
11 &sum,
12 n/2);
... ...

31 }

The function contains a loop, for (i ...), and a call to the function normalize. We now consider 
how these parts of add_up can be identified using their source-code locations.

Identifying the loop by its source-line numbers

The loop in  the example above stretches  over  five  source lines (numbers  4 ..  8),  but  it  is 
unlikely that all these lines will be represented in the source-to-object mapping. For example,  
the source-code lines 5 and 8 hold only curly braces and do not directly cause any code to be  
generated. On the other hand, some compilers may map the last code generated in the loop to  
line 8, simply because that line indicates the end of the loop and in this sense “makes” the  
compiler generate the branch back to the start of the loop and perhaps some of the code that 
checks loop termination. Lines 4, 6, and 7 should normally give rise to machine code and be  
mapped to that code. This means that the loop is likely to be identifiable with these lines.

Using the line at the loop head (line 4), you can write a loop-bound assertion as:

subprogram “add_up”
loop on line 4 repeats 15 times; end loop;

end “add_up”;

That works if the compiler maps line 4 to some of the loop initialization code (for example, the 
assignment i = 0) or to the loop head (for example, the comparison i < n). However, there is no 
guarantee that the compiler does that.

Using a line within the loop body, for example line 6, the same assertion can be written as:

subprogram “add_up”
loop containing line 6 repeats 15 times; end loop;

end “add_up”;

That works if the compiler maps line 6 to some code in the loop body (or in the loop head, 
which we consider part of the loop body). However, there is no guarantee that the compiler  
does that.

Perhaps the most robust way is to use the “spanning” form:
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subprogram “add_up”
loop spanning line 6 repeats 15 times; end loop;

end “add_up”;

This works as long as the range of line-numbers that the compiler maps to some code in the 
loop contains the line-number 6. It is not necessary for line 6, itself, to be mapped to some 
loop code.

Identifying the call by its source-line number

In the example  above,  the call  to  normalize stretches over  three lines (numbers 10 ..  12). 
However, from  Bound-T's point of view the “call” in the program under analysis consists of 
only  one  instruction,  the  last  instruction  executed  in  add_up before  control  passes  to 
normalize. Different compilers may choose to map this instruction to line 10, because that is  
where the call starts, or to line 12, because that is where the call statement is complete and 
code can be generated for the call instruction. A compiler is unlikely to map the call to line 11.

For a mapping to line 10, you can write an execution-time assertion for this call as follows:

subprogram “add_up”
call to “normalize” at line 10

time 213 cycles;
end call;

end “add_up”;

In case the compiler maps the call  to line 12,  you have to change the assertion to say “at  
line 12”.  The  fact  that  the  mapping  is  compiler-dependent  is  annoying  and  can  be 
cumbersome.

Specifying the “fuzz” for comparing line numbers

The  compiler-specific  variation  in  the  source-line  numbers  mapped  to  a  loop  or  call  can 
sometimes be overcome by telling Bound-T to tolerate a small difference or “fuzz” between the 
line number written in the assertion, and the line number actually connected to the loop or  
call.  Bound-T has a default fuzz that is controlled with the command-line option  -line_fuzz. 
The fuzz can also be defined for each assertion, overriding the default fuzz for that assertion. 
This  is  done  by  the  keyword  within followed  by  the  allowed  difference  range,  as  in  this 
example:

subprogram “add_up”
call to “normalize” at line 10 within 0 .. 3

time 213 cycles;
end call;

end “add_up”;

This assertion matches any call to normalize that is connected to a source line with a number 
in the range 10 .. 13, that is, the nominal line number 10 plus the interval 0 .. 3.

The risk of using a large fuzz is of course that the assertion may mistakenly match also some  
other, nearby call or loop that falls within the fuzzy range.

Bound-T Assertion Language Identifying parts 53



Using line-number offsets

If you write assertions that use source-line numbers, and then change the target program by 
adding or removing lines from those source files, you must update the assertions to use the 
changed line-numbers, which is obviously inconvenient. One way to avoid this inconvenience 
is to use source-code marks, as described below; another is to use line-number offsets instead 
of absolute line numbers.

Line-number offsets can be used only in assertions within subprogram blocks,  because the 
offset is defined relative to the first line of the subprogram. The first line of a subprogram is 
the source-line number that the compiler maps to the machine address of the subprogram's 
entry point (the first instruction in the subprogram). Unfortunately, the number of this first  
line depends on the compiler; some compilers use the line that contains the first text of the 
subprogram profile – this would be line 1 in the source-code for add_up, above – while others 
use a later line that begins the subprogram's body, for example (in C code) the line with the 
opening '{', which is line 2 in add_up, or the line that holds the first executable statement.

Assuming that the compiler uses line 2 as the first line for add_up, the assertion on the loop in 
add_up can be written as follows with a line-number offset:

subprogram “add_up”
loop spanning line offset 4 repeats 15 times; end loop;

end “add_up”;

The position line offset 4 is the same as line 6, because 6 = 2 (first line) + 4 (offset).

Identifying the loop by a mark

To illustrate the use of marks we must add mark lines to the source-code of add_up. The form 
(syntax) of source-code marks is defined by the tool that you use to find the marks in the 
source code.  In this example,  we use the syntax defined by the  find_marks program from 
Tidorum, in which a mark in C code is written as a C comment starting with the string /**Mark, 
followed by some optional  keywords describing the marked place,  and then by the marker 
names which are  usually  enclosed in quotes.  Here is  the source-code of  add_up with two 
marks, one for the loop and one for the call:

1 int add_up (int A[], int n)
2 {
3 int sum = 0, i;
4 for (i = 0; i < n; i++)
5 {
6 sum += A[i];
7 /**Mark “summer” */
8 A[i] = 0;
9 }

10 if (sum < 0)
11 /**Mark call below “norm” */
12 normalize (
13 &sum,
14 n/2);
... ...

31 }

When  find_marks processes this source code it associates the marker name “summer” with 
the  line-number 7  and  the  marker  name  “norm”  with  the  line-number  12.  You  can  then 
identify the loop by the marker “summer”:
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subprogram “add_up”
loop spanning marker “summer” repeats 15 times; end loop;

end “add_up”;

The meaning of spanning marker “summer” is the same as that of spanning line 7.

Similarly, the call can be identified by “norm”, perhaps also using within to define a fuzz:

subprogram “add_up”
call to “normalize” at marker “norm” within 0 .. 3

time 213 cycles;
end call;

end “add_up”;

How to  write  marks for  the  find_marks program is  described in  more detail  in  the  User 
Manual for find_marks, http://www.bound-t.com/manuals/find-marks-manual.pdf .

Naming the source-code file

When you identify a program part by its source-code position, whether directly by a source-
line number or indirectly by a marker name, you can also specify the name of the source-code 
file that contains this source line or mark. For assertions within a subprogram block you can 
usually omit the source-file name because the assertion context is then implicity limited to 
parts within this subprogram, which usually lie in exactly one source-code file. However, for 
assertions in global scope it may be necessary and useful to specify the source-file name.

For example, assume that the target program has a subprogram output that can emit various 
kinds of messages, some of which are classified as error messages, and you want to assert that 
no error messages can be generated in the code from the source file  inversions.c.  You can 
assert this as follows, assuming that the error-message-emitting output calls are marked with 
the marker “error-message” to separate them from other calls of output:

all calls to “output”
at marker “error-message” in file “inversions.c”
repeat 0 times;

end calls;

This assertion does not apply to any calls of output outside the source file inversions.c, whether 
or not those calls are marked “error-message”. If the same assertion is used without the part in 
file “inversions.c” it applies to all output calls marked “error-message” in any source-code file.

This completes the explanation of source-code positions and how they can be used to identify  
program parts. The rest of this chapter describes how to identify each kind of program entity – 
subprograms, variables, loops, calls, instructions – by any method, but the focus is on methods 
other than the source-code position.

3.4 Identifying subprograms

When writing assertions you may need to identify a subprogram in four places:

• To define a subprogram context: subprogram ”Foo” .. end “Foo”;

• To define a call context: call to ”Foo” .. end call;

• To characterize a loop by a call: loop that calls “Foo”;
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• As a callee of a dynamic call: dynamic call calls “Foo”.

In all places you can either use the name or the entry address of the subprogram. Source-code 
positions cannot be used.

By symbolic name

Subprograms are usually identified by writing the subprogram name in quotes:  ”Foo”. If the 
name  is  ambiguous  (occurs  in  several  modules,  for  example)  it  has  to  be  qualified  by  a 
sufficient number of scope levels: ”database|Foo”.

You must  use the subprogram's  link-name,  that  is,  the  name that  the linker  uses  for  this 
subprogram. In some target environments the link-name equals the source-code name (the 
identifier). In other environments the name is slightly modified, for example by prefixing an 
underscore so that the source-code name Foo becomes the link-name ”_Foo”. The Application 
Notes for the target will  explain this modification, if  any. You can find out the link-names 
assigned by the compiler and linker by dumping the target program with some dumping tool 
such as the Unix tools  nm or  objdump, or by dumping the target program with  Bound-T as 
explained in the Reference Manual, or by running Bound-T with the option -trace symbols. The 
last method also shows the scope that Bound-T assigns to each symbol.

By machine address

Subprograms can also be identified by their machine-level entry-addresses, in the form

subprogram address "12345"

The form and meaning of the quoted string following the  address keyword are in principle 
target-dependent and explained in the Application Notes. The string is usually a hexadecimal 
number giving the entry address. Of course this is a last-resort method, to be used only if the 
function has no symbolic identifier.

By an offset added to a symbolic name or machine address

A subprogram can also be identified by an entry address that is offset by a constant number 
from a base address. The base address can be given as a numerical address or as a symbolic  
name. For example, the following identifies a subprogram that is offset by "34" address units  
from the subprogram "Foo":

subprogram "Foo" offset "34"

If  the  entry  address  of  "Foo" is  1A36  in  hexadecimal  digits,  and if  the  offset  "34"  is  also 
interpreted as a hexadecimal number (the interpretation of offsets is target-specific), the above 
line identifies a subprogram with the entry address 1A36 + 34 = 1A6A hexadecimal. The same 
subprogram could be identified using either of the two following forms:

subprogram address "1A6A"

or

subprogram address "1A36" offset "34"

56 Identifying parts Bound-T Assertion Language



Identifying a subprogram by an offset relative to another, named subprogram is useful when a  
library contains local  subprograms that  have no public,  symbolic  name.  In such cases the 
offsets between subprograms in the library are often constant, although the absolute addresses 
depend on the memory map of the program to which the library is linked.

3.5 Identifying variables

When writing assertions you may need to identify variables in three places:

• To assert bounds on the value: variable ”count” <= 15;

• To characterize a loop by a variable it uses or defines: loop that uses “count”;

• To assert invariance: invariant “count”.

In all places you can either use the name or the machine address of the variable. Source-code 
positions cannot be used.

By symbolic name

Most compiler tool-chains generate symbolic information giving the names and addresses of 
all global variables, even for an optimised executable. Thus, global variables can be named and 
tracked without problems. The same holds for formal and actual parameters.

Many examples of variable naming appeared earlier in this chapter.

In the current version of  Bound-T it is  not possible to name record/structure components 
(members) or array components. Only stand-alone variables can be named symbolically.

Symbolic information on local variables is sometimes not provided in an optimised executable.  
Moreover, it seems likely that optimisation can have drastic effects on the set of local variables, 
such as placing them in registers, perhaps even in different registers for different instructions.  
The Application Notes should detail  how local  variables can be named with specific  target 
processors and target compilers.

You can find out the symbols that are available in the target program by dumping the target  
program as explained in section 3.4.

By machine address

Variables can also be identified by their machine-level addresses, in the form

variable address "12345"

The form and meaning of the quoted string following the address keyword are in principle  
target-dependent,  just  as  for  subprogram  addresses  discussed  above.  It  will  usually  be  a  
hexadecimal  number  giving  the  memory  address,  but  targets  may  also  make  processor 
registers accessible in this way. For example, the register called r3 in assembly language might 
be named as follows in an assertion:

variable address "r3"

The syntax for register names is explained in the relevant Application Note.
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Careful with the scope

Please  note  that  Bound-T translates  the  variable  name,  as  written  in  the  assertion,  to  an 
internal low-level data reference, such as a memory address, or a register name, or a stack 
offset relative to the current call-frame pointer. Bound-T does not memorize which high-level 
scope was used in this translation. Confusion can result if these scopes are mixed up.

For example, assume that subprogram Foo has a loop that uses a local variable  x which the 
compiler has placed in register r3, and subprogram Eek has a loop that uses its local variable y 
which the compiler has also assigned to register r3.

Under these assumptions, the global assertion

all loops that use "Foo|x" repeat 5 times; end loop;

is translated into an internal form that corresponds to

all loops that use address "r3" repeat 5 times; end loop;

This loop description will match the loop in Foo but also the loop in Eek, and probably will also 
match loops in a great number of subprograms that have nothing to do with either Foo or x but 
use r3 for their own local purposes. So be careful when describing loops or calls by means of  
local variables.

3.6 Identifying loops

When writing assertions you may have to identify specific loops for the following reasons:

• To define a loop context.

• To help identify a call by identifying the loop that contains the call.

• To help identify another loop by identifying an inner or outer loop.

Unlike  subprogram  and  variables,  loops  seldom  have  names  and  thus  we  identify  loops 
indirectly through the properties  or characteristics  of  the loop, or through the source-code 
position of the loop.

Loop properties

A loop can be identified firstly by the subprogram that contains the loop and secondly by 
specific properties of the loop itself, including its source-code position.

Writing loop assertions within a subprogram block specifies that the loop(s) to be identified lie  
in this subprogram. Writing loop assertions in the global context specifies that the loop(s) to 
be identified can lie in any subprogram.

Section 3.3 already showed how to use source-code positions to identify loops. In addition, the 
following specific properties or keywords can be used to identify loops:

labelled The loop contains (or does not contain) a specific statement label.

calls The loop calls (or does not call) a specific subprogram.

uses The loop reads (or does not read) a specific variable.

defines The loop assigns (or does not assign) to a specific variable.

in The loop is contained (nested) in another loop (or is not so contained).

contains The loop contains (or does not contain) another loop.

58 Identifying parts Bound-T Assertion Language



executes The  loop  contains  (or  does  not  contain)  the  instruction  at  a  given  machine 
address.  This  property  is  meant  as  a  last  resort  and  is  obviously  not  robust 
against  changes  in  the  target  program,  recompilation with  different  compiler 
options, or even relinking with a different memory lay-out.

The properties contains and in make this identification scheme recursive in the sense that the 
properties of an outer loop can be used to identify the inner loop, or vice versa.

Single loops or sets of loops are thus identified by listing some of their properties. Examples 
follow.  The examples  mainly show loop repetition  assertions but  of  course  the same loop 
identifications can be used to assert other kinds of facts, such as bounds on variable values  
within the loop.

A silly example: all loops in the program

There is probably no target program where this would be useful, but just as an example here is  
how to assert that  every loop in the target program repeats 7 times. Write this in a global 
context (not within a subprogram block):

all loops repeat 7 times; end loops;

The only loop in a subprogram

When there is only one loop in the subprogram under analysis,  the loop can be identified 
simply  by  writing  the  loop block  within  the  subprogram block.  It  is  not  necessary  to  add 
specific loop properties. For example, here is an assertion that the single loop in subprogram 
Stop_Motor repeats 11 times:

subprogram "Stop_Motor"
loop

repeats 11 times;
end loop;

end "Stop_Motor";

All loops in a subprogram

Another case where no loop properties need be given is when the same assertion applies to all 
loops in the subprogram in question. The keyword  all is then placed before  loop, as in this 
example that asserts that all loops in the subprogram Print_Names repeat 25 times:

subprogram "Print_Names"
all loops repeat 25 times; end loops;

end "Print_Names";

The loop that calls

When there are several loops in the subprogram that must be distinguished in the assertions, 
one or more properties are needed. For example, here is the loop that calls subprogram Foo:

loop that calls "Foo"

Assuming that this loop is in the subprogram Master, here is a complete assertion that this 
loop repeats up to 9 times:
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subprogram "Master"
loop that calls "Foo"

repeats <= 9 times;
end loop;

end "Master";

In a  Calls property,  the call  is  identified only  by naming the callee  subprogram. It  is  not 
currently possible to identify the call using the other call-properties explained in section 3.7.

The loop that accesses

The variables that  a loop accesses (reads or writes) can be used as properties of the loop.  
However, only statically accessed integer variables can be used here. Floating-point variables 
cannot  be  used  because  Bound-T generally  does  not  model  floating-point  computations. 
Arrays  (indexed  variables)  or  variables  accessed  via  pointers  cannot  be  used  because  the 
accessed memory location is not statically known.

As an example, here is a C subprogram Subtract_Average that subtracts the average value of 
one integer vector from another integer vector:

void Subtract_Average (int input[], int output[])
/* Subtracts the average of input[] from output[]. */
/* Both vectors are terminated by zero elements.   */
{ int i; int sum = 0; int avg;

for (i = 0; input[i] != 0; i++) sum += input[i];
avg = sum/i;
for (i = 0; output[i] != 0; i++) output[i] -= avg;

}

Here are some assertions that set a bound of 40 repetitions for the first loop that computes the 
sum and 120 repetitions for the second loop that modifies output:

subprogram "Subtract_Average"
loop that defines "sum" repeats 40 times; end loop;
loop that uses "avg" repeats 120 times; end loop;

end "Subtract_Average";

Note that

• the counter variable i cannot be used to separate the loops because both loops use i in the 
same way (reading and writing), and

• the array variables input and output cannot be used to separate the loops because the loops 
access their elements using dynamic (indexed) addressing.

