Bound-T timing analysis tool

User Manual

Version 6.1

2007-10-31 Tidorum Ltd.

Tidorum Ltd
www.tidorum.fi
Tiirasaarentie 32
FI-00200 Helsinki
Finland

This document was written at Space Systems Finland Ltd by Niklas Holsti,
Thomas Langbacka and Sami Saarinen.
The document is currently maintained at Tidorum Ltd by Niklas Holsti.

Copyright 2005 - 2007 Tidorum Ltd.

This document can be copied and distributed freely, in any format or medium, provided that it is kept
entire, with no deletions, insertions or changes, and that this copyright notice is included, prominently
displayed, and made applicable to all copies.

Document reference: TR-UM-001

Document issue: Version 6.1

Document issue date: 2007-10-31

Bound-T version: 3

Web location: http://www.bound-t.com/user-manual.pdf
Trademarks:

Bound-T is a trademark of Tidorum Ltd.

Credits:
This document was created with the free OpenOffice.org software, http://www.openoffice.org/.

Preface

The information in this document is believed to be complete and accurate when the document
is issued. However, Tidorum Ltd. reserves the right to make future changes in the technical
specifications of the product Bound-T described here. For the most recent version of this
document, please refer to the web-site http://www.tidorum.fi/.

If you have comments or questions on this document or the product, they are welcome via
electronic mail to the address info@tidorum.fi or via telephone or ordinary mail to the
address given below.

Please note that our office is located in the time-zone GMT + 2 hours, and office hours are
9:00 - 16:00 local time. In summer daylight savings time makes the local time equal GMT + 3
hours.

Cordially,

Tidorum Ltd.

Telephone: +358 (0) 40 563 9186

Web: http://www.tidorum.fi/

E-mail: info@tidorum.fi

Mail: Tiirasaarentie 32
FI-00200 Helsinki
Finland

Credits

The Bound-T tool was first developed by Space Systems Finland Ltd. (http://www.ssf.fi/) with
support from the European Space Agency (ESA/ESTEC). Free software has played an
important role; we are grateful to Ada Core Technology for the Gnat compiler, to William Pugh
and his group at the University of Maryland for the Omega system, to Michel Berkelaar for the
Ip-solve program, to Mats Weber and EPFL-DI-LGL for Ada component libraries, and to Ted
Dennison for the OpenToken package. Call-graphs and flow-graphs from Bound-T are displayed
with the dot tool from AT&T Bell Laboratories.

iii

Contents

1

INTRODUCTION 1
1.1 What BOUNA-T IS. ettt ea e eaas 1
1.2 Overview of this User Manual..........ccoiiiiiiiiii e 3
1.3 Target-Specific Application NOtES.......ccciiiiiii 4
1.4 Hard Real Time Programming Model...........ccooiiiiiiiiiii e 5
INSTALLING BOUND-T 6
2.1 Delivery Medium and INStruCtioNS.......covvv i 6
2.2 Disk Space ReqUIremMENES. 6
2.3 Processor and Memory ReqUIremMeNntS.o 6
2.4 Host-Specific Usage INStrUCtioONS. ..o 6
2.5 Verifying the Installation........coo i 6
USING BOUND-T 7
3 L PN A i S i 7
3.2 RUNNING BOUNG-T i e e e e e e eaees 7
3.3 EaSY EXAMPIES 1 LOOPS ittt ettt 8
3.4 Larger EXamples 1 Calls. ... 10
3.5 Harder EXamples : ASSEItiONS......ccu i 11
3.6 What BoOUNA-T Can DO.....iuuiiiiiiiiiiiec ettt e e e 13
3.7 What Bound-T Cannot DO.....cuiiiiiiieei i e e e e 14
3.8 APPIOXIMAtiONS. e it 17
3.9 Context-Dependent Execution BOUNAS........cccoviviiiiiiiiiiiiiiiee e, 18
3.10 Getting Started With a Real Program.........ccciiiiiiiiiiii e 27
3.11 Stack Usage ANalYSiS. ...t 28
WRITING ANALYSABLE PROGRAMS 33
s R YL o YA 1 o o I o P 33
4.2 COUNE TNE LOOPS. . ciiiiieie ittt e e e e e e ees 33
4.3 Simple Steps and Limits. ..o 35
4.4 First Degree FOMMUIGS. ... e 35
4.5 Sign YOUr Variables. ... 36
4.6 GO NAUIVE DY BitS..cu it e 36
4.7 Aliasing, Indirection, POINtErs.o 37
4.8 SWILCH T0 IS . e 37
4.9 No Pointing at FUNCHLIONS.cuiiii e 37
WRITING ASSERTIONS 39
5.1 What ASSertiONS Al i 39
5.2 Assertion = Context + FacCt. ... 40
5.3 Assertions on the Repetition of LOOPS.......oovviiiiiiiiiiii e 42
5.4 Assertions on the Execution Count of Calls.........ccooiiiiii, 44
5.5 Assertions on the Execution Time of a Subprogram...........cc.cooiiiiiiiinn. 47
5.6 Assertions on the Execution Time of @ Call.........ccooviiiiiiiiii e, 47
5.7 Assertions on the Callees of a Dynamic Call..........ccooviiiiiiiiiiii e, 49
5.8 Assertions on Variable Values...........cooiiiiiiiii e 50
5.9 Assertions on Variable INnvVarianCe........ccooiiiiiiiii 54