The example identifies the first loop with the property  defines "sum".  Based on the source 
code the property  uses "sum"  should work, too, and indeed it may work. However, Bound-T 
inspects the machine-code form of the loops. In this example an optimizing compiler may well  
assign the same storage location (perhaps a register) to both the variables sum and avg. Both 
loops would then read this storage location so the  uses  property would apply to both loops. 
Using  defines  for the first loop is more robust.

You may wonder how we can use the local variables  sum and  avg in these properties when 
they are allocated on the stack and so do not have static addresses. This works because such 
variables are usually accessed with static offsets relative to the stack pointer. Bound-T analyses 
such accesses as using or defining statically identified (local) variables.
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Labelled loop

Despite the general acceptance of “structured” coding styles loops are still  sometimes built 
from goto statements and statement labels, for example as in this C code:

void search (void)
{

start_over:
... some code ...
if (!done) goto start_over;

}

Assuming that the compiler and linker place the statement label  start_over in the symbol-
table, the loop can be identified by the label, for example as follows:

subprogram "search"
loop that is labelled "start_over"

repeats 10 times;
end loop;

end "search";

The same holds for a loop that is written in a structured way with for or while but still contains 
a statement label for some reason. The label can be placed anywhere in the loop; it does not 
have to be at the start.

Last chance: the loop that executes "address"

If  there  is  no  better  way,  you  can  identify  a  loop  by  stating  the  machine  address  of  an 
instruction in the loop. Any instruction in the loop will do; you do not need to pick the first or  
last one. This description of the loop is very fragile because any change to the program or to  
the libraries it uses is likely to move the loop to a different place in memory which means that  
the address in the assertion may also have to be changed. However, the address can optionally 
be  given as  an offset  from the start  of  the containing subprogram,  a  slightly  more robust  
definition.

The address or offset is written in a target-specific form, but usually it is simply a hexadecimal 
number. For example, here is the loop that executes (contains) the instruction at address 44AB 
hex:

loop that executes "44AB"

and here is the same with an offset address:

loop that executes offset "3A0"

When  Bound-T lists  the  unbounded  loops  (a  form  of  output  described  in  the  Reference 
Manual) the listing shows the offset from the start of the subprogram to the head of the loop. 
You can use this value to identify the loop by “executes offset”.

Nested loops

The way loops are nested can be used to identify a loop by identifying an inner or outer loop 
with the keywords  contains  or  is in. See section 2.3 above for examples.
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However, note carefully that an outer loop inherits most of the properties of its inner loops. 
Thus, if an inner loop calls a subprogram, Bound-T considers that the outer loop also does so 
because the outer loop also contains this call. The same goes for the properties defines, uses, 
and  is labelled,  but  not  for  executes.  You  may  have  to  extend  the  loop  identification  to 
compensate  for  this.  For  example,  here  is  how  to  identify  an  outer  loop  that  itself  calls 
Check_Power, rather than inheriting that calls property from an inner loop:

loop that calls "Check_Power"
and not contains (loop that calls "Check_Power")

Unfortunately this description does not match an outer loop that itself calls  Check_Power if 
the inner loop also calls Check_Power.

As said, the executes property is not inherited from an inner loop to its outer loops. This also 
means that if you want to use executes to identify an outer loop, you must use an instruction 
address that is in the outer loop but is not in any nested, inner loop.

Multiple loop properties

The keyword and can be used to form the logical conjunction of loop properties for describing 
a loop or a set of loops. Here is how to assert that any loop that contains a call of Set_Pixel and 
is also within an outer loop that contains a call of Clear_Row repeats at most 600 times:

all loops that
call "Set_Pixel"
and are in (loop that calls "Clear_Row")
repeat 600 times;

end loops;

Getting fancy

By combining properties, quite detailed and complex characterisations can be given, such as: 
The loop that is within a loop that calls Foo, and contains a loop that calls Bar but does not call 
Fee, and does not contain a loop that defines variable Z:

loop that
is in (loop that calls "Foo")
and contains (

loop that
calls "Bar"
and does not call "Fee")

and does not contain (loop that defines "Z")

However, it may make more sense to divide the program into smaller subprograms so that 
loops can be identified with simpler means.

All N loops

Sometimes the compiler makes loops in the machine code that do not correspond to loops in 
the  source code.  For  example,  an  simple  assignment  of  a  multi-word  value  can lead to  a 
machine-code loop that copies the words one by one. An "all loops" assertion will apply to such 
loops, too, so it may be safer to specify how many loops you expect to cover with the assertion. 
Put the number (or a number range) between all and loops, as in the following assertion that 
bounds the number of repetitions of the three loops in the subprogram Tripler:
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subprogram "Tripler"
all 3 loops repeat 25 times; end loops;

end "Tripler";

If Bound-T finds a different number of loops that match the assertion it reports an error. You 
must then change the assertion to identify the loops by some suitable properties.

You can use the all keyword and the optional number of matching loops in the same way also 
when the  assertion  uses  loop properties.  A  loop-block  that  starts  with  loop without  all is 
equivalent to "all 1 loops".

All N loops in any subprogram

When a loop block in the global context (not within a subprogram block) identifies a certain 
number  of  loops  with  all,  the  number  of  matching  loops  is  counted  separately  for  each 
analysed subprogram; it is not added up over the whole target program. Thus, if you write in a  
global context

all 2 loops repeat 27 times; end loops;

you are asserting that every subprogram to be analysed shall contain two loops and each of 
these loops repeats 27 times. This is  an unrealistic  example;  it  seems unlikely that all  the 
subprograms have this structure. A more likely example could be the following:

all 0 .. 1 loops that call "PutStdErrChar"
repeat <= 20 times;

end loops;

This assertion states that every subprogram to be analysed shall contain at most one loop that  
calls PutStdErrChar, and that this loop (if it exists) repeats at most 20 times. The former fact 
may reflect some design or coding rule for the program; the latter fact may show the maximum 
length of the error messages in this program.

Optimisation as the enemy

The  assumption  that  these  loop  properties  are  invariant  under  optimisation  is  perhaps 
optimistic. Some optimisations that might alter the properties are listed below, together with 
some counter-measures.

• The calls property might be altered by inlining the called subprogram. Inlining can usually 
be prevented by placing the caller and callee in different compilation units (source files).

• The uses and  defines properties might be altered by optimisation to keep the variable or 
parameter in a register. This can be prevented by specifying the variable as "volatile".

• The uses and  defines properties might be altered by optimisation to move loop-invariant 
code outside the loop. This can be prevented by specifying the variable as "volatile".

• The contains and in properties might be altered if some loops are entirely unrolled.

While the WCET of an unrolled loop can be computed automatically, and thus an assertion on 
the repetitions of this loop is not needed, the disappearance of the loop means that it cannot be  
used to characterise a related loop with contains or is in.
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Apparent but unreal looping and nesting

Sometimes a loop description derived from the source code fails to match the machine-code 
loop because the programmer has written,  within the loop syntax, statements that are really 
external to  the  loop.  For  example,  the  following  Ada  loop  seems  to  contain  a  call  of  the 
subprogram Discard_Sample:

for K in 1 .. N loop
if not Valid(K) then

Discard_Sample(K);
exit;

end if;
end loop;

Note that the call is followed by an  exit statement that terminates the loop. Thus the call is 
logically  not a  part  of  the  loop;  the  loop  cannot  repeat  the  call.  This  means  that  a  loop 
description such as  loop that calls "Discard_Sample"  will not match this loop.

The same can happen with  loop nesting.  For example,  at  first  sight  this  C code seems to 
contain nested loops:

for (k = 0; k < N; k++)
{

if (overlimit[k])
{

for (i = 0; i < k; i++) recalibrate (i);
return;

}
}

Note that the inner loop (over  i) is followed by a  return statement that terminates the outer 
loop (over k). Thus the loop over i is logically not nested in the loop over k. This means that the 
k loop does  not have the property  contains loop  and the  i loop does  not have the property 
is in loop.

3.7 Identifying calls

When writing assertions you may have to identify specific calls for the following reasons:

• To define a call context.

• To help identify a loop by identifying a call within the loop.

Unlike  subprograms  and  variables,  calls  seldom  have  names  and  thus  we  identify  calls  
indirectly through the properties  or  characteristics  of  the call,  or through the source-code 
position of the call.

Static vs dynamic calls

The most  important  property of  a call  is  whether  the called  subprogram – the callee  – is  
statically  defined  in  the  call  instruction,  or  is  defined  at  run-time  by  some  dynamic 
computation. Calls of the first kind are static calls and the others are dynamic calls.
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On the source-code level static calls state the name (identifier) of the callee directly,  while  
dynamic calls generally dereference a function pointer variable (in C terms) or an access-to-
subprogram variable (in Ada terms). In the machine code, a static call instruction defines the 
entry address of the callee by an immediate (literal)  operand, while  a dynamic call  uses a  
register operand or other dynamic operand.

A  static  call  has  exactly  one callee;  every  execution  of  the  call  invokes  the  same callee 
subprogram. In contrast, a dynamic call may invoke different subprograms on each execution,  
depending on the entry address that is computed, so a dynamic call in general has a  set of 
possible callees.

Call properties

Section 3.3 showed how to  identify  a  call  by  its  source-code  position.  The  following  other 
properties can be used to identify calls:

• The name of the called subprogram (callee). Required for static calls, absent for dynamic 
calls.

• The name of the calling subprogram (caller). Optional, since bounds on calls can appear 
globally or in the context of the caller.

• The identity of the containing loop. Optional.

All  calls must  be identified at least  by the name of the callee or by saying that the call is  
dynamic. For a static call the syntax consists of the keywords call and to followed by the name 
of  the callee  (as  explained in section 3.4).  The  to keyword is  optional  (syntactic  sugar).  A 
dynamic call is described as dynamic call without naming the callee.

To specify the caller, write the call-block within a subprogram block for the caller.

Examples of call identifications follow. The examples mainly show execution-count assertions, 
but of course the same call identifications can be used to assert other kinds of facts, such as 
bounds on variable values at the call.

The only call from here to there

The most common way to identify a call is by the names of the caller and the callee. If there is  
only  one  such  call,  no  other  call  properties  need  be  given.  The  assertion  consist  of  a  
subprogram block that names the caller and contains the call block that names the callee. Here 
is how to assert that the only call from  Collect_Data to  Flush_Buffer is executed at most 4 
times in one execution of Collect_Data:

subprogram "Collect_Data"
call to "Flush_Buffer" repeats <= 4 times; end call;

end "Collect_Data";

The absence of the keyword all before call means that Bound-T expects to find exactly one call 
from Collect_Data to Flush_Buffer.

The only dynamic call

If a subprogram contains only one dynamic call it can be identified simply by this property – of 
being  dynamic.  Here  is  an  assertion  to  say  that  the  sole  dynamic  call  in  the subprogram 
Dispatch can only call the subprograms Start_Pump or Start_Engine:
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subprogram “Dispatch”
dynamic call calls “Start_Pump” or “Start_Engine”;
end call;

end “Dispatch”;

All calls from here to there

Another  case  where  no  specific  call  properties  need  be  given  is  when  the  same  assertion 
applies to all calls from one caller to one callee. The keyword all is then placed before call, as in 
this example that asserts that no call from Drive to Start_Motor is executed more than once, 
in one execution of Drive:

subprogram "Drive"
all calls to "Start_Motor" repeat 0 .. 1 times; end calls;

end "Drive";

All calls from anywhere to there

If the same assertion applies to calls from any caller to a given callee, the call block should be  
written in a global context (without an enclosing subprogram block). Here is how to assert that 
no subprogram ever executes more than one call to Start_Motor:

all calls to "Start_Motor" repeat 0 .. 1 times; end calls;

Call in a loop

In the current form of Bound-T, there are only two ways to identify a subset of calls from the 
same caller to the same callee: the first way is to describe the calls by the loops that contain 
them; the second way is to mark all calls by the same marker name. For example, here is how 
to assert that the (only) call from Compute to Abort that is in a loop is not executed at all:

subprogram "Compute"
call to "Abort" that is in loop

repeats 0 times;
end call;

end "Compute";

This can also be done in a global context (not nested in a subprogram block). To assert that no  
call  to  Abort from an inner loop in any subprogram is  ever  executed,  place  the following 
assertion in a global context:

all calls to "Abort"
that are in (loop that is in loop)
repeat 0 times;

end calls;

Note that even if the source-code nests a call statement within the high-level syntax of a loop 
statement, this does not always mean that the machine-code call is logically within the loop. 
See the discussion of “apparent but unreal nesting” at the end of section 3.6.
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Non-returning subprograms are never in a loop

A call to a subprogram that is marked “no return” (see section 2.17) is a special case. Logically, 
such a call is never contained in a loop because executing the call also means terminating any 
on-going loop.

All N calls

Some  code  transformations  or  optimizations  in  the  compiler  can  change  the  number  of 
machine-code call  instructions  (call  sites)  relative  to  the number of call  statements  in the  
source code. For example, unrolling loops can increase the number of call instructions, while 
merging duplicated code can decrease the number of call instructions. Neither transformation 
changes  the  total number  of  calls  executed,  but  can change  number  of  times  each  call 
instruction  is  executed.  This  should  be  taken  into  account  in  any  "all  calls"  assertion  on 
execution counts.

For example, assume that a source-code loop in the subprogram Foo contains two conditional 
calls to  Bar and you know that each of these call statements is executed at most 10 times 
although the loop repeats a greater number of times. You could assert this fact as

subprogram "Foo"
all calls to "Bar" that are in loop

 repeat <= 10 times;
end calls;

end "Foo";

This assertion allows a total of at most 2 × 10 = 20 executions of Bar from the loop. However, 
if the compiler unrolls the loop body by duplicating it once, the machine-code loop will contain 
four  instructions  that  call  Bar and  the  above  assertion  would  allow  up  to  4 × 10 = 40 
executions of Bar from the loop, leading to an overestimated WCET.

To detect when code transformations change the number of call sites, you can specify how 
many call sites you expect to cover with the assertion. Put the number between all and calls:

subprogram "Foo"
all 2 calls to "Bar" that are in loop

repeat <= 10 times;
end calls;

end "Foo";

All N calls from any subprogram

When a call block in the global context (not within a subprogram block) identifies a certain  
number of calls with all, the number of matching calls is counted separately for each analysed 
subprogram; it is not added up over the whole target program. Thus, if you write in a global 
context

all 2 calls to "Foo" repeat > 5 times; end calls;

you are asserting that every subprogram to be analysed shall contain two calls to Foo and each 
of these calls is executed more than five times for each execution of the calling subprogram. 
This is an unrealistic example; it seems unlikely that all the subprograms have this structure. A 
more likely example could be the following:
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all 0 .. 1 calls to "PutStdErrChar"
repeat <= 20 times;

end calls;

This assertion states that every subprogram to be analysed shall contain at most one call to 
PutStdErrChar, and that this call (if it exists) repeats at most 20 times for one execution of the 
calling subprogram. The former fact may reflect some design or coding rule for the program; 
the latter fact may show the maximum length of the error messages in this program.

Note that neither of these assertion examples bounds the total number of calls (call sites) in 
the program nor the total number of executions of these calls.

3.8 Identifying instructions

When  writing  assertions  you  will  need  to  identify  a  specific  machine  instruction,  in  the 
program under analysis, for just one reason:

• To define a context that contains this instruction and nothing else.

The only way to identify an instruction is by its machine address. The address can be given  
directly, as an absolute address, or indirectly as an offset in machine-address units from the 
entry address of the subprogram that contains the instruction.

By absolute address

The syntax of machine addresses depends on the target processor. Typically, the address is 
written in hexadecimal form enclosed in (double) quotes. This example names the instruction 
at the hexadecimal address 4A0C and asserts that the instruction is exected at most 7 times:

instruction at “4A0C”
repeats <= 7 times;

end instruction;

If  the instruction is identified by its absolute address,  the identification is sensitive to the 
memory lay-out of the program to be analysed. If the program is changed, recompiled, and 
relinked, the instruction may move to another address and then you must change the address  
in the assertion, too.

By offset from subprogram entry point

The syntax of an offset value also depends on the target processor, but is typically also written 
in  hexadecimal  form.  For  example,  assuming  that  the  subprogram  that  contains  the 
instruction at address 4A0C (hex) starts at the address 4B02 (hex), the following identifies the 
instruction using the offset form and makes the same assertion as above:

instruction at offset “10A”
repeats <= 7 times;

end instruction;

where  the  offset  10A  (hex)  is  the  difference  between  the  instruction  address  4A0C  and 
subprogram entry point 4B02.

An offset is less sensitive to changes in the memory lay-out than the corresponding absolute  
address would be. As long as the subprogram that contains this instruction is not changed, the 
offset usually remains the same even if the program is recompiled and relinked (of course 
assuming the same versions of the compiler and linker and the same compilation and linking 
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options) and even if the subprogram now starts at a different address. Of course, if you change 
the subprogram itself, the offset to the interesting instruction may change and you must then 
change the offset in the assertion, too.

Some instruction  sets  divide  the  memory space into  “pages”  and require  a  longer  branch 
instruction to jump across a page boundary than to jump to a location in the same page. For  
such target processors, the offset of a given instruction within a subprogram may depend on 
the absolute address of the subrogram, because the absolute address influences where  page 
boundaries fall.  Thus  the sizes  of  the branch instructions  in the subprogram may change, 
which changes the offsets of the instructions.

To  be safe,  you should check  all  addresses  and  offsets  that  your assertions  use,  after  any 
changes to the target program and any recompilation and relinking. 
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4 ETERNAL LOOPS AND RECURSION

4.1 Handling eternal loops

What is eternity?

Much has been said about finding bounds on the number of iterations of loops. But what if the  
program contains an eternal loop?

We define an eternal loop as a loop that cannot possibly terminate, either because there is no 
instruction that  could branch out  of  the loop,  or because all  such branch instructions  are 
conditional and the condition has been analysed as infeasible (always false). Obviously, the 
execution time of a subprogram that enters an eternal loop is unbounded. Nevertheless, since 
real-time,  embedded  programs  are  usually  designed  to  be  non-terminating,  they  usually 
contain eternal loops.

Eternal tasks

Eternal loops are typically used in the top-level subprograms of tasks or threads. The loop 
body first waits for the event or real-time instant that should activate (trigger) the task, then 
executes the actions of the task, and then loops back to wait for the next activation.

A typical task body in the Ada language has the following form:

task body Sampler is
begin

loop
wait for my trigger;
execute my actions;

end loop;
end Sampler;

Here we have a  syntactically eternal loop: there is no statement that terminates or exits the 
loop. (The loop could be terminated by an exception, but Bound-T generally does not consider 
exceptions in its analysis.)

The same task in the C language might have the following form:

void Sampler (void)
{

while (1)
{

wait for my trigger;
execute my actions;

}
}

Here we have a logically eternal loop: in principle, the while statement can terminate the loop 
if its condition becomes false; however, the condition is always true here.

For  a  logically  eternal  loop  the  compiler  may  or  may  not  generate  a  conditional  branch 
instruction to exit the loop. If the compiler finds it unnecessary to generate an exit branch, the 
loop will be syntactically eternal on the machine code level. If the compiler does generate an  
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exit  branch,  Bound-T will  probably  discover  that  the  branch  condition  is  always  false, 
whereupon  Bound-T will  prune  (remove)  the  infeasible  exit-branch  from the  control-flow 
graph and find that the loop is indeed eternal.

Bounding eternity

When  Bound-T finds an eternal loop in a subprogram it of course reports it and refuses to 
compute an execution time bound for the subprogram  − unless you assert a bound on the 
number of repetitions of the loop. But what is the point of such an unrealistic assertion? The  
point is that you usually need an upper bound on the execution time of  one activation of a 
task:  the  statements  illustrated  as  "execute  my  actions"  in  the  examples  above,  perhaps 
including all or part of the statement "wait for my trigger" depending on where you draw the 
boundary between the application task and the real-time kernel. Thus, you need a WCET for 
the loop body, which is one iteration of the loop.

Whatever repetition bound you assert for the eternal loop, the WCET that Bound-T computes 
also includes the code that leads from the subprogram entry point into the loop. The way to 
find a WCET bound for one loop iteration is therefore to analyse the subprogram twice, with 
the repetition bounds 0 and 1 (for example), and take the difference of the results.

To avoid this eternal loop stuff, you could separate all the code for one task activation into a 
dedicated subprogram so that the eternal loop just contains a call of this subprogram. The 
WCET bound for this subprogram is very close to the WCET bound for one task activation; the 
difference is just the call instruction and the looping branch instruction, usually just a pinch 
(less than a handful) of machine cycles.

Eternity as an alternative

Sometimes  an  eternal  loop  is  used  as  a  last-resort  error-handler,  for  example  as  in  the 
following:

void Check_Voltage (void)
{

if (Supply_Voltage() < Min_Supply_Volts)
{

// The supply voltage is too low.
// Wait in a tight loop for a reset.
while (1);

}
// The supply voltage is good. Display it.
Display_Voltage();

}

In  this  case,  you  probably  want  an  execution-time  bound for  this  function  that  does  not 
include the eternal loop. You should then use assertions to exclude the loop from the analysis.  
In the example above you can assert that the call to Display_Voltage actually occurs. However, 
Bound-T also requires a bound on the loop, so the assertions would be:

subprogram "Check_Voltage"
call to "Display_Voltage" repeats 1 time; end call;
loop repeats 0 times; end loop;

end subprogram;

The number of repetitions asserted for the loop is arbitrary, because the assertion on the call  
means that the loop is never entered (assuming that the compiler or Bound-T detects that the 
loop is eternal so that there is no execution path from the loop to the call).
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4.2 Handling recursion

The perils of recursion

Guidelines for embedded and real-time programming usually advise against recursion because 
recursion is often associated with dynamic and unpredictable time and memory consumption. 
Moreover,  some small  embedded processors  (microcontrollers)  have poor mechanisms for 
stacks and subprogram calls, which means that a reentrant or recursive subprogram must use 
slower or less efficient code for parameter passing and local variables. These are some of the 
reasons why Bound-T assumes that the target program is free of recursion.

Trivial recursions: an example

Sometimes target programs use recursion in very limited and predictable ways. For example,  
an error-logging module may want to log some of its own errors, such as the fact that the log 
buffer  was  full  and  some  (real)  errors  were  not  logged.  While  this  could  certainly  be 
programmed without recursion, it gives us a simple example of limited recursion and how to  
handle it in Bound-T. This example is taken from a real application.

Let's define the interface of the error-logging module as follows (example in Ada):

package Errors is

type Message_Type is Integer;
-- An error message is just an integer number here.
-- Really it would be something more.

Log_Full : constant Message_Type := 99;
-- An error message that means that the Error Log became
-- full and some error messages were not logged. This is
-- always the last message in the (full) log.

procedure Handle (Message : in Message_Type);
-- Handles the error Message and then inserts the
-- Message in the Error Log.
-- If the Error Log would then be full, the Log_Full
-- message is inserted instead of the Message, and is
-- also handled as an error message in its own right.

end Errors;

This module could be implemented as follows:

package body Errors is

Buffer_Size : constant := 100;
-- The total size of the buffer for the Error Log.

Buffer : array (1 .. Buffer_Size) of Message_Type;
-- The buffer itself.
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Free : Natural := Buffer_Size;
-- The space left in the buffer.

procedure Log (Msg : in Message_Type)
-- Inserts the Msg in the Buffer and decrements the count
-- of the remaining space. If this would make the log
-- quite full, the procedure signals a Log_Full error.
is begin

if Free = 1 and Msg /= Log_Full then
-- The buffer is full, the Msg is not logged.
Handle (Log_Full);

else
Free := Free – 1;
Buffer(Buffer’Last – Free) := Msg;

end if;
end Log;

procedure Handle (Message : Message_Type)
is begin

Handle the Message in some way;
Log (Message);

end Handle;

end Errors;

Here you can see that buffer overflow is detected in the lowest-level subprogram Log, but to 
report  the  overflow  it  calls  Handle (Log_Full),  which  creates  a  recursion: 
Handle ® Log ® Handle.  However,  Log calls  Handle only if  the  Message is not  Log_Full, 
which means that the recursion terminates in the second call of Log. The longest possible call-
path is thus

Handle ® Log ® Handle ® Log

This call-path determines the WCET of Handle. The figure below illustrates the path when the 
incoming Message has the value 31.
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Figure 7: Longest call path in recursion example

Slicing recursive call-paths

How can we find an upper bound on the execution time of the recursive call-path in the above 
example? Asking Bound-T to analyse Handle will just result in error messages that complain 
about the recursion.

You can make Bound-T analyse a piece of a recursive call-path by asserting the execution time 
of one of the subprograms in the call-path. The calls in this subprogram are thereby hidden 
from Bound-T which breaks the recursive cycle (if there are several recursion cycles you may 
have to break the other cycles in the same way). This analysis gives the WCET for the rest of  
the call-path. Then you analyse the call-path again but this time you assert the execution time 
of another subprogram in the call-path. You can then combine the WCET bounds on the pieces 
to compute the WCET bound for the whole call-path. However, you also have to be careful to 
guide Bound-T to choose the right paths within each subprogram. Below we show how to do it 
for the example.

Slicing the example

For  our  example  we  can  start  by  hiding  the  Log subprogram  and  analysing  the  Handle 
subprogram. Since  Handle always calls  Log,  the analysis always includes the desired path 
within Handle whatever execution time we assert for Log; assume we choose 0 cycles so that 
the assertions for this analysis are

subprogram "Errors.Log" time 0 cycles; end "Errors.Log";

Assume  that  the  resulting  WCET  bound  for  Handle is  422  cycles.  Since  zero  cycles  are 
assumed for Log this means that the WCET for Handle alone is 422 cycles.
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Handle (Message = 31)

      ...

   Log (Message)

Log (Msg = 99)

   if Free = 1 and Msg /= Log_Full then

      Free := Free - 1;
   else

      Buffer(Buffer’Last - Free) := Msg;
   end if;

   ...

Handle (Message = 99)

   Log (Message)
   ...

      ...

Log (Msg = 31)

   if Free = 1 and Msg /= Log_Full then
      Handle (Log_Full);
   else

   end if;



Next,  we hide the  Handle subprogram and analyse  Log.  Since  Log contains  a  conditional 
statement we must choose which path to analyse. In fact, both cases occur in the recursive call-
path we are considering: the first call of Log uses the path within Log that calls Handle, and 
the second call of Log uses the other path within Log, the one that actually inserts the error 
message in the buffer. Therefore we must analyse both cases.

To analyse the first path within Log we could either assert a very large time for Handle, so that 
the path that calls  Handle surely seems to take longer than the other path, or we can force 
Bound-T to choose this path in some other way, as in these assertions:

subprogram "Errors.Handle"
time 0 cycles;

end "Errors.Handle";

subprogram "Errors.Log"
call to "Errors.Handle" repeats 1 time; end call;

end "Errors.Log";

Assume that this gives a WCET bound of 56 cycles for Log. Since zero cycles are assumed for 
Handle these 56 cycles are also the WCET bound for the first call of Log in the recursive call-
path.

To analyse the second path within Log we use analogous but opposite assertions for Log. We 
must  still  also assert  an execution time for  Handle,  to hide it from  Bound-T, but now the 
asserted time plays absolutely no role because it is not included in the WCET for Log:

subprogram "Errors.Handle"
time 0 cycles;  -- This time is irrelevant.

end "Errors.Handle";

subprogram "Errors.Log"
call to "Errors.Handle" repeats 0 times; end call;

end "Errors.Log";

Assume that this gives a WCET bound of 28 cycles for  Log. Since the assertions exclude the 
Handle call these 28 cycles are directly the WCET bound for the second call of  Log in the 
recursive call-path.

Finally, we add up the WCET bounds for the recursive call-path:

• 422 cycles for the first call of Handle,

• 56 cycles for the first call of Log,

• 422 cycles for the second call of Handle,

• 28 cycles for the second call of Log.

The total, 928 cycles, is the WCET bound for the recursive call-path.

In summary, to analyse a recursive set of subprograms you must yourself find out the longest  
(slowest)  recursive  call-path,  break  that  call-path  into  at  least  two  non-recursive  pieces,  
analyse them separately, and add up the results. Sometimes the longest call-path can be found 
or seen easily, as in this example; if that is not the case, you may have to consider a number of  
candidates for the worst-case call-path and analyse each candidate as shown here.
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5 ASSERTION LANGUAGE SYNTAX AND MEANING

5.1 Introduction

The command-line option  -assert filename makes  Bound-T read the assertions from the text 
file by the name filename. Chapter 2 explained why and how to use the assertion language with 
examples.  The  present  chapter  defines  the  precise  syntax  and  meaning  of  the  assertion 
language. A formal grammar notation defines the syntax. Informal prose explains the meaning 
of each grammar symbol and production.

5.2 Assertion syntax basics

Syntax notation as usual

A conventional context-free syntax notation is used, with nonterminal symbols in  Plain Style 
and  Capitalised;  literal  keywords  in  bold style;  and  user-defined  identifiers  in  italic style. 
However, when nonterminal symbols are quoted in the running text we use Italic Capitalised 
Style.

Alternatives are separated by '|'. Repetition of one or more symbols for one or more times is  
denoted by enclosing the symbol(s) between curly brackets '{'  and '}'.  Optional symbols are 
enclosed between square brackets '[' and ']'.

The  symbol  character stands  for  any  printable  character  enclosed  in  single  quotes 
(apostrophes). Example: 'x'.

The symbol null stands for the empty string.

The symbol integer stands for a string of digits 0 .. 9 representing an integer number in decimal  
form. A sign (+, -) may precede the integer. The underscore character '_' can be used in the  
string to group digits with no effect on the numeric value. For example, 33_432_167 means 
the same as 33432167. The numeric range of integers may depend on the host platform and  
target system, but is at least  –231 ..  231 –1.

The  symbol  string stands  for  any  string  of  printable  character  enclosed in  double  quotes. 
Example: "foo|memo". To write a string that itself contains double-quote characters, write each 
double-quote  character  twice.  For  example,  “foo””tick””” represents  the  string  foo”tick”  that 
contains one internal and one trailing double-quote character.

Comments

An assertion file may contain comments wherever whitespace can appear. A comment begins 
with two consecutive hyphens (--) and extends to the end of the line. 

Symbols with scopes

The symbol  symbol stands for a  string which is interpreted as the identifying symbol of an 
entity (a subprogram, a variable or a statement label) in the target program. Even though the  
assertion syntax as such does not restrict the contents of symbol strings they must follow a pre-
defined (target-dependent) format.
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If the symbol string contains occurrences of the current scope-delimiter character, these divide 
the string into a sequence of scope names followed by a basic name. For example, using the 
default delimiter character '|', the symbol string "API|Init" is considered to consist of the scope 
"API" and the basic name "Init". The scope delimiter character is set by the delimiter keyword as 
explained below.

Finally, the interpretation of symbol strings may be affected by the current default scope string 
set by the within keyword as explained below.

The target compiler and linker may modify the symbols for subprograms and variables so that  
assertions have to name them in a different way than by using the name in the source-code file.  
These name-mangling rules are discussed in the Application Notes for the respective target  
processors.

You can find out the symbols that are available in the target program by dumping the target  
program as explained in section 3.4.

Machine addresses

The strings following the keyword address are denoted by the symbol address and identify a 
target-program  element  in  some  low-level,  machine-specific  way,  such  as  by  its  memory 
address.

Each target  processor  to which  Bound-T is  ported has a  specific  "sub-syntax"  for  address 
strings. The syntax may also be different for variable addresses and for code (subprogram or 
label) addresses, and so we use the symbols  variable-address and  code-address, respectively, 
for these. Some assertions may use code offsets instead of absolute code addresses, and then 
we use the symbol code-offset. The syntax of code-offset is also target-dependent.

From the user's  point  of view,  the  address,  variable-address,  code-address or  code-offset is 
written as a  string (ie.  enclosed between double  quotes).  Scope delimiters  and the current 
default scope play no role in the handling of address strings.

Instruction roles

The strings following the keyword  performs (and an  optional  sugar  keyword  a or  an)  are 
denoted by the symbol instruction-role and identify the role performed by a specific instruction 
in the target program under analysis.

Each target processor to which Bound-T is ported has a set of possible values of instruction-role 
strings, often including strings like "call", "branch", "return".

From the user's point of view, the  instruction-role is written as a  string (ie. enclosed between 
double quotes). Scope delimiters and the current default scope play no role in the handling of 
instruction-role strings.

Variable names as used in several places

An element that will occur in several syntactic forms is the variable name:

Variable_Name  ®  symbol  |  address  variable-address

The variable is identified either by its high-level symbol, which is a possibly qualified, possibly 
mangled source-level identifier enclosed in double quotes, or by its low-level address, which 
can  be  a  data-memory  address  or  a  register  name,  also  enclosed  in  quotes.  The  variable-
address part is written in a syntax that is specific to the target processor and explained in the  
relevant Application Notes.
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Bounds as used in several places

Another element that will occur in several syntactic forms is the definition of bounds on a 
number:

Bound ® integer
| = integer
| integer .. integer
| ..
| integer ..
| .. integer
| > integer
| >= integer
| < integer
| <= integer

A  Bound defines  an  interval  subset  of  the  integers  as  follows.  If  a  single  integer is  given, 
possibly  preceded  by  an  equals  symbol  (=),  the  subset  consists  of  this  value  only.  If  two 
integers are given separated by two periods (..) the subset consists of the interval from the first  
integer to the second integer, inclusive.

If only the two periods are given, with no integer before or after, the subset contains all values. 
The rest of the forms define subsets that are bounded at only one end: If an integer is followed 
by two periods (without a following second integer) the subset consists of all values greater or 
equal to the given  integer.  Conversely,  when the two periods precede the single  integer the 
subset consists of all values less or equal to the given integer. If a relational symbol followed by 
an  integer is given, the subset consists of those values that stand in the given relation to the 
given integer. Thus, the Bound form  “>= 4” has the same meaning as “4 ..”, and “<= 4” has the 
same meaning as “.. 4”.

In some contexts, the subset can contain only non-negative values. For example, a bound on  
the number of executions of a call or the number of repetitions of a loop contains an implicit 
lower bound of zero even if the Bound explicitly states only an upper bound or no bound at all.

Singular and plural keywords and other alternatives

Some  keywords  can  be  written  in  singular  or  plural  form,  interchangeably,  to  make  the 
assertion syntax closer to normal grammar. To avoid clutter in the grammar, the grammar 
rules use only one form, but  the assertion text can use either form (with a few exceptions 
explained later). Some verb-like keywords such as contain have a third equivalent -ing form: 
containing.  Moreover,  a  few  keyword  pairs  have  obsolete  single-word  equivalents  with 
embedded underscores. Here are the equivalent keywords:

First form Equivalent second and third forms

call calls calling
contain contains containing
cycle cycles
define defines defining
do does
execute executes executing
is are
loop loops
repeat repeats
return returns
span spans spanning
start starts
time times
use uses using

Keyword pair Obsolete but equivalent keyword
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call to call_to
end call end_call
end loop end_loop
is in is_in
loop that loop_that
no arithmetic no_arithmetic

Using these alternative forms, we can use the singular forms when proper:

loop that calls "Foo" repeats 1 time; end loop;

We can instead use the plural forms when they are more suitable:

all loops that call "Foo" repeat 10 times; end loops;

For variation, the -ing forms can be used, too:

all loops calling "Foo" repeat 10 times; end loops;

Bound-T does not check that the equivalent forms are used consistently within each assertion, 
so you can also say, ungrammatically but acceptably:

all loop that calling "Foo" repeats 10 time; end loops;

Here are the exceptional cases where the different forms of a keyword are not equivalent:

• The keywords call and calls are not allowed immediately after the keywords loop or loops, 
although calling is allowed. See section 5.7 (page 87).