iv

10

5.10 ASSertions 0N Properti@s. ...
5.11 Special Assertions 0N SUDPrOgramS.......vvuiiiiiiiir e
5.12 Scopes and Qualified Names.cou i
5.13 NamMiNg SUDPIOGIamMS. ... it ea e eanes
5.14 Naming Variables.o
5.15 Identifying LOOPS. .. iuiiii e
5.16 1dentifying Calls......coiiiii e
5.17 Handling Eternal LOOPS. iiuuiiiiiiiieei et e e
5.18 Handling RECUISION.....cuiiit e e e eaas

THE BOUND-T COMMAND LINE

B.1 BaASIiC FO M
0.2 SPECIAI FOIMIS. et e
6.3 Options Grouped by FUNCLION......ccoiii e
6.4 Options in AlphabetiC Order... ..o e
6.5 Optional ANalysis Parts........coieuiiiiiic e
6.6 PatCh files. ... i

UNDERSTANDING BOUND-T OUTPUTS

7.1 ChoiCe Of OULPULS. .ccu it eeas
7.2 Basic OULPUL FOrmat. ..o
7.3 List of Unbounded Program PartsS........cccooiiiiiiiiiiii e,
7.4 Tabular OULPUL. ...
7.5 Detailed OULPUL. ... e
/2 ST 10 I B = 1LY T T =

ASSERTION LANGUAGE SYNTAX AND MEANING

8.1 INErOAUCTION. .ce et
8.2 ASSertion SYNEaX BasSiCS. ..o
B3 S0P i it ittt
8.4 GlODAl BOUNGS. ...uuiiiiiiie e
ST TS YU o] o] foTe | =T o o TP
S T T I o T o 1= PP PR
8.7 Al
8.8 Clauses and FaCls ...
8.9 Execution TiMe BOUNGAS. ... e
8.10 Repetition BOUNGS.o et
8.11 Variable BOUNGS.......ooiiiieiiii e e
8.12 Variable INVarianCe......oou et
8.13 Property BOUNGS.t
8.14 Calle@ BOUNGS.uieiiii ettt ettt e e e e e e e e e e e eneees
8.15 ComMDbBINING ASSEITIONS.t
8.16 Error Messages from the Assertion Parser........ccccoveiiiiiiiiiiincc e

TROUBLESHOOTING

9.1 Bound-T Warning MESSAgES. . .cuuiuiiiii i e et e e e e e e e eaee
9.2 BOUNA-T ErrOr MESSagES. .u ittt iii et e et e e e e e e e e e e e e e aneae e