• An Execution_Time_Bound accepts only the keyword time, not times. See section 5.11.

Source-code position as used in several places

Some program parts (currently loops and calls) can be identified by their source-code position 
as follows.

Source_Position ® Source_Relation  Source_Point

The  Source_Point identifies  a  source-code  line;  the  Source_Relation limits  the  intended 
position to code at, before, or after this line:

Source_Relation ® [ exactly ] At_On
| before
| after

At_On ® at  |  on

The keywords  at and  on are equivalent.  The optional keyword  exactly means that  the line 
numbers shall match exactly (zero fuzz). The keywords before and after affect the default fuzz 
used for comparing source-line numbers when looking for this source position, as shown in 
Table 2 below. In the table Z means the default amount of fuzz (difference in line number) that  
is set with the Bound-T command-line option -line_fuzz.
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Table 2: Line-number comparison fuzz

Source relation Fuzz bounds (when -line_fuzz Z)

exactly at/on 0 .. 0

at/on – Z .. Z

before – Z .. 0

after 0 .. Z

The Source_Point construct identifies a source line (number):

Source_Point ® Source_Line  Source_Context

Source_Line ® line integer
| line offset integer
| marker string

The integer after line is an absolute line number; it must be positive. Line 1 is the first line in a 
file.  The  integer after  line  offset is  a  line-number  offset  relative  to  the  first  line  of  the 
containing subprogram; it can be zero or negative, but is usually positive.

In the third and last form, the string after marker is a marker name and matches any mark with 
exactly this name. Such a source position can match several different marks (positions) in the 
same or different files, as long as they use the same marker name.

Source_Context ® [ within Bound ]  [ in Source_File ]

The optional  Bound sets the fuzz for comparing source-line numbers while looking for this 
source position. It overrides the default fuzz defined by the Source_Relation and Table 2.

The optional  Source_File limits the matching source positions to lines in the named source-
code file. If absent, lines in any file can match this source position.

Source_File ® [ file ] string

The optional file keyword has no effect. The string is the quoted name of the source-code file. 
Depending on the Bound-T command-line option  -file_match  the comparison of the string to 
the file-names given in the symbol table of the target program can be exact or approximate in 
one or both of the following respects:

• Under  -file_match base the  comparison ignores  all  directory/folder  paths  and compares 
only  the  base-names.  For  example,  “sources/subs.c” matches  “archive/subs.c” and  also 
“subs.c”.

• Under  -file_match cis the  comparison  is  case-insensitive  (both  names  are  converted  to 
lower-case for the comparison). For example, “subs.c” matches “Subs.C”.

An exact match is required under  -file_match full   -file_match cs.

5.3 Overall assertion structure

The grammar's start symbol is Assertions, representing a whole assertion file. An assertion file 
is a non-empty list of four types of elements: scope delimiter definitions, scope definitions, 
global bounds and subprogram blocks:

Assertions �  { Scope_Delimiter | Scope | Global_Bound | Sub_Block }

The order of the elements is arbitrary except that the scope-delimiter definition and scope 
definition have an effect only on the following elements,  up to the next such definition. In 
summary, the elements have the following roles:
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• A  Scope_Delimiter defines the character that separates scope levels in all  symbols in the 
following assertions. It does not itself assert anything.

• A  Scope defines  a  default  scope  string  to  be  assumed for  all  symbols in  the  following 
assertions. It does not itself assert anything.

• A Global_Bound asserts facts that apply in all subprograms to be analysed. The assertions 
can further delimit their context to selected calls, loops, or instructions in each subprogram.

• A Sub_Block asserts facts that apply in (or to) one subprogram. The assertions can further 
delimit their context to selected calls, loops, or instructions in this subprogram.

5.4 Scopes

The assertion language lets you set the scope delimiter character and the default scope. The 
role  of  these  items  in  the  interpretation  of  scope-qualified  symbols was  explained  in 
sections 3.2.

Scope delimiter definitions

Scope_Delimiter ® delimiter  character

Sets  the  delimiter  character  to  be  used  for  parsing  any  symbol strings  in  the  following 
assertions. The default delimiter is the vertical bar or solidus '|'. It is necessary to change the 
delimiter only if this character occurs within a scope-name or an identifier.

Scope definitions

Scope ® within  string

Sets the default scope string to be prefixed to any symbol strings in the following assertions, 
unless the symbol string itself starts with the delimiter character.

For example, if the module API contains a subprogram Init and the delimiter character is the 
default ' |' so that the full name of this subprogram is "API|Init", after the Scope definition

within "API"

the subprogram can be named either as "Init" or as "|API|Init"; both are equivalent to "API|Init". 
However, the string "API|Init" would be interpreted as "API|API|Init" which would probably not 
be the name of any subprogram.

5.5 Global bounds

Any assertions that occur outside subprogram blocks (outside any  Sub_Block construct) are 
global bounds and are considered valid throughout the target program under analysis. There 
are five types of global bounds, namely variable bounds, property bounds, volatility marks, 
loop blocks and call blocks:

Global_Bound ® Variable_Bound ;
| Volatility_Mark ;
| Property_Bound ;
| Loop_Block ;
| Call_Bock ;
| Instruction_Bock ;
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The order of the global assertions is arbitrary. The syntax and meaning of each type of global 
bound are explained later.

All these types of bounds except volatility marks can also be asserted within a subprogram 
block and thus applied only to that subprogram. When the bound is written as a global one 
(not within a subprogram block), it is applied in the analysis of each subprogram, just as if it 
were written within a subprogram block for that subprogram.

For global loop blocks and call blocks the Population specified for the block (see section 5.7) is 
counted within each analysed subprogram, not added up over all subprograms. For example, if 
the Population of a loop block is 2, then this loop block should match exactly two loops in each  
subprogram that is analysed.

5.6 Subprograms

Subprogram blocks and subprogram names

A subprogram block collects assertion statements that shall be applied only to the analysis of a  
certain subprogram. The subprogram can be identified by a symbolic name or a machine-level 
entry address. An optional offset can be added.

Sub_Block ® subprogram Sub_Name [ ( { Parameter } ) ]
[ { Statement } ]
[ end [ subprogram ]  [ Sub_Name ] ; ]

Sub_Name ® Sub_Base [ offset code-offset ]

Sub_Base ® symbol  |  address  code-address

The optional  Parameter part contains the assertions in the subprogram  entry context.  The 
optional Statement part contains the assertions in the subprogram body context.

The  end part that closes the subprogram block is optional but can be used to show that any 
following  variable  bounds,  loop  blocks  etc. are  global  bounds  and  not  specific  to  this 
subprogram.  If  the  end part  contains  a  Sub_Name, this  must  be  exactly  the  same  as  the 
Sub_Name at the start of the block.

Subprogram parameter assertions

In a subprogram entry context, only assertions on variable values are allowed:

Parameter  �   Variable_Bound ;

These variable bounds apply at a single point in the program: immediately before the first  
instruction in the subprogram. The bounded variables can be formal  parameters or global  
variables or registers.

Subprogram body assertions and options

Several types of assertions can be stated in a subprogram body context, in any order, and the  
order is not significant:

Statement ® Sub_Option ;
| Loop_Block ;
| Call_Block ;
| Instruction_Block ;
| Clause

82 Subprograms Bound-T Assertion Language



This rule has no semicolon after the  Clause alternative, because as will  be seen later each 
Clause contains its own terminating semicolon.

A Sub_Option can require or forbid the arithmetic analysis of the subprogram, can declare the 
subprogram as "non-returning", and can specify “integrated” analysis of the subprogram:

Sub_Option ® arithmetic
| enough for time
| hide
| integrate
| omit
| return  [  normal  |  normally  ]
| return  [ to ]  offset  code-offset 
| unused
| used
| Nix  Sub_Option

Nix ® no
| not

The arithmetic option can locally override the command-line option for arithmetic analysis ( -
arithmetic or  -no_arithmetic, see the  Bound-T Reference Manual) and the automatic decision 
that checks if arithmetic analysis is needed for a particular subprogram.

The option composed of the three keywords  enough for time may be useful for subprograms 
that have an irreducible control-flow graph for which, thus,  Bound-T cannot determine the 
loop  structure  and  cannot  compute  loop  repetition  bounds  nor  accept  assertions  on  loop 
repetition bounds. If you can assert bounds on the number of repetitions of some repeating 
parts  (calls)  of  the  subprogram,  these  assertions  may  be  strong  enough to  let  the  Integer  
Linear Programming stage (IPET method) compute an overall execution-time bound even for 
an irreducible flow-graph. When you assert  enough for time Bound-T will try the ILP phase 
even if the flow-graph is irreducible or if some loop bounds are unknown in a reducible flow-
graph.

Most  subprograms  eventually  return  to  the  caller  but  some  do  not.  Non-returning 
subprograms are typically those that raise exceptions or terminate the program in some other 
way, for example the _exit function in C. When Bound-T finds a call to a subprogram that is 
marked no return,  Bound-T will consider that the call terminates the caller’s execution. This 
can simplify and improve the analysis of the caller, especially if the cross-compiler also knows 
that the call never returns (perhaps because the callee is a compiler-defined error handler).

Most subprograms return to the return address offered by the caller, in accordance with the 
calling protocol defined for the target processor or used by the compiler. Some subprograms, 
however, return to a different address. If the actual return address has a constant offset from 
the offered (normal) return address,  use the  return to offset code-offset  option to inform 
Bound-T of this unusual behaviour of the subprogram. This option cannot be negated so it 
cannot be preceded by an odd number of negation keywords. If the actual return address is 
computed in some more complex way, ask Tidorum for help.

If you want to emphasize that a subprogram returns, and returns to the normal return address, 
you can use the option  return  normal, which, again, cannot be negated.

The integrate option means that any call to this subprogram will be analyzed as if the code of 
the subprogram were an integral part of the calling subprogram. In other words, the flow-
graph of the callee subprogram will become a part of the flow-graph of the caller, as if the 
compiler had inlined the callee. This option is useful for subprograms that do not follow the 
normal calling protocols. For example, some compilers use special “helper” routines to set up 
the stack frame on entry to an application subprogram (prelude code) and to tear down the  
stack frame before return from the aplication subprogram (postlude code). Such routines often 
violate the normal calling protocols and must be analyzed as integral parts of their callers.
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The unused option means that this subprogram should be excluded from the analysis. This has  
two consequences:  firstly,  the subprogram itself  is  not  analysed;  secondly,  any call  to  this 
subprogram is considered to be infeasible. This option can be written either as unused or as 
not used. It is an error to say just used, or not unused; subprograms are “used” by default.

The  omit option  prevents  Bound-T from  analysing  this  subprogram.  If  an  analysed 
subprogram contains a feasible call to an omitted subprogram you must assert the resource 
consumption (time and/or space) of the omitted subprogram, or of the call; otherwise the call 
and the caller are unbounded. Note that omit does not make calls to the omitted subprogram 
infeasible (as  unused does);  omit only prevents the analysis of the omitted subprogram but 
calls to the subprogram are included in the analysis.

The hide option excludes this subprogram from the call-graph drawings. It has no effect on the 
analysis; the subprogram is still analysed and included in the analysis of other subprograms 
that call it. Some programs have subprograms that are called from many places (for example,  
floating-point  library  subprograms such  as  sin and  cos)  which  makes  the  call-graph  very 
cluttered;  using  hide for  such  subprograms  makes  the  call-graph  clearer  for  the  other 
subprograms. Note that the callees of a hidden subprogram are not automatically hidden, too; 
they may need their own hide options.

The no and not keywords (which here are equivalent) negate the option setting. The keyword 
can be repeated, so  no no return is the same as  return. This may be useful in assertion files 
constructed by scripts or preprocessors. However, the properties integrate,  omit, and unused 
cannot be negated (disabled); they can only be asserted (enabled). It follows naturally that the  
used property cannot be asserted as such, only in the negated form as  not used. This is no 
limitation because the forbidden forms of these properties  correspond to  the defaults  that 
Bound-T assumes in the absence of any assertion: not integrated, not omitted, and used.

5.7 Loops

Loop blocks and populations

A loop block describes a set of loops and applies assertion clauses to all of these loops:

Loop_Block  ®  Population  Loop_Description  { Clause }  end loop

If the Loop_Block occurs within a Sub_Block, the loop block and its assertion clauses apply to 
the described loops in this subprogram only. If the  Loop_Block occurs as a  Global_Bound, it 
applies to the described loops in any analysed subprogram.

Population  ®  [ all ]  [ Bound ]

The Population part defines how many loops we expect to match the loop-description, in each 
subprogram to which this Loop_Block applies. An empty Population is the same as "1", that is 
we expect exactly one matching loop. If the keyword all appears without the Bound part, any 
number (zero or more) of loops can match. If the Bound part is included (with or without all) it 
defines the allowed range for the number of matching loops.

If  the number of matching loops in the subprogram under analysis  violates the  Population 
range, Bound-T emits an error message.

Loop descriptions and loop properties

The set of loops to which a Loop_Block applies is described (identified) by the properties of the 
loops or by their source-code positions:

Loop_Description ® loop [ Loop_Properties ]

Loop_Properties ® Loop_Property [ and Loop_Properties ]
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If the loop description contains no Loop_Properties any loop matches the description. If some 
properties are listed, a loop matches the description if and only if all the listed properties are  
true for this loop.

Loop_Property ® Property_Prefix  Basic_Loop_Property

Property_Prefix ® [ that ]   [ Do_Is ]   [ { not } ]

Do_Is ® do  |  is 

The optional keywords that, do (or does), and is (or are) have no logical meaning and are used 
only  to  make  the  text  more  grammatically  pleasing.  Each  occurrence  of  the  keyword  not 
inverts the logical  sense of the  Basic_Loop_Property.  Thus, an even number of  nots has no 
effect and any odd number of nots has the same effect as one not.

An important property of a loop is whether it is nested in outer loops or contains inner loops or  
contains calls of some kind. For this we define:

Other_Loop ® loop
| (  Loop_Description  )

Other_Call ® Some_Call
| (  Call_Description  )

Count ® [ Bound ]

The constructs  Some_Call and  Call_Description are  defined in  section 5.8 below. The  Count 
defines how many inner loops or calls of a certain kind are required. An empty Count means 
“at least 1” so it is the same as a Count of “>= 1”,  or equivalently “1 ..”.

The basic loop properties are then defined as follows:

Basic_Loop_Property ® Source_Position
| marked  string  Source_Context
| in Source_File
| in Other_Loop
| contains  Count  Other_Loop
| contains  Count  Other_Call
| contains  Source_Point
| spans  Source_Point
| calls  Sub_Name
| uses  Variable_Name
| defines  Variable_Name
| labelled  Label_Name
| executes  code-address
| executes  offset  code-offset

Label_Name  ®   symbol

Table 3 below defines exactly the meaning of each type of loop property in its positive form  
(that is, assuming no negation through preceding not keywords).
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Table 3: Meaning of loop properties

Property Loop L has this property if and only if:

Source_Position Some instruction in the loop-head node of L or in the start nodes for 
L is connected (through the compiler-generated mapping) to the 
source-code line identified by the Source_Position, within the 
precision allowed by the fuzz of the Source_Position.

The term “start nodes” is defined in section 5.13 and illustrated in 
Figure 8 in that section.

marked string Source_Context Same as for the Source_Position consisting of
“on marker string Source_Context ”.

in Source_File Some instruction (step) in L is connected to a source-code line in 
the file named by the Source_File. Note that some (other) 
instructions in L can be connected to other source-code files.

in Other_Loop L is directly contained in an outer loop that matches the Other_Loop 
description.

contains Count Other_Loop Within the set of all inner loops directly contained in L, the given 
Count of loops match the Other_Loop description.

contains Count Other_Call L (or some inner loop) contains the given Count of calls matching 
Other_Call.

contains Source_Point L (or some inner loop) contains an instruction that is connected to 
the source-code line identified by the Source_Point, within the 
precision allowed by the fuzz of the Source_Point.

spans Source_Point If the Source_Point specifies a Source_File : The line number specified 
in the Source_Point  falls in the interval of lines from this source file 
connected to some instructions in L, within the precision allowed by 
the fuzz of the Source_Point.

If the Source_Point  does not specify a Source_File : For some source 
file connected to some instructions in L the line number specified in 
the Source_Point  falls in the interval of lines from this source file 
connected to some instructions in L, within the precision allowed by 
the fuzz of the Source_Point.

calls Sub_Name Same as “contains >= 1 calls to Sub_Name”.

uses Variable_Name L (or some inner loop) contains an instruction that reads (uses) the 
value of the variable identified by Variable_Name.

defines Variable_Name L (or some inner loop) contains an instruction that writes (assigns a 
value) to the variable identified by Variable_Name.

labelled Label_Name L (or some inner loop) contains the instruction that has the code 
address assigned to Label_Name.

executes code-address L (or some inner loop) contains the instruction that has the given 
code address.

executes offset code-offset L (or some inner loop) contains the instruction at the given offset 
from the start (entry point) of the subprogram that contains the 
loop. This form can be used only when the containing subprogram 
is given, that is, within a Sub_Block.

Note that the properties that state something about what the loop contains are usually satisfied  
also when the desired item is actually in some inner loop, nested to any depth. For example, if  
an inner loop contains a call to Foo then also any outer loop has the property calls “Foo”. If it is 
necessary to select only loops that directly contain the desired item, an additional “does not 
contain (loop ...)” property must be written, for example as in:
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loop that calls "Foo"
and does not contain (loop that calls "Foo")

However, this loop-description will not match a loop which directly contains a call to Foo and 
also contains an inner loop that calls Foo, so it may be too limiting.

No “call” or “calls” immediately after “loop”

As an exception to the lack of meaning of the keywords that, do,  is and to the equivalence of 
the three forms of the keyword calls, the first Loop_Property after loop or loops must not start 
with  the  keywords  call or  calls.  This  avoids  ambiguity  in  assertions  that  use  call/calls to 
specify  the  possible  callees  of  a  dynamic  call,  while  identifying  the  dynamic  call  using  a  
containing loop, such as the following (which is forbidden by this rule):

dynamic call in loop calls “foo”; end call;

This could be read in two ways. The first meaning could be this:

dynamic call in (loop calls “foo”); end call;

Here  calls “foo” describes a property of the loop that contains the dynamic call. The second 
meaning could be this:

dynamic call in (loop) calls “foo”; end call;

Here  calls “foo” asserts the (single) possible callee of  the dynamic call.  It  is  easy  to avoid 
writing call or calls immediately after loop. If the first meaning is intended, just insert a that, 
or write calling, as in:

dynamic call in (loop that calls “foo”) ...

or

dynamic call in (loop calling “foo”) ...

You must enclose the loop description in parentheses as required by the syntax for Other_Loop. 
If the second meaning is intended, put parentheses around the loop keyword even though it 
has no property list:

dynamic call in (loop) calls “foo” ...

5.8 Calls

Call blocks and populations

A call block describes a set of subprogram calls and applies assertion clauses to all of these 
calls:

Call_Block  ®  Population Call_Description {Clause} end call
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If the Call_Block occurs within a Sub_Block, the call block and its assertion clauses apply to the 
described calls in this subprogram only. If the Call_Block occurs as a Global_Bound, it applies to 
the described calls in any analysed subprogram.

Population  ®  [ all ]  [ Bound ]

The Population part has the same syntax and meaning as for a loop-block population: it defines 
how many calls we expect to match the call-description, in each subprogram to which this 
Call_Block applies. An empty  Population is the same as "all 1", that is we expect exactly one 
matching call. If the keyword all appears without the Bound part, any number (zero or more) of 
calls can match. If the Bound part is included (with or without all) it defines the allowed range 
for the number of matching calls.

If  the number  of matching calls  in  the subprogram under  analysis  violates  the  Population 
range, Bound-T emits an error message.

Call descriptions and call properties

Calls are identified by their properties or by their source-code position. The most important 
property is the callee subprogram, when this is statically known, that is, when the instruction 
sequence that implements the call specifies the address of the callee statically. For calls where 
the callee is specified dynamically (computed address,  function pointer)  the call cannot be 
identified  by  its  callee(s).  However,  the  property  of  being  a  dynamic  call  can  be  used  as 
identification.

Call descriptions thus have two forms, for static and dynamic calls respectively. In both cases  
the same kind of additional call-properties can be specified:

Call_Description ® Some_Call  [ Call_Properties ]

Some_Call ® Static_Call  |  Dynamic_Call

Static_Call ® call  [ to ]  Sub_Name

Dynamic_Call ® dynamic call

Call_Properties ® Call_Property [ and Call_Properties ]

The  callee  subprogram  is  either  statically  known  (the  Sub_Name of  a  Static_Call)  or  is 
computed  in  some  dynamic  way,  for  example  by  use  of  a  function-pointer  variable 
(Dynamic_Call).

If the call description contains no Call_Properties any call to the subprogram identified by the 
Sub_Name (for a Static_Call) or any dynamic call (for a Dynamic_Call) matches the description. 
If some Call_Properties are listed, a match in addition requires that all the listed properties are 
true for this call.

Call_Property ® Property_Prefix  Basic_Call_Property

The construct Property_Prefix was already defined in section 5.7 above but we repeat it here for 
your convenience:

Property_Prefix ® [ that ]   [ Do_Is ]   [ { not } ]

Do_Is ® do  |  is 

The optional keywords that, do (or does), and is (or are) have no logical meaning and are used 
only  to  make  the  text  more  grammatically  pleasing.  Each  occurrence  of  the  keyword  not 
inverts the logical sense of the Basic_Call_Property. Thus, an even number of nots has no effect 
and any odd number of nots has the same effect as one not.

Call_Property ® Source_Position
| marked  string  Source_Context
| in Source_File
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| in Other_Loop
| uses Variable_Name
| defines Variable_Name

Table 4 below defines the meaning of each type of call property.

Table 4: Meaning of call properties

Property Call C has this property if and only if:

Source_Position The call instruction for C is connected (through the compiler-
generated mapping) to the source-code line identified by the 
Source_Position, within the precision allowed by the fuzz of the 
Source_Position.

marked string Source_Context Same as for the Source_Position consisting of
“on marker string Source_Context ”.

in Source_File The call instruction for C is connected to a source-code line in the 
file named by the Source_File.

in Other_Loop C is contained in a loop that matches the Other_Loop description. 
Note that this loop is not necessarily the innermost loop that 
contains C.

uses Variable_Name Not implemented. Has no effect.

defines Variable_Name Not implemented. Has no effect.

5.9 Instructions

Instruction blocks

An instruction block describes a single machine instruction (whatever that means for the given 
target processor) and applies assertion clauses at this instruction:

Instruction_Block  ®  instruction   [ at ]  Address_Or_Offset  {Clause}  end instruction

If  the  Instruction_Block occurs  within  a  Sub_Block,  the  instruction  block  and  its  assertion 
clauses apply to the analysis of this subprogram only, even if other subprograms also contain 
this instruction. If the Instruction_Block occurs as a Global_Bound, it applies to the analysis of 
any and all subprograms that contain this instruction.

Address_Or_Offset  ®  code-address  |  offset  code-offset

If  the  Instruction_Block occurs  as  a  Global_Bound the  instruction  must  be  identified  by  an 
absolute address (code-address); an offset cannot be used.

Instructions in control-flow graphs

When  Bound-T analyses  a  subprogram,  it  actually  analyses  an  internal  model  of  the 
subprogram. This internal model is a control-flow graph decorated with information about the 
instructions,  branch  conditions,  and possible  execution states.  A  node  in  the  control-flow 
graph represents a sequence of consecutively executed machine instructions (a basic block) 
and is further divided into a list of “steps” where each step typically represents one instruction 
and is associated with the machine address of that instruction. However, in some cases one 
and the same instruction can be represented by two or more steps in the same control-flow 
graph; this happens if the instruction is modelled in different ways depending on its execution 
context.
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At present, Bound-T accepts an Instruction_Block assertion only when the instruction's address 
maps to exactly one step (and thus exactly one basic block) in the control-flow graph of the  
subprogram under analysis.

Clauses in instruction blocks

At  present,  two  forms  of  assertion  clause  are  accepted  in  an  instruction  block:  the 
Repetition_Bound clause and the Role_Bound clause. The former asserts how many times the 
instruction can be executed; the latter asserts the role that the instruction performs when it is  
executed. The role is typically some kind of dynamic transfer of control: branch, call, or return.

5.10 Clauses and facts

Fact clauses

The actual facts that are claimed to hold in some context (globally or locally in a subprogram,  
loop or call) are collected into the following production:

Clause ® Execution_Time_Bound ;
| Stack_Bound ;
| Start_Bound ;
| Repetition_Bound ;
| Variable_Bound ;
| Property_Bound ;
| Variable_Invariance ;
| Callee_Bound ;
| Role_Bound ;

Note, however, that some fact clauses are not allowed in some contexts as discussed further  
below.

Allowed combinations of fact and context

An assertion states a specific fact in a specific context, as explained in chapter 2. The '+' entries 
in the following table show which combinations of fact and context are allowed. The meaning 
of each combination is explained in the subsection dedicated to the fact. For information, the 
table includes as its last row the volatility mark or fact, although it is not really a Clause in the 
assertion syntax.
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Table 5: Fact and context combinations

Asserted fact Global
Subprogram

entry body Loop
Static

call
Dynamic

call Instruction

Variable bound + + + + + +

Property bound + + + + (no effect) + (no effect)

Variable invariance + + + +

Repetition bound + + + +

Execution time bound + + +

Start bound +

Stack bound +

Callee bound +

Role bound +

Volatility mark +

Unsupported combinations of fact and context

Several combinations in the above table are marked as not allowed (blank grey). Here is some 
rationale for this.

Global  assertions can be given only for variable and property values.  A global  assertion of  
variable invariance, repetition count or execution time would have no meaning because there  
is nothing to which the assertion could apply.

Property assertions are not allowed in a subprogram entry context because this context does 
not  contain  any  instructions  that  could  be  affected  by  the  properties.  Further,  property  
assertions have no effect  in  a  call  context,  but  this  may well  change in future  versions of  
Bound-T.

It  is  not possible to specify a repetition count for a particular subprogram. While such an  
assertion on the total number of times the subprogram is executed would be quite reasonable  
and could be useful, the current design of Bound-T cannot support it (because Bound-T finds 
the worst-case path within each subprogram separately, not within the program as a whole).  
Instead,  the  user  can  assert  a  separate  limit  on  the  repetition  count  for  each  call  of  this  
subprogram, in the context of this call.

It is not possible to assert the execution time of a loop. There is no technical obstacle that 
would prevent this but the benefit seems small while the implementation effort would be non-
trivial.

Stack bounds could logically be asserted for particular calls as well as for subprograms. This 
ability will no doubt be added in a future version of Bound-T.

The  set  of  possible  callees  (Callee_Bound)  is  obviously  relevant  only  to  dynamic  calls  and 
cannot be asserted in any other context.

At  present,  only  the  repetition  count  and  role  can  be  asserted  in  an  instruction  context. 
Assertions on variable and property values at instructions will probably be allowed in future 
versions of Bound-T.

Volatility  of  variables  could  reasonably  be  asserted  in  a  local  context,  but  is  not  yet  
implemented.
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5.11 Execution-time bounds

Bounds on the execution time of a subprogram or a call are written as follows:

Execution_Time_Bound  ®  time Bound Time_Unit

Time_Unit  ®  cycles

The  Execution_Time_Bound clause  can be  used  in  a  subprogram context  as  a  Clause in  a 
Sub_Block, or in a call context as a  Clause in a  Call_Block. The following table explains the 
meaning of asserting the execution time in each context where such an assertion is allowed.

Table 6: Meaning of execution time assertion

Context Assertion applies to

Subprogram The execution time of any one call of this subprogram except when another 
execution time is asserted for a specific call.

Call The execution time for any execution of this call.

To elaborate:

• In a subprogram context, the assertion defines the WCET of the subprogram in processor 
cycles.  Bound-T will not analyze the subprogram but will instead create a synthetic "stub" 
control-flow  graph  (typically  containing  one  or  two  nodes)  that  "consumes"  the  given 
amount of execution time. Every call of this subprogram will be assigned this WCET unless 
another WCET is asserted specifically for some calls.

• In a  call context, the assertion defines the WCET for these particular calls.  Bound-T will 
still  analyze  the  callee  subprogram  (unless  a  WCET  is  asserted  in  the  context  of  this 
subprogram) and try to find WCET bounds to be used for all calls of this subprogram that 
do not have an asserted WCET.

Thus, if you want to omit a subprogram from the execution-time analysis, it is not enough to 
assert  a  WCET  for  every  call  of  the  subprogram;  you  must  assert  a  WCET for  the  whole 
subprogram or assert omit for the subprogram, and then you can assert other WCET values for 
specific calls if you wish.

An  Execution_Time_Bound must  use  the  keyword  time,  not  times.  The  two  forms  of  this 
keyword are not equivalent in this construct.

5.12 Stack bounds

Bounds on the usage or final height of a particular stack, for a particular subprogram (that is,  
within a subprogram block), are written as follows:

Stack_Bound ® stack  [ Stack_Name ]   {  Stack_Value  }

Stack_Name ® string

Stack_Value ® usage  Bound
| final  Bound

The Stack_Bound clause can be used only in a subprogram context as a Clause in a Sub_Block. 
(In the future, it may also be allowed in a call context in a Call_Block.)

The  Stack_Name is  optional  if  the  program under analysis  contains  only one stack.  If  the  
program contains several stacks you must identify the stack in question with its Stack_Name. 
The stacks and their names are described in the Application Notes for your target processor 
and cross-compiler. For programs with no stacks a Stack_Bound assertion results in an error 
message.

92 Stack bounds Bound-T Assertion Language



A  Stack_Value sets bounds on the stack  usage or on the  final stack height, according to the 
keyword used. The same  Stack_Bound clause can contain a usage bound and a final-height 
bound, in either order. (A warning is emitted if it contains more than one Stack_Value of the 
same kind.)

The lower bound for stack usage should be non-negative; a warning results if a negative lower 
bound is given, and the effective lower bound is then zero.

For a stable stack, which by definition has a final height of zero, it is never necessary to assert a 
final height, and it is an error to assert bounds that allow a non-zero final height.

If you assert the usage of all stacks for a subprogram, that subprogram is excluded from the  
stack analysis (but may still be analysed for execution time).

5.13 Repetition bounds

Bounds on the number of repetitions of a loop or the number of executions of a call or an  
instruction are written as follows:

Repetition_Bound  ®  repeats Bound times

The Repetition_Bound clause can be used in a loop context as a Clause in a Loop_Block, or in a 
call context or instruction context as a Clause in a Call_Block or an Instruction_Block. When the 
clause appears in a call or instruction context we sometimes call it “execution count” bounds 
instead  of  “repetition”  bounds.  The  following  table  explains  the  meaning  of  asserting  the 
repetition (or execution) count in each context where such an assertion is allowed.

Table 7: Meaning of repetition count assertion

Context Assertion applies to

Loop The number of times the loop-body can be executed for each activation of the 
loop.

Call The number of times the call can be executed for each activation of the containing 
subprogram (the caller).

Instruction The number of times the instruction can be executed for each activation of the 
subprogram that contains the instruction. In other words, referring to the control-
flow graph of the containing subprogram, the number of executions of the basic 
block that contains the step that represents the instruction. Note that this 
assertion is accepted only when the subprogram contains exactly one such step.

The rest of this subsection explains the meaning more precisely, especially for loops.

Repetition bounds for calls and instructions

When  a  repetition  bound  applies  to  a  call  or  an  instruction,  it  constrains  the  worst-case 
execution path of the containing subprogram so that the number of executions of the call or 
instruction is bounded by the Bound. Note that both the lower and upper bounds of Bound are 
used.

Note  that  increasing the  execution count  of  a  call  or  instruction  can  decrease the  overall 
execution time, since forcing the execution to pass more often through this call or instruction 
may allow it to pass less often through other statements that would use more execution time.  
As an example, consider the following Ada pseudo-code:

for N in 1 .. 50 loop
if Simple (N) then

Quick (N);

Bound-T Assertion Language Repetition bounds 93



else
<long computation>;

end if;
end loop;

If the WCET bound of the long computation in the else-branch is larger than that of procedure  
Quick, and in the absence of any assertions,  Bound-T will assume as the worst case that the 
else-branch is taken on each iteration, so 50 times. If you assert that Quick is called at least 10 
times, Bound-T is forced to assume that the else-branch is taken only 40 times, thus reducing 
the overall WCET bound because 10 calls of  Quick are faster than 10 executions of the else-
branch.

Repetition bounds for loops

To define the precise meaning of a Repetition_Bound for a loop we must first define some terms 
related to loops in flow-graphs.

In Bound-T the nodes in the flow-graph are the “basic blocks” of the machine instructions in 
the subprogram. A basic block is a maximal sequence of instructions such that the flow of 
execution  enters  this  sequence  only  at  the  first  instruction  and  leaves  only  at  the  last 
instruction.  Thus,  all  instructions  in  the  sequence  have  one successor  (except  for  the  last 
instruction  which  may  have  several  or  none)  and  one  predecessor  (except  for  the  first 
instruction which may have several or none). The edges in the flow-graph of course represent  
the flow of execution between the basic blocks.

Loops  correspond  to  cyclic  paths  in  the  flow-graph.  Bound-T currently  requires  that  the 
structure of the flow-graph be  reducible, which means that two loops are either completely 
separate (share no nodes or edges) or one is completely nested within the other. 

Reducibility also means that each loop has a distinguished node called the loop head with the 
property that the loop can be entered only through the loop head. On the source-code level, the 
loop head is analogous to the “for” or “while” syntax that  introduces the loop; reducibility  
forbids jumps from outside the loop into the loop body, “around” the loop head.

Figure 8 below illustrates a loop in a flow-graph, including the loop head and the following 
other terms:

– The loop body is the set of all nodes that lie on some cyclic path from the loop-head back to  
the loop head. The loop body thus includes the loop head itself.

– A start edge is any edge from outside the loop body into the loop body. A start edge must 
lead to the loop head because that is the only point of entry to the loop.

– The start nodes are the source nodes of the start edges. They are not part of the loop body. 
They often contain the instructions that initialize the loop variables, including the loop 
counters  if  the  loop  has  counters.  The  start  nodes  have  no  role  in  the  meaning  of  a  
Repetition_Bound  but  are  important  for  identifying  a  loop  through  its  source-code 
position as explained in section 3.3.

– A neck edge is any edge from the loop head to a node in the loop body. It can lead to some  
other node in the loop body or directly back to the loop head itself.

– A  repeat edge is any edge from the loop body to the loop head. Repeat edges are also 
known as “back edges”. An edge from the loop head to itself is both a repeat edge and a  
neck edge.

– An exit edge is any edge from the loop body to a node outside the loop body.

A loop is called an  exit-at-end loop if, for any exit edge, all the edges with the same source 
node are either exit edges or repeat edges (in the same loop). The example loop in the figure 
above is not an exit-at-end loop because the exit edge from node 3 to node 6 violates this 
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condition; the edge from node 3 to node 5 has the same source node (3) but is neither an exit  
edge nor a repeat edge. If either of these edges were removed the loop would become an exit-
at-end loop.