GLOSSARY

129

129
129
132
133
133
135
137
138
139
140
145
147
148
149
149
152

157

157
168

180

Tables

Table 1: Example of suffix contexts and full CONTEXLS........cceivrriiiiiriiriiiiiieeiiiiieeeeerireee e eriireeee e 21
Table 2: CommMAand-line OPTIONS. . ccciiiirriiiiiiiieeeeeeeeiiitieeee e et e e e e ettt eeeeeeesssanbreeeeeeeesessssnnssaeeeeens 83
Table 3: Options for all ATAWINIES.......ccivriuiiiiiiiiiee ettt ettt e e st e e s s sbaeeessabbaeeensaraeeesans 89
Table 4: Options for call-graph drawings..........cooeuueeriiieiriiiinieee e e 90
Table 5: Options for choosing subprograms for flow-graph drawings...........ccccceevvieerirniieeinnieeeennane 90
Table 6: Options for choosing the flow-graphs to be drawn..........cccceeveviiiieeiiiiiiiiieeeeieeeeeeeee 90
Table 7: Options for flow-graph drawings...........coeeeueeiriiiiiiiiieiee e e 91
Table 8: Options for the constant-propagation PRASE.........cccuveeeeerriuireeeerriiiiieeeeeriireeeeesseereeeesssnnns 91
Table 9: File names for auxiliary program files...........ccceovuieriieiniieiniieeiieeeeeeeeee e 92
Table 10: Options for detailed OULPUL......ccevcuuiiiirriiieeeeitee et eire e e e sbre e e e s sabreeeessabeeeeesnnne 92
Table 11: OPtions fOr trACITIG.....ceiieriuriieieeiiiteeeeiittee e eritee e ettt e e e s rbeteeessbbteeesssssbeeeessanseeessssseaeesannns 93
Table 12: OPtions fOr WaITHIES.cceerrurreeerriiiieeeriiiteeeriiteeeerireeessrteeesssseeessssseessnssseessssssseessssseeeensnns 95
Table 13: Options for virtual function CallS..........ccoeecuiiiiiriiiiieiiiiiiee et e e e e e seee e 96
Table 14: Basic OUtPUL fOIMIALS.ueiiiieieiieeiiieeeiee ettt est e e sttt e et e e eaneeeseaeee e s bt e e emreeeenneenans 104
Table 15: Tabular OULPUL EXAMPLE. ...ccceiiiiririiiiiiiieeeeeeeeeeeteeee e e e e e e e e et eeeeeeeeeeeesssaaaeseseaeeeees 113
Table 16: Meaning Of lOOP PrOPEITIES.cuuiirruiiieieiiiieeeerttee e eriteeeeerieeeessstareeesssabaeeessssnaeesesnes 136
Table 17: Meaning of Call PIrOPETLIES.ccc.utiritiiriiiieiteeiteeetee ettt et e st e e e e n e sneee e 138
Table 18: Fact and context COMbDINAtIONS.ceiiiiiiiiiiiiiiiiiiiiiee et e e 138
Table 19: Meaning of eXecution time aSSEITiON.c.ccueeeruueerrieerriteerteeeieeeereeesireesrreeesreeeireesneeens 139
Table 20: Meaning of repetition COUNE ASSEITION.c.ueerrurreeruieeriiieeeiieeerieeeereeesireesreeesreeeireesneeens 140
Table 21: Meaning of variable value assertion.........ccccceerrueeerieeriiienieeniieeeitee st eeieee e 146
Table 22: Meaning of variable invariance assertion..........cccocueeevueeeisieeenieeiniee e 148
Table 23: Meaning of property value aSSEItiON.........cecvuuieeirriurreeeriiirieeerniireeessnrreeesssseeeeesssnseeessnnes 149
Table 24: Effect of multiple assertions on the same ftem.........coccuueeriieieiiierniieniieeeeceeeeeeeae 149
Table 25: ASSEItiON €ITOT IIESSAZES. .. .uuvrreeeerrerrriuirrreeeeeeeaaaiierereeeeessesssnreteeeeeesssssnsssreeeeesssnssnsnseeees 152
Table 26: Warning MeSSAZES. ..cccecuutttiiiiiiieiiiitiet ittt et ettt e e ettt et ettt e s seraeeesenbreeeessnsreeeessnnsneesennns 157
Table 27: EITOT IESSAZES. ..ccceeuurttiiiiiiietiiiiieee et ee e et te e sttt e e et bee e e ebrbeeeesnsbeeeesnsbeeeeesnnneeeeennns 168
Figures

Figure 1: INPULS aNd OULPULS. ..eettttiiiiiieiiiiiiiiteeeee et ee e e ettt et et ee e e e e e e sabbbeeeeeeeeeesesssssannsssreeeeaeeeeeenenns 3
Figure 2: Example of calls and call Paths..........cccuuiiiiiiiiiiiiiiiiiieeniieeeeriee et ee e e e e sinee e s 20
Figure 3: AN aSSeItion file......cccueiiiiiiiiiiiiiiieeee ettt ettt e st 41
Figure 4: Longest call path in recursion eXample...........ccooevueiiiiiiiiiiiieiiiiiieeeeeeeee e 76
Figure 5: Call-graph for example of tabular OULPUL........cuuveeiiriiiiiieeiiiieee e e sieee e 112
Figure 6: Example non-recursive call Sraph.........coooviiiiiiiiiiiiiiiiiiieieeecieeeee e 125
Figure 7: Example recursive call @raph........cccccciiiiiiiiiiiiiiiiiiiiiecctec e 126
Figure 8: Example control-flow graph........coocueiiiiiiiiiiiiiiiiieiceeee et 127
Figure 9: Example control-flow graph with call.........ccccooiiiiiiiiiiiiiee e 128
Figure 10: A 10Op in @ flOW-ZTaph....ccoueiiiiiiiiiieiieee ettt s 142
Figure 11: A general kind of loop asserted to repeat 6 times..........cceeevueereueeenieenneeenieeeenieenneeenns 143
Figure 12: A middle-exit loop asserted to repeat 6 times........cc.eeeeeeeiriiiieeeeiiniiiiieeeeeeeeiieeeee e 143
Figure 13: An exit-at-end loop asserted to repeat 6 times.......cc.cevuvreeeiiriiiieeeiiniiiiieeeeerieeee e 144

vi

1

1.1

INTRODUCTION

What Bound-T Is

Bound-T is a tool for developing real-time software - computer programs that must run fast
enough, without fail.