We say that a loop is a (syntactically) eternal loop if it has no exit edges or if all exit edges are 
known to be infeasible. We consider such loops to also be exit-at-end loops.

In the source code, an exit-at-end loop is often a “bottom-test” loop. However, compilers can 
turn top-test loops into exit-at-end loops by coding the first instance of the loop termination 
test as a special case that is not within the loop body.

Figure 8: A loop in a flow-graph

The loop head is node 2; the loop body consists of nodes 2, 3, 4, and 5; the start  
nodes are nodes 1 and 8; the start edges are those from nodes 1 and 8 to node 2;  
the repeat edges are those from nodes 4 and 5 to node 2; and the exit edges are  
those from node 3 to node 6 and from node 5 to node 7.

We can now define the meaning of a repetition bound for a loop:

– When a repetition bound with the number R as the upper Bound applies to a loop that is 
not  an  exit-at-end  loop  it  constrains  the  worst-case  execution  path  of  the  containing 
subprogram as follows. If the start edges are executed a total of  A times, then the neck 
edges are executed in total at most R × A times. Note that the loop-head can be executed up 
to (R + 1) × A times, because each of the R × A executions of the loop-body may jump back 
to the loop-head along a repeat edge.

– When a repetition bound with the number R as the upper Bound applies to an exit-at-end 
loop it constrains the worst-case execution path as follows. If the start edges are executed a 
total of A times, then the repeat edges are executed in total at most (R − 1) × A times.
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The meaning of the lower bound of the repetition Bound is analogous.

Although not mentioned in the definition above, the practical effect of a repetition bound also 
depends on whether there are exit edges from the loop head. While-loops and other “top-test” 
loops often have exit edges from the loop head.

Figure 9 below shows an example of the most general form of a loop with exit edges both from 
the loop head and from the loop body. The nodes and edges in the flow-graph are labelled with 
execution counts assuming an assertion that the loop repeats R = 6 times and one start of the 
loop,  A = 1.  (For  a  larger  number  of  starts  the  execution  counts  are  multiplied 
proportionately.) The execution counts 4 and 2 for the alternative internal paths (the neck 
edges in this case) are examples; any two numbers that add up to 6 are possible in the absence  
of  other  assertions  or  knowledge.  The  worst-case  path  (again  in  the  absence  of  other 
constraints) executes the repeat edge 6 times and the loop-head 7 times.

A loop that is not an exit-at-end loop and has no exit edges from the loop head can be called a 
“middle-exit”  loop.  Figure 10 below shows a middle-exit  loop after asserting that  the loop 
repeats R = 6 times and assuming that the loop is started once, A = 1. As above, the execution 
counts 4 and 2 for the alternative internal paths are examples. Note that the node in the loop 
body from which the repeat edge originates executes only 5 times. In real code, this node might  
hold most of the code in the loop; it  is then questionable if the assertion has the intended 
effect, or if asserting 7 repetitions would be more suitable, giving 6 executions of this node.
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Figure 10: A middle-exit loop asserted to repeat 6 times

Figure 11 below shows an exit-at-end loop after asserting that the loop repeats R = 6 times and 
assuming that the loop is started once, A = 1. Note that the node from which the repeat edge 
originates now executes 6 times, equal to the asserted number of repetitions.

Figure 11: An exit-at-end loop asserted to repeat 6 times

Which repetition bound is right?

As the examples above show, the “right” value for a loop-repetition bound depends on the form 
of the flow-graph, in particular on where the “important” parts of the loop lie with respect to  
the loop-head and exit edges. Unfortunately there is no sure way to deduce the form of the 
machine-code flow-graph from the source code of the loop. For small target processors the 
evaluation  of  a  simple  condition  may  need  several  instructions  and  conditional  jumps; 
consider, for example, the comparison of two 16-bit integers on an 8-bit processor. This means  
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that a while-loop with such a condition probably will not have an exit edge from the loop head 
because  the  loop  head  node  contains  only  the  first  part  of  the  instruction  sequence  that 
evaluates the condition.

You should therefore ask Bound-T to draw the flow-graphs of subprograms with asserted loop 
repetition  bounds and  check  that  the  execution  counts  agree  with  your  intention.  If  they 
disagree, you should either adjust the repetition bound or use other kinds of assertions, for  
example on the execution count of calls.

Asserting zero repetitions

Asserting a zero number of repetitions may have an unexpected effect for loops that have no 
exit  edge  from  the  loop-head  node.  This  happens  in  many  exit-at-end  loops  and  all  
syntactically eternal loops. Consider the following Ada pseudo-code:

loop
if some condition then

do something;
end if;
exit when done enough;

end loop;

The compiler very likely codes this as a loop-head that evaluates “some condition” and with the  
only exit edge at the end of the loop after evaluating “done enough”. For such a loop, the loop 
body is  executed at  least  once, if  the execution reaches this  loop at  all.  If  you assert  zero 
repetitions for this loop,  Bound-T considers the whole loop unreachable which might not be 
what you wanted.

Combining loop repetitions and call or instruction repetitions

When a call, or a specific instruction, is in a loop, a bound on the number of executions of the  
call or the instruction may implicitly bound the number of loop repetitions. However, Bound-T 
still requires an explicit bound on each loop in the subprogram before it tries to compute the 
WCET of the subprogram, unless you use an enough for time assertion to tell Bound-T that the 
implicit bounds are strong enough and it should try to compute the WCET even if some loops 
lack explicit bounds.

The explicit  loop-bounds can be computed automatically  or  asserted.  The worst-case  path 
computation will then consider the conjunction of the implicit bounds (number of executions 
of the call, or the specific instruction) and the explicit bounds (number of loop repetitions). 
The WCET value will reflect the strictest bounds.

For example, assume that the target subprogram Foo has a loop that calls two subprograms 
Lift and Drop and is of the following form:

while <complex condition> loop
if Need_To_Lift then

Lift;
else

Drop;
end if;

end loop;

Assume further that Bound-T cannot bound the loop iteration automatically (because the loop-
condition is complex) and that we assert the number of executions of the two calls as follows:
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subprogram "Foo"
call to "Lift" repeats 10 times; end call;
call to "Drop" repeats 15 times; end call;

end "Foo";

Since every loop iteration calls either Lift or Drop, these assertions imply that the loop can be 
executed  at  most  (or  in  fact  exactly)  25  times.  However,  Bound-T does  not  detect  this 
implication and refuses to compute a WCET in the absence of more assertions. There are two 
ways to proceed. One way is to assert an explicit loop-bound, for example by adding to the  
above subprogram block the Clause

loop repeats <= 40 times; end loop;

Under these assertions, Bound-T computes a worst-case path that executes the loop 25 times 
so that Lift is called 10 times and Drop is called 15 times, which also satisfies the explicit loop-
assertion of no more than 40 repetitions. The other way is to add the Sub_Option assertion

enough for time;

This assertion makes Bound-T compute the same worst-case path (25 executions of the loop, 
10 of Lift and 15 of Drop) even if the loop is not explicitly bounded.

5.14 Start bounds

Bounds on the number of times a particular loop starts are written as follows:

Start_Bound  ®  starts Bound times

The  Start_Bound clause can be used only in a loop context as a  Clause in a  Loop_Block. The 
clause bounds the number of executions of the loop's start edges (see Figure 8 in section 5.13) 
for each execution of the subprogram that contains the loop. If there are several start edges,  
the bound is on the total number of executions of these edges. For example, if the loop has two  
start edges and you assert starts 2 times then both start edges may execute once each, or one 
edge may execute twice and the other edge not at all.

Note that the compiler may change the structure of a loop in ways that change the actual 
meaning of a Start_Bound as explained in section 2.4.

5.15 Variable bounds

Bounds on the value of a variable are written as follows:

Variable_Bound  ®  variable  Variable_Name  Bound

The  Variable_Bound clause states the possible range of the values of a variable and can be 
applied  to  any  kind  of  context.  However,  the  meaning  is  different  for  call  contexts  and 
subprogram-parameter  contexts  than  for  other  contexts.  The  following  table  explains  the 
meaning in each context where such an assertion is allowed.

Table 8: Meaning of variable value assertion

Context Assertion holds:

Globally During the entire analysed execution at every reached point.

Subprogram entry For any execution of this subprogram, but only at the entry point, before 
executing the first instruction of the subprogram.

Bound-T Assertion Language Variable bounds 99



Context Assertion holds:

Subprogram body For any execution of this subprogram and at all points in the 
subprogram.

Loop For any execution of this loop and at all points in the loop.

Call For any execution of this call, immediately before entering the callee.

The rest of this section discusses each context in more detail.

Variable bounds for subprogram bodies, loops or globally

When variable value bounds are asserted for any context other than a call or subprogram 
entry, they apply  throughout the  whole context. This makes the assertion powerful but also 
means that you can easily create contradictions if you specify too narrow a range in the Bound. 
For example, assume that the context is a subprogram that contains two assignments to the 
variable V:

procedure Foo is
begin

V := 3;
some statements, not changing V;
V := V + 1;
further statements;

end Foo;

If you now assert for that V is 3 for this subprogram:

subprogram "Foo"
variable "V" 3;

end "Foo";

then  Bound-T may  find that  the further  statements  after  the second  assignment to  V are 
unreachable because there V would have the value 4, which is forbidden by the assertion. This 
will often result in warning message. You should instead assert that V is in the range 3 .. 4 or 
put the assertion in the subprogram entry context as shown below.

Variable bounds on subprogram entry

When variable value bounds are asserted in a subprogram entry context (within parentheses 
following the first Sub_Name in a Sub_Block) they apply at one specific point in the program: 
immediately before the execution of the first instruction in the subprogram (the entry point of 
the subprogram).

The following asserts that the variable V has the value 3 on entry to the subprogram Foo:

subprogram "Foo" (variable "V" 3)
end "Foo";

Since the assertion applies only on entry to the subprogram, the subprogram can change V in 
any way without contradicting this assertion. However,  if  Foo is called again, the assertion 
must again hold (V must equal 3) on the new entry to Foo.
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Variable bounds for calls

When variable value bounds are asserted for a call, they apply to the variables as visible in the 
caller, immediately before the execution flows from the caller to the entry point of the callee.

When the named variables occur in the call's actual parameter expressions, the parameter-
passing mechanism of the call translates the asserted bounds on the caller's variables into 
bounds on the callee's (formal) parameters.

Taking  into  account  the  parameter-passing  mechanism  is  especially  important  for  target  
processors  that  rename  registers  during  a  call  instruction.  One  example  is  the  SPARC 
architecture with its "register windows". In the SPARC version of Bound-T, the variable value 
fact

variable address "o3" 123;

refers to output register 3. However, the register-window mechanism means that the physical  
register that the caller refers to as "o3" is visible in the callee as "i3" (input register 3), while  
"o3" in the callee refers to a different physical register. Thus, if the above assertion on "o3" is 
given in a call context, it has the same effect as the corresponding assertion on "i3" in the 
callee's entry context.

Please refer also to section  2.12 where you will find a warning on the use of "foreign" local 
variables in assertions.

Some compilers are sloppy with the mapping of variable names to registers, in particular at 
calls. They may use a register to pass a parameter to the callee although the symbol-table in the  
target program allocates this register to a variable that has nothing to do with this parameter. 
Bound-T cannot detect such symbol-table flaws which means that assertions on this variable 
may not have the correct effect. Check the Application Note for your target and compiler for 
advice.

When a Variable_Bound applies to a global variable (a statically addressed memory location) it 
is  not affected by the parameter-passing mechanism and the asserted bounds apply to the 
same global variable for the callee.

Whether they concern parameters or global variables, the variable bounds asserted for a call  
are applied only to the entry point of the callee, not throughout the callee's code.

Variable value bounds for a call are currently used only for the call-path-specific analysis of the 
callee at this call. The variable bounds are not used in the subsequent analysis of the caller,  
although it would be reasonable, and future versions of Bound-T will probably do it. 

5.16 Variable invariance

The invariance (unchanged value) of a variable is asserted as follows:

Variable_Invariance  ®  invariant  Variable_Name

A  Variable_Invariance clause  asserts  that  the  named  variable  retains  its  value  over  any 
execution of the context to which the clause applies. This kind of assertion is not often used, 
but in some cases it can help Bound-T complete its arithmetic analysis and find loop-bounds 
automatically, as section 2.13 explained.

The following table explains the meaning of  asserting the invariance of  a variable  in each 
context where such an assertion is allowed.
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Table 9: Meaning of variable invariance assertion

Context Assertion holds:

Loop For any repetition of this loop and means that the variable has the same value 
whenever execution enters the loop head. The loop body may change the 
variable but must restore its value before going back to the loop head. However, 
the value may change on the last execution of the loop body, when the loop 
terminates.

Call For any execution of this call and means that the execution of the call and the 
callee do not modify the variable, that is, the value on return from the call is the 
same as the value before the call. However, the variable can be modified within 
the callee as long as its original value is restored on return.

Subprogram 
body

For any loop and call in the subprogram. The subprogram itself may change the 
variable's value.

One consequence of asserting the invariance of a variable in a loop is that the variable cannot 
be a counter for the loop.

An invariance assertion in a context does not mean that the variable always has the same value  
when execution  reaches the context. For example, if a variable is asserted as invariant for a 
call, the variable may have the value 5 on the first execution of the call and the value 207 on 
the second execution of the call. The invariance means only that the variable still has the value 
5 after the first execution of the call and still has the value 207 after the second execution of the  
call.

Likewise, a variable that is asserted as invariant in a loop may have a different value each time  
execution  reaches  the  loop from  outside  the  loop,  that  is,  each  time the  loop  starts.  For 
example, assume that the variable has the value 11 when the loop is first started and that the 
loop repeats  five  times  before  terminating. The loop head is  thus executed six  times. The 
invariance means that the variable still has the value 11 on each of these six entries to the loop 
head. When the loop terminates the variable may have a different value. If the program starts 
the loop again, the variable may have yet another different, for example 31; if the loop now 
repeats twice so that the loop head is executed three times the invariance means that the 
variable has the value 31 on each of these three entries to the loop head. Again, the value may  
change when the loop terminates.

Asserting invariance in a subprogram (body) context is equivalent to asserting invariance in all  
loops and calls in the subprogram. Note that it does  not mean that the variable is invariant 
over a call of this subprogram.

5.17 Volatility Marks

The volatility of some variables and/or memory address ranges is asserted as follows:

Volatility_Mark ® volatile  Volatile_Area  [ { , Volatile_Area } ]

Volatile_Area ® Variable_Name
| range  variable_address  ..  variable_address

When a  Variable_Name is asserted as volatile, then any access to the  Bound-T "storage cell" 
which models this  variable is analysed as a volatile  access.  This does  not include memory 
accesses that have a different address and/or width, and therefore map to a different storage  
cell, but which overlap the cell that is asserted as volatile. This is arguably a defect and should 
be corrected, but is a consequence of the generally weak analysis of aliasing and overlapping in 
Bound-T.

When a range of addresses is asserted as volatile, then any storage cell that overlaps this range 
is analysed as a volatile cell.
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Target-specific  rules  define  which  variable_address  values  can  be  used  in  a  volatile  range 
assertion and which pairs of such values can be combined into an address range. For example, 
although the variable_address syntax for a target usually includes syntax for naming registers, 
it may not make sense to specify an address range that extends from a register to a location in 
RAM. Similarly, for processors with several different address spaces such as the Intel-8051, 
you probably will not be allowed to define an address range which starts in one space and ends 
in another.

Example

Assume a memory that is addressed by octet but can be read or written one octet at a time or  
one 4-octet word (32 bits) at a time, even with unaligned addresses. Assume that the 32-bit 
variable  x is statically allocated at address 0x40, and therefore occupies the octets at 0x40, 
0x41, 0x42, and ox43. Assume also that the program under analysis has an instruction which 
reads x as a word from address 0x40, an instruction which reads one octet from 0x41, and an 
instruction which reads one word from 0x42.

If the variable  x is asserted volatile, only the first instruction, which reads all and only  x, is 
analysed as a volatile access. The other two instructions access different storage cells (in the  
Bound-T model) and are therefore not considered volatile.

If the address range 0x40 .. x043 is asserted as volatile, all three instructions are analysed as 
volatile accesses because all the corresponding storage cells overlap the volatile address range.

5.18 Property bounds

Bounds on the value of a target-specific "property" are written as follows:

Property_Bound  ®  property  Property_Name  Bound

Property_Name  ®  string

A Property_Bound clause asserts that some target-specific property of the target processor or of 
the target program under analysis has a given value or a given range of values throughout the 
context to which the clause applies. Since the properties are completely target-specific, please 
refer to the relevant target Application Notes for a list of the available properties and their 
meaning.

A typical use for such properties is to define the number of memory wait-states that should be  
assumed for specific types of memory accesses in this specific context. For example, boot code  
that  executes from a narrow PROM may need a much larger number of program-memory 
wait-states than application code that executes from fast RAM memory with a wide instruction 
bus.

The following table defines the meaning of  assertions on property values,  in  each context 
where such an assertion is allowed.

Table 10: Meaning of property value assertion

Context Assertion holds:

Globally During the entire analysed execution at every reached point, unless 
overridden by an assertion on this property in another context.

Subprogram body For any execution of this subprogram and at all points in the subprogram, 
unless overriden by an assertion on this property in a loop or call within this 
subprogram.

Loop For any execution of this loop and at all points in the loop, unless overridden 
by an assertion on this property in an inner loop or a call within this loop.
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Context Assertion holds:

Call This context is allowed by the assertion language but the assertion currently 
has no effect.

Note that an assertion on a property value in an inner context overrides any assertions on this 
property  in  outer  contexts  (only  the  innermost  assertion  holds).  This  is  in  contrast  to  
assertions  on  variable  values  where  such  nested  assertions  are  combined  (all  applicable 
assertions hold).

5.19 Callee bounds

When a call instruction uses a dynamically computed callee address, Bound-T is often unable 
to find the possible callee subprograms by analysis. In such cases you can list the possible 
callees as a Callee_Bound fact in the context of the dynamic call:

Callee_Bound  ®  calls  Sub_Name { or Sub_Name }  

The dynamic call is then analysed as if it were a case statement with one branch for each listed 
callee (Sub_Name) contain a call of this callee.

5.20 Role bounds

Some instructions  can perform several  roles in  the execution of  a  program.  For example, 
consider a "return" instruction that pops a return address off the stack and transfers control to 
that address. Most "return" instructions perform just that role, of returning control from a  
callee  subprogram to  the  caller  subprogram.  However,  a  compiler  can also  use  a  "return" 
instruction  to  perform some  other  kind  of  transfer  of  control.  For  example,  a  jump to  a  
dynamically computed address can be performed by pushing the address value on the stack 
and executing a "return". Furthermore, a very similar instruction sequence can be used to 
perform a call to a dynamically identified subprogram.

To  analyze  such  multi-role  instructions  Bound-T must  decide  which  role  the  instruction 
performs. The automatic algorithms built into Bound-T can sometimes choose the wrong role, 
which may make the analysis fail. In such cases you can tell  Bound-T which role to use by a 
Role_Bound fact in the context of an instruction block:

Role_Bound  ®  performs [ a | an ]  instruction-role

The instruction-role is written as a quoted string; the contents of the string identify one of the  
possible roles defined for the current target processor. For example, the following subprogram 
block and the nested instruction block assert that the instruction at offset "1" from the entry 
point of the subprogram "ICall" performs a "tail call":

subprogram "ICall"
instruction at offset "1"

performs a "tail call";
end instruction;

end "ICall";

What the "tail call" role means (and what the offset "1" means) depends on the target processor  
chosen for the analysis.
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5.21 Combining assertions

The  assertion  language  lets  you  assert  several  facts  that  apply  to  the  same  aspect  of  the 
program's behaviour. For example, you can write several bounds on the value of the same 
variable in the same context, or in different contexts that intersect, such as an assertion on 
variable V in subprogram Foo, combined with an assertion on V in a loop nested in Foo. The 
table below explains how Bound-T combines or conjoins such assertions.

Table 11: Effect of multiple assertions on the same item

Asserted fact Effect in same context Effect in nested context

Variable value range The effective range is the intersection 
of all the asserted ranges.

The effective range is the intersection of 
all the asserted ranges.

Property value range The effective range is the intersection 
of all the asserted ranges.

The range for the inner context is used.

Variable invariance Multiple assertions have the same 
effect as a single assertion.

The assertion for the inner context 
holds.

Loop start count The effective range is the intersection 
of all the asserted ranges.

Not applicable. The number of starts of 
the outer loop has no meaning for the 
inner loop.

Loop repetition 
count

The effective range of repetitions is the 
intersection of all the asserted ranges.

Not applicable. The number of 
repetitions of the outer loop has no 
meaning for the inner loop.

Call execution count The effective range is the intersection 
of all the asserted ranges.

Not applicable. One call cannot be 
nested within another, in the opinion of 
Bound-T.

Instruction execution 
count

The effective range is the intersection 
of all the asserted ranges.

Not applicable. One instruction cannot 
be nested within another, in the opinion 
of Bound-T.

Subprogram 
execution time

The effective WCET bound is the 
smallest asserted time.

Not applicable. The context of a 
subprogram is always the global context.

Subprogram stack 
usage

The effective range is the intersection 
of all the asserted ranges.

Not applicable. The context of a 
subprogram is always the global context.

Subprogram final 
stack height

The effective range is the intersection 
of all the asserted ranges.

Not applicable. The context of a 
subprogram is always the global context.

Callees of a dynamic 
call

The effective set of callees is the union 
of the asserted sets of callees.

Not applicable. One call cannot be 
nested within another, in the opinion of 
Bound-T.

Role of an instruction It is an error to assert different roles 
for the same instruction.

Not applicable. One instruction cannot 
be nested within another, in the opinion 
of Bound-T.

Contradictory repetition counts

Multiple  assertions  that  affect  the  same  or  nested  program  elements  can  lead  to  contra-
dictions.  For  example,  assume  that  subprogram  Initialize contains  a  loop  that  on  each 
iteration executes a call of the subprogram Allocate_Block, and that the following assertions 
are stated:
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all loops that call "Allocate_Block"
repeat <= 10 times;

end loops;

subprogram "Initialize"
all calls to "Allocate_Block"

repeat 20 times;
end calls;

end "Initialize";

The second assertion requires the call to Allocate_Block to occur 20 times and so requires 20 
repetitions  of  the  loop,  but  the  first  assertion  only  allows  10  repetitions.  When  such  a 
contradiction occurs, the WCET computation will fail with an error message saying “infeasible 
execution constraints”.

Contradictory start bounds

A start-count assertion for an inner loop can contradict a repetition assertion (or a computed  
repetition bound) for the outer loop. This happens if the inner loop is asserted to start more 
often than the outer loop repeats, or if an unconditional inner loop is asserted to start less  
often than the outer loop repeats. When such a contradiction occurs, the WCET computation 
will fail with an error message saying “infeasible execution constraints”.

Contradictory value bounds

When several assertions constrain the value of the same variable in some context,  Bound-T 
uses  all  the  constraints.  If  the constraints  are  contradictory,  the  context  in  question  may 
appear infeasible (unreachable).  The same can happen if  the assertions conflict  with value 
bounds that Bound-T has found through analysis.

Two kinds of contradictions between assertions may arise:

• directly conflicting  assertions on the same variable in the same context, and

• indirect conflict between assertions on two or more variables that contradict a relationship 
between these variables that Bound-T has deduced from its analysis.

The next two subsections discuss these further.

Direct conflict between assertions on the same variable

Bound-T can usually detect and report a direct conflict when it collects all the assertions for 
the analysis of a subprogram in a certain context. For example, if there is a global assertion  
that variable V is in the range 1 .. 5, and for subprogram Foo an entry assertion that V has the 
value 7,  Bound-T will  detect  this  direct  conflict  and warn about “conflicting  assertions  on 
entry”  to  Foo.  Moreover,  Bound-T will  also  list  all  the assertions that  it  collected for  this 
analysis, grouping them as follows:

Global assertions:
1<=DM0<=5

Subprogram entry assertions:
DM0=7

Subprogram body assertions:
None.

Call assertions and computed bounds:
None.
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Target-dependent implicit bounds:
SH=1
ZSH=0

As you can see, the global assertion and the subprogram-entry assertion conflict. Here "DM0" 
is the machine-level name for the source-code variable V.

The group “Call assertions and computed bounds” includes the bounds on input parameters 
and global variables that Bound-T has computed from the calling context.

Indirect conflict between assertions and deduced relationships

An indirect conflict can occur, for example, when one assertion constrains the variable  X to 
values less or equal to 20 and another constrains the variable  Y to the range 18 .. 25. These 
assertions as such are compatible, but if they apply to a context that includes an instruction  
that assigns  X the value  Y + 3, a conflict arises because the new value of  X would be in the 
range 21 .. 28, which contradicts the assertion on X.

Such relationships between the values of variables are the main result of Bound-T's arithmetic 
analysis.  The analysis deduces relationships from arithmetic assignments (instructions that 
compute a value and store  it  in  a variable)  and from the logical  conditions of  conditional 
branches. For example, if the above assertions on X and Y apply to a part of the program that 
is  entered only through a  conditional  branch with  the condition  X = Y + 3,  any arithmetic 
analysis in this part of the program (for example, finding bounds on a loop here) will discover 
the conflict.

When  an  indirect  conflict  between  assertions  and  deduced  variable  relationships  occcurs 
Bound-T is usually unable to decide if the reason is in the assertions or in the logic of the target  
program itself. Bound-T classifies the relevant program part as unreachable (and warns about 
it, if the option -warn reach is in effect).

Note that Bound-T does not search for such conflicts systematically; it discovers them only if  
the relevant program part needs some analysis, for example loop analysis. Thus, an analysis 
with contradictory assertions can succeed without discovery of the conflicts, but the conflicts 
may be revealed in a later re-analysis with a changed target program if there is now a loop, for  
example, that is covered by the conflicting assertions and relationships.
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6 TROUBLESHOOTING

6.1 Warning messages

Some problems in an assertion file can make the assertion parser in Bound-T issue a Warning 
message in the basic output format explained in the Bound-T Reference Manual. The following 
table lists all these warning messages in alphabetical order, ignoring punctuation characters 
and letter case. For each message, the table explains the problem in more detail. For some 
warning  messages,  the  table  may  suggest  possible  reasons  for  the  problem  and  specific  
solutions.

Warning messages from sources other than the assertion parser are listed in the  Bound-T 
Reference Manual. Some of them may also be due to problems in the assertions, although the 
assertion parser may not detect the problem itself and therefore does not issue a warning itself.  
Some warnings described in the Reference Manual are also described here, because they may 
arise during assertion parsing.

Table 12: Warning messages

Warning message Meaning and remedy

Lower bound on stack usage set to 
zero

Reasons The lower bound given in a stack usage assertion is 
negative. This is silly because usage cannot be negative, 
so Bound-T instead uses zero for the lower bound.

Action Change the lower bound to a non-negative value.

Multiple assertions on  stack final 
height

Reasons The same Stack_Bound clause gives more than one final 
stack height bound for the same stack. This is either 
redundant or contradictory.

Action Use only one final bound.

Multiple assertions on  stack usage Reasons The same Stack_Bound clause gives more than one stack 
usage bound for the same stack. This is either 
redundant or contradictory.

Action Use only one usage bound.

Negative counts are meaningless Reasons The Count specified in this Loop_Property for the number 
of “contained” calls or inner loops allows negative 
numbers. For example, “loop that contains -4 .. 6 loops”. 
However, the number of contained calls or loops cannot 
be negative.

Action Correct the assertion to allow only non-negative 
numbers.

Negative numbers are meaningless 
here

Reasons This Repetition_Bound allows negative numbers. For 
example, “repeats -4 .. 6 times”. However, the number of 
repetitions cannot be negative.

Action Correct the assertion to allow only non-negative 
numbers.

Negative populations are 
meaningless

Reasons The Population specified for this Call_Block or Loop_Block 
allows negative numbers. For example, “all -4 .. 6 calls”. 
However, populations of calls or loops cannot be 
negative.

Action Correct the assertion to allow only non-negative 
numbers.

No valid assertions found in this file Reasons This assertion file seems to be empty, or to contain only 
comments, or only assertions that are in error.
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Warning message Meaning and remedy

Action Correct the erroneous assertions, if any. Check that 
assertions have not, by mistake, been commented out 
or removed.

Other identifier connection not 
used.

Reasons An assertion uses a symbolic (source-code) name for a 
subprogram or statement-label, but this name is 
connected to more than one machine-code location 
(multiply defined). This message shows a connection 
that Bound-T did not use.

Action Add scope context to the name in the assertion, to make 
the name unambiguous. See section 3.2.

Overriding an “exactly” qualifier. Reasons The assertion identifies its context by a source-code 
position as exactly on a specific source-code line 
(number) or mark, which means that source-line 
numbers should be compared exactly, with no fuzz. 
However, the assertion also includes a within part that 
specifies the fuzz to be used when comparing line 
numbers. This overrides the exactly qualifier.

Action Correct the assertion by removing either the exactly 
keyword or the within part, as desired.

Subprogram not found: S Reasons The subprogram named for this subprogram block 
(after the subprogram keyword) was not found in the 
target program. The name may be mistyped, or the 
name may have been “mangled” by the compiler and 
linker.

Action Correct the assertion file use the subprogram name as it 
exists in the target program executable (the link-name). 
To find the possibly mangled name, use -trace symbols 
or dump the target program file.

This identifier connection used. Reasons An assertion uses a symbolic (source-code) name for a 
subprogram or statement-label, but this name is 
connected to more than one machine-code location 
(multiply defined). This message shows the connection 
that Bound-T uses.

Action Add scope context to the name in the assertion, to make 
the name unambiguous. See section 3.2.

Unlimited interval may have no 
effect.

Reasons The Bound written in this assertion is unlimited; it 
places neither a lower nor an upper bound on the 
number in question.

Action Check that the assertion is what you intended. Correct 
if wrong. Remove the assertion if it has no effect.

Void interval may create 
contradiction

Reasons The Bound written in this assertion allows no values at 
all because its lower bound is greater than the upper 
bound. For example, 5 .. 3.

Action Check that the assertion is what you intended. Correct 
if wrong.

6.2 Error messages

When the assertion parser in  Bound-T finds an error in an assertion file it issues an  Error 
message in the basic output format explained in the Bound-T Reference Manual. The following 
table lists all these error messages in alphabetical order, ignoring punctuation characters and 
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letter case. For each message, the table explains the problem in more detail. For some error 
messages,  the  table  may  suggest  possible  reasons  for  the  error  and  specific  solutions. 
Otherwise, the general reason is an error in the assertion file and the general solution is to 
correct the assertion file and re-run Bound-T.

Error  messages  from  sources  other  than  the  assertion  parser  are  listed  in  the  Bound-T 
Reference Manual. Some of them may also be due to errors in the assertions. In those cases the  
assertions are syntactically and semantically correct, so the assertion parser accepts them, but 
later  stages of  the analysis  find some conflict  between different  assertions or between the 
assertions  and the target  program under  analysis.  For  example,  the  number  of  loops  that 
actually match a Loop_Description may be different from the expected Population for this loop 
description.

Table 13: Assertion error messages

Error message Meaning and remedy

“..” expected, at “T ” Problem At this point in the syntax, the double-dot separator ".." 
should appear instead of the token T.

"S " expected, at "T " Problem At the end of a subprogram block, for a subprogram 
identified by S, the subprogram identifier is repeated in 
the form T which does not match S. See also the error 
message that begins “Mismatch...”.

"A" is not a valid cell address Problem An assertion contains the string A that is meant to 
denote a variable (storage cell) address, but is rejected 
by the assertion parser.

Reasons The string A is not written according to the rules for 
variable addresses that Bound-T uses for this target 
processor.

Solution Refer to the Application Note for this target and correct 
the string.

"A" is not a valid code address, at "T ". Problem An assertion contains the string A that is meant to 
denote a code address, but is rejected by the assertion 
parser. The next token is T.

Reasons The string A is not written according to the rules for 
code addresses that Bound-T uses for this target 
processor.

Solution Refer to the Application Note for this target and correct 
the string.

"A" is not a valid code offset, at "T ". Problem An assertion contains the string A that is meant to 
denote a code offset, but is rejected by the assertion 
parser. The next token is T.

Reasons The string A is not written according to the rules for 
code offsets that Bound-T uses for this target processor.

Solution Refer to the Application Note for this target and correct 
the string.

Ambiguous label name: N

or

Ambiguous subprogram name: N

or

Ambiguous variable name: N

Problem The assertion tries to identify a label, subprogram, or 
variable by the name N but the name matches more 
than one label, subprogram, or variable (respectively) 
in the program and so is ambiguous.

Reasons The program contains more than one label, 
subprogram, or variable (respectively) with the name N 
but in different scopes. The name in the assertion does 
not specify the scope (well enough).

Solution Add scope levels to the name to make it unambiguous.
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Error message Meaning and remedy

Assertion expected, at "T ". Problem The current token T cannot be the start of an assertion, 
as would be expected here. See the nonterminal 
Assertions in section 5.3 (page 80).

The assertion parser silently skips the following text 
until it finds the start of the next assertion.

Assertion file contained errors. Problem Some errors were noted in the assertion file (and 
reported by the corresponding other error messages in 
this table). The analysis stops (after reading the rest of 
the assertion files, if any).

Assertion file could not be read. Problem The assertion file could not be opened because the user 
does not have read access to the file. The analysis stops 
(after reading the rest of the assertion files, if any).

Assertion file is not a text file. Problem The assertion file could not be read because it seems 
not to be a text file (it may be a directory or some other 
special kind of file). The analysis stops (after reading 
the rest of the assertion files, if any).

Assertion file was not found. Problem The assertion file could not be opened because it seems 
not to exist. The analysis stops (after reading the rest of 
the assertion files, if any).

“at” or “on” after “exactly” expected, 
at "T "

Problem When a Source_Position starts with the keyword exactly 
it must continue with either of the keywords at or on, 
instead of the token T. See section 5.2 (page 79).

Base-point is in “B”, not in “F”. Problem This Source_Point defines the source-line number in the 
form line offset offset in file “F ”. However, the base-
point, as defined by the containing subprogram, lies in 
a source-code file with the different name B. It is not 
possible to move from file B to file F by adding an offset 
to the base-point line number.

Solution Change the assertion so that the file-names are the 
same, or remove the part in file “F ” if it is unnecessary.

Bound expected, at "T " Problem The assertion file should have a bound here, instead of 
the token T. See the nonterminal Bound in section 5.2 
(page 78).

“call” after “end” expected, at “T ” Problem The keyword call should here follow the keyword end. 
See the nonterminal Call_Block in section 5.8.

Call or loop description expected, at 
“T ”

Problem When describing a loop by what it contains, the key-
word contains and the possible Count should be 
followed by a Call_Description or a Loop_Description or a 
Source_Position. The actual token T is none of these. See 
the nonterminal Basic_Loop_Property in section 5.7.

Call properties expected, at “T ” Problem The assertion file should have a call property here, 
instead of the token T. See the nonterminal 
Call_Property in section 5.8.

Calls do not have the “defines” 
property.

Problem The assertion file tries to use the defines keyword to 
identify a call. This property is not yet supported for 
calls.

Calls do not have the “uses” property. Problem The assertion file tries to use the uses keyword to 
identify a call. This property is not yet supported for 
calls.

Cannot assert callees for a static call. Problem The assertion file tries to assert the possible callees for 
a static call, which is nonsense. In other words, there is 
a Callee_Bound in a Call_Block for a static call.
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Error message Meaning and remedy

Clause expected, at “T ” Problem The assertion file should have an assertion clause  here, 
instead of the token T. See the nonterminal Clause in 
section 5.10.

Clause or “end call” expected, at “T ” Problem The assertion file should have an assertion clause here, 
or the  end call  keywords,  instead of the token T. See 
the nonterminals Clause in section 5.10 and Call_Block 
in section 5.8.

Clause or “end instruction” expected, 
at “T ”

Problem The assertion file should have an assertion clause here, 
or the  end instruction  keywords,  instead of the 
token T. See the nonterminals Clause in section 5.10 
and Instruction_Block in section 5.9.

Clause or “end loop” expected, at “T ” Problem The assertion file should have an assertion clause here, 
or the end loop keywords,  instead of the token T. See 
the nonterminals Clause in section 5.10 and Loop_Block 
in section 5.7.

Closing parenthesis after call or loop 
expected, at “T ”

Problem A call or loop description that is enclosed in paren-
theses should be closed by a ‘)’, instead of the token T. 
See the nonterminals Other_Call  and Other_Loop in 
section 5.7.

Closing parenthesis after parameters 
expected, at “T ”

Problem The assertions on subprogram parameters should be 
followed by a ‘)’, instead of the token T. 
See the nonterminal Sub_Block in section 5.6.

Closing parenthesis expected, at “T ” Problem This assertion describes a call or a loop as being con-
tained in another loop which is described by its proper-
ties enclosed in parentheses. However, the closing 
parenthesis ')' seems to be missing; it was expected at 
this point but the token T was found instead. See the 
nonterminal Other_Loop in section 5.7.

Context defines no source file for line 
number.

Problem This global assertion describes its context by a 
Source_Position that gives a source-line line number but 
does not have a Source_File part to give the name of the 
source-code file. A global assertion must also give the 
source-file name.

Context provides no base for code 
offset

Problem 1. A loop description uses the property “executes offset 
code-offset” but the subprogram that contains the loop 
is not specified so there is no base address for the 
offset. In other words, the description is in a Loop_Block 
that is a Global_Bound.

2. An instruction block identifies the instruction by an 
offset, but the subprogram that contains the instruction 
is not specified so there is no base address for the 
offset. In other words, the instruction block is a 
Global_Bound.

Context provides no base for line-
number offset.

Problem This global assertion describes its context by a 
Source_Line of the form line offset. However, the line 
offset form can be used only in a Subprogram_Block 
because the subprogram defines the base line-number 
to which the offset is added. See section 5.2 (page 79).

“cycles” expected, at “T ” Problem This execution-time assertion should have the keyword 
cycles, instead of the token T, after the asserted 
execution time. It should be "time N cycles".
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Error message Meaning and remedy

Dynamic call cannot have “call to”
or
Dynamic call cannot have “call_to”.

Problem The assertion describes a call that is dynamic but is also 
a call to a named callee, which is an impossible 
combination.

“end call” expected, at “T ” Problem The present Call_Block should end with end call, instead 
of the token T.

“end loop” expected, at “T ” Problem The present Loop_Block should end with end loop, 
instead of the token T.

“exactly”, “at”, “on”,  “after” or 
“before” expected, at “T ”

Problem A Source_Position should start with one of the keywords 
listed in the message, instead of the token T. 
See section 5.2 (page 79).

Execution time bounds for a loop are 
not allowed.

Problem The assertion file tries to assert the time for a loop. This 
assertion is not supported for loops, only for sub-
programs and calls.

Execution time bounds for an 
instruction are not allowed.

Problem The assertion file tries to assert the time for an instruc-
tion. This assertion is not supported for instructions, 
only for subprograms and calls.

Execution time bounds for the 
program are not allowed.

Problem The assertion file tries to assert the time as a global fact. 
This assertion is not supported in the global context, 
only for subprograms and calls.

Execution time bounds not allowed in 
this context.

Problem The assertion file tries to assert the time in a context 
where time facts are not supported.

Final height of stable stack must be 
zero: S

Problem This Stack_Bound clause contains a final stack-height 
assertion that allows a non-zero value. This is a 
contradiction because this stack, named S, is known to 
Bound-T as a “stable” stack, where the final height is 
always zero.

Reasons Perhaps a change in the compilation options for the 
target program, or in the command-line options for 
Bound-T, have changed the stack to be classed as 
“stable” instead of “unstable”.

Solution If the stack really is stable, the assertion is redundant; 
remove it. If the stack should be classed as unstable, 
refer to the Application Notes for your target processor 
to understand why it is classed as stable.

“for” after “enough” expected, at “T ” Problem The keyword for is expected after the keyword enough, 
to form the assertion enough for time. See section 2.17 
and section 5.2 (page 83).

“instruction” after “end” expected, at 
“T ”

Problem The keyword instruction should here follow the keyword 
end, while the actual token is T. See the nonterminal 
Instruction_Block in section 5.9.

“instruction” expected, at “T ” Problem At this point in the syntax, the keyword instruction 
should appear instead of the token T.

Instruction role "R" ("L") not 
recognized.

Problem The instruction role-name R used in this Role_Bound 
assertion is not one of the role names defined for the 
present target processor, even in the "normalized" form 
L.

Solution The Application Note for this target defines the known 
role-names. Correct the assertion accordingly.

Integer value expected, at “T ” Problem The assertion file should have an integer literal here, 
instead of the token T.
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Integrated analysis cannot be negated. Problem The assertion tries to negate (disable) integrated 
analysis of a subprogram; this is not possible.

Solution Non-integrated analysis is the default, so remove the 
assertion as redundant. See section 5.6.

“invariant” expected, at “T ” Problem At this point in the syntax, the keyword invariant should 
appear instead of the token T.

Label not found: L Problem The assertion file names a label L but the target 
program's symbol table does not have a statement label 
named L in this scope.

Reasons The name L may be mistyped; if the default scope is 
used perhaps another scope should be named explicitly; 
or the target compiler may have mangled the names.

Solution Check for typos. Check the target program's symbol 
table using eg. -trace symbols or by dumping the file.

“line” or “marker” expected, at “T ” Problem At this point in the Source_Position part of an assertion 
one of the keywords line or marker is expected (to start a 
Source_Line structure), instead of the token T.

"loop" after "end" expected, at “T ” Problem The keyword loop should here follow the keyword end. 
See the nonterminal Loop_Block in section 5.7.

Loop description expected, at “T ” Problem A loop description is expected here, instead of the token 
T. See the nonterminal Loop_Description in section 5.7.

Loop or call expected, at “T ” Problem A loop-block or call-block is expected here, instead of 
the token T. See the nonterminals Loop_Block in 
section 5.7 and Call_Block in section 5.8.

Loop property expected, at “T ” Problem The assertion file should here have a loop property, 
instead of the token T. See the nonterminals 
Loop_Property and Loop_Properties in section 5.7.

Mismatched subprogram identifier 
“S ” after “end”

followed by

“N ” expected, at “T ”

Problem The subprogram identifier S after the final end of a 
Sub_Block does not match the identifier N given at the 
start of the block.

This message is followed by another error message that 
shows the expected identifier N.

Must include non-negative
numbers : range

Problem The Bound in this Repetition_Bound or Start_Bound allows 
only negative numbers, as shown in the range. The 
number of times a loop starts or repeats, or the number 
of times a call or instruction is executed, cannot be 
negative, so this assertion makes no sense.

"normally" or "[to] offset" expected, at 
“T ”

Problem In this Sub_Option the keyword repeat (or repeats) is 
followed by an unacceptable token T.

Numbers are too large : min .. max Problem The lower-bound min and/or upper-bound max in this 
Repetition_Bound are too large; Bound-T cannot handle 
so large execution counts.

Solution Use smaller numbers. Tell Tidorum about the problem.

"offset" expected, at “T ” Problem In this Sub_Option the keywords repeat (or repeats) and 
to are not followed by the offset keyword, as required by 
the syntax for return to offset.

“performs” expected, at “T ” Problem At this point in the syntax, the keyword performs should 
appear instead of the token T.
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Properties are not allowed for this 
call.

Problem This Other_Call structure is not enclosed in parentheses 
and therefore it cannot include a list of Call_Properties. 
See section 5.7.

Solution Add parentheses around the Other_Call, thus allowing a 
full Call_Description.

Properties are not allowed for this 
loop.

Problem This Other_Loop structure is not enclosed in parentheses 
and therefore it cannot include a list of Loop_Properties. 
See section 5.7.

Solution Add parentheses around the Other_Loop, thus allowing a 
full Loop_Description.

Property bounds for an instruction are 
not implemented.

Problem The assertion tries to assert bounds on a target-specific 
property at an instruction (in an Instruction_Block). This 
assertion is not implemented for instructions.

“property” expected, at “T ” Problem At this point in the syntax, the keyword property should 
appear instead of the token T.

Quoted character expected , at “T ” Problem The assertion file should have a character in single 
quotes  here (‘c’), instead of the token T.

Quoted string expected , at “T ” Problem The assertion file should have a string in double quotes 
here (“string”), instead of the token T.

“range” expected, at “T ” Problem At this point in the syntax, the keyword range should 
appear instead of the token T.

Repetition bounds not allowed in this 
context

Problem The assertion file contains an assertion on execution 
count (repeats N times) for a context where that is not 
allowed, such as a subprogram context. This assertion 
is allowed only for loops, calls, and instructions.

Role bounds ("performs") apply only 
to instructions

Problem This Role_Bound fact is not in an instruction context.

Roles can be asserted only for 
instructions

Problem This Role_Bound fact is not in an instruction context.

Semicolon after callees expected, 
at “T ”

Problem The list of callee subprograms in a Callee_Bound 
(section 5.19) should be followed by a semicolon, 
instead of the token T.

Semicolon after “end call” expected, 
at “T ”

Problem The keywords end call should be followed by a 
semicolon, instead of the token T.

Semicolon after “end instruction” 
expected, at “T ”

Problem The keywords end instruction should be followed by a 
semicolon, instead of the token T.

Semicolon after “end loop” expected, 
at “T ”

Problem The keywords end loop should be followed by a 
semicolon, instead of the token T.

Semicolon after “end subprogram” 
expected, at “T ”.

Problem A subprogram block lacks the terminating semicolon. 
Instead, the next token is T.

Semicolon after global bound 
expected, at “T”

Problem An assertion (on the values of a variable or a property)  
in the global context lacks the terminating semicolon. 
Instead, the next token is T.

Semicolon after subprogram option 
expected, at “T ”

Problem A subprogram option lacks the terminating semicolon. 
Instead, the next token is T.

Semicolon after volatility assertion 
expected, at “T ”

Problem A volatility assertion lacks the terminating semicolon. 
Instead, the next token is T.
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Semicolon expected after clause, 
at “T ”

Problem An assertion clause lacks the terminating semicolon. 
Instead, the next token is T.

Stack #n: name Problem This message follows an error message of the form “The 
program has no stack named S” and shows the actual 
name of stack number n in this target program.

Stack bounds for a loop are not 
allowed.

Problem The assertion tries to assert stack bounds for a loop. 
This assertion is not allowed for loops, only for 
subprograms.

Stack bounds for an instruction are 
not allowed.

Problem The assertion tries to assert stack bounds for an 
instruction. This assertion is not allowed for 
instructions, only for subprograms.

Stack bounds for the program are not 
allowed.

Problem The assertion file tries to assert the stack usage or final 
stack height as a global fact. This assertion is not sup-
ported in the global context, only for subprograms.

Stack bounds not allowed in this 
context.

Problem The assertion file tries to assert stack bounds in a 
context where such facts are not supported.

Stack-name required Problem The program has more than one stack, but this 
Stack_Bound clause does not name the stack to which 
the assertions apply.

Reasons Mistake in the assertion file, or a change in the 
compilation options or the structure of the target 
program that makes it use more than one stack.

Solution Add the stack name. The Application Note for your 
target processor shows the applicable stack names.

Start bounds apply only to loops. Problem The assertion tries to assert Start_Bounds in a context 
where they are not allowed. Start_Bounds can appear 
only for a loop, in a Loop_Block.

Subprogram address is invalid Problem An assertion tries to identy a subprogram by giving its 
(entry) address, but the address string is not in the  
proper form for this target processor. The invalid 
address string is shown in output field 4.

Solution Refer to the Application Note for your target processor 
and write the entry address in the proper form.

“subprogram” expected, at “T ” Problem At this point in the syntax, the keyword subprogram 
should appear instead of the token T.

Subprogram name expected, at “T ” Problem The assertion file should have a subprogram name (or 
address) here, in double quotes, instead of the token T.

Text at or after column C not 
understood: “T ”

Problem The text at or after column C on the current line in the 
assertion file is not a valid lexical “token” of the 
assertion language. The string T contains (part of) this 
text.

The cells C and D do not define a 
range

Problem This volatility assertion on an address range is 
erroneous, because the two variable_address values 
given for the lower and upper bounds are not 
compatible (for example, they lie in different address 
spaces) and cannot be used to delimit a range of 
addresses. The cell-names C and D show the 
interpretation of the lower and upper address bound, 
respectively, using the target-specific names for storage 
cells.
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The integer literal “n” is not a valid 
number

Problem The digit string n is not a valid number for some 
reason. Perhaps it has too many digits for the integer 
type that Bound-T uses for asserted numbers.

The number n is not a valid source-
line number or offset.

Problem If this Source_Line is of the form line n, the number n is 
zero or negative and thus invalid as a source-line 
number.

If this Source_Line is of the form line offset offset, the 
sum n of the base line number (from the containing 
subprogram) and the offset is zero or negative and thus 
invalid as a source-line number.

The “omit” property cannot be 
negated

Problem A Sub_Option structure (section 5.6) uses the keyword 
omit and the keyword not in a combination that says 
that the subprogram in question is “not omitted”.

Solution Not being omitted is the default condition for any 
subprogram, so remove the assertion as redundant.

The program has no stack named S Problem The stack name S given in this Stack_Bound clause does 
not match the name of any stack in the target program.

This message is followed by informative error messages 
of the form “Stack #n: name” to show the names of the 
stacks that do exist in this target program.

Reasons Mistyped stack name, or a change in the compilation 
options such that the program no longer uses this stack.

Solution Refer to the Application Notes for your target processor 
to check the stack name.

The program has no stacks Problem The target program has no stacks (at all), so this 
Stack_Bound clause is not applicable.

Reasons Perhaps a change in the compilation options such that 
the program no longer uses any stacks (that Bound-T 
knows of).

Solution Refer to the Application Notes for your target 
processor. 

The “unused” property cannot be 
negated

or

The “used” property cannot be 
asserted

Problem A Sub_Option structure (section 5.6) uses the keywords 
used or unused and perhaps also the keyword not in a 
combination that says that the subprogram in question 
is “not unused”.

Solution Being used is the default condition for any subprogram, 
so remove the assertion as redundant.

“time” expected, at “T ” Problem The keyword time is expected after the keyword for, to 
form the assertion enough for time. See section 2.17.

"times" expected, at “T ” Problem This execution-count assertion should have the key-
word times (or time) instead of the token T, after the 
asserted execution time. It should be repeats N times.

Unrecognized property name: P Problem The assertion file names a target-specific "property" P 
but there is no such property for this target processor.

Solution Check the target-specific Application Note for the 
names of the properties for this processor.

“usage” or “final” expected, at “T ” Problem One of the keywords usage or final is expected in this 
Stack_Value, instead of the token T.
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Variable bounds for an instruction are 
not implemented.

Problem The assertion tries to assert bounds on a variable at an 
instruction (in an Instruction_Block). This assertion is not 
implemented for instructions.

“variable” expected, at “T ” Problem At this point in the syntax, the keyword variable should 
appear instead of the token T.

Variable invariance for an instruction 
is not implemented.

Problem The assertion tries to assert that a variable is invariant 
at an instruction (in an Instruction_Block). This assertion 
is not implemented for instructions.

Variable not found: V Problem The assertion file names a variable V, but the target 
program’s symbol table does not have a variable named 
V (in the implicit or explicit scope).

Reasons The name V may be mistyped; if the default scope is 
used perhaps another should be named explicitly; or 
the target compiler may have mangled the names.

Solution Check for typos. Check the target program’s symbol 
table using eg. -trace symbols or by dumping the file.

Variable “V” is ambiguous Problem The assertion file names a variable V, but the target 
program’s symbol table lists several variables named V 
(in the implicit or explicit scope).

Reasons Perhaps some of these variable are local variables 
(declared in local scopes) but match the name V 
because the assertion does not define the scope of the 
variable.

Solution Add scope to the variable name in the assertion. Check 
the target program’s symbol table using eg. -trace 
symbols or by dumping the file.

Variable name expected, at “T ” Problem The assertion file should here have the name (or 
address) of a variable, instead of the token T.

Variable name or "range" expected, at 
“T ”

Problem At this point in this volatility assertion, there should be 
the name (or address) of a variable, or the keyword 
range, instead of the token T.

Void bounds on stack final height 
ignored

Problem The assertion bounds the final stack height to a void 
(null, empty) range. This is a contradiction. Bound-T 
ignores the assertion.

Void bounds on stack usage ignored Problem The assertion bounds the stack usage to a void (null, 
empty) range. This is a contradiction. Bound-T ignores 
the assertion.

“volatile” expected, at “T ” Problem At this point in the syntax, the keyword volatile should 
appear instead of the token T.
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