The main function of Bound-T is to compute an upper bound on the worst-case execution time of
a program or subprogram.

The function, “bound time”, inspired the name “Bound-T” pronounced as “bounty” or “bound-

”

tee”.

Real-time deadlines

A major difficulty in real-time programming is to verify that the program meets its run-time
timing constraints, for example the maximum time allowed for reacting to interrupts, or to
finish some computation.

Bound-T helps to answer questions such as

« What is the maximum possible execution time of this interrupt handler? Is it less than the
required response time?

+ How long does it take to filter a block of input data? Will it be ready before the output
buffer is drained?

To answer such questions, you can use Bound-T to compute an upper bound on the execution
time of the subprogram concerned. If the subprogram cannot be interrupted by other
computations, and this upper bound is less or equal to the time allowed for the subprogram,
we know for sure that the subprogram will always finish in time.

When the program is concurrent (multi-threaded), with several threads or tasks interrupting
one another, the execution time bounds for each thread can be combined to verify the timing
(schedulability) of the program as a whole.

Static analysis - all cases covered

Timing constraints are traditionally addressed by measuring the execution time of a set of test
cases. However, it is often hard to be sure that the case with the largest possible execution time
is tested. In contrast, Bound-T analyses the program code statically and considers all possible
cases or paths of execution. Bound-T bounds are sure to contain the worst case.

Static analysis - no hardware required

Since Bound-T analyses rather than executes the target program, target-processor hardware is
not required. With the Bound-T approach, timing constraints can be verified without
complicated test harnesses, environment simulations or other tools that you would need for
really running the target program.

Of course, thorough software-development processes should include testing, but with Bound-T
the timing can be verified early, before the full test environment becomes available. In many
embedded-system development projects the hardware is not available until late in the project,
but Bound-T can be used as soon as some parts of the embedded target program are written.

Bound-T User Manual Introduction 1

It’s impossible, but we do it with assertions

The task Bound-T tries to solve is generally impossible to automate fully. Finding out how
quickly the target program will finish is harder than finding out if it will ever finish — the
famously unsolvable “halting problem”. For brevity and clarity, this manual generally omits to
mention the possibility of unsolvable cases. So, when we say that Bound-T will do such and
such, it is always with the implied assumption that the problem is analysable and solvable with
the algorithms currently implemented in Bound-T.

For difficult target programs, the user can always control and support Bound-T s automatic
analysis by giving assertions. An assertion is a statement about the target program that the user
knows to be true and that bounds some crucial aspect of the program's behaviour, for example
the maximum number of a times a certain loop is repeated.

Approximations

Also bear in mind that Bound-T produces an upper bound for the execution time, which may
be different from the exact worst-case time. Various approximations in Bound-T's analysis
algorithms may give over-estimated, too conservative bounds. However, the bounds can be
sharpened by suitable assertions.

These cautions and remedies are discussed in more detail later in this manual.

Context and place

The figure below illustrates the context in which Bound-T is used. The inputs are the compiled,
linked executable target program and an optional file of assertions plus command-line
arguments and options (not shown in the figure). The outputs are the bounds on execution
time and stack usage (optional), as well as control-flow graphs and call graphs (also optional).

Introduction Bound-T User Manual

Libraries

Source code
Kernel

Compiler & linker

Static analysis:

- Decode instructions

- Trace control flow

- Trace subprogram calls
- Find loop bounds

- Find worst-case path

User assertions
on loop bounds,
variable values,
call counts, etc.

Bound-T

Enter Foo() ,
- Main 9352
Main . Foo 121
Count 105
Solve 9207
Count 303
| FOO | | SOlVe | a 5 Ones 721
Y
Count Ones
Return
Flow graphs Call graphs Execution time bounds

Stack usage bounds

Figure 1: Inputs and outputs

Overview of this User Manual

What the reader should know

This User Manual is intended to explain what Bound-T can do and how Bound-T is used. The
reader is assumed to know how to program in some common procedural (imperative)
language, such as C or Ada. Familiarity with real-time and embedded systems is an advantage.
Most examples in the manual are presented in C, but Bound-T is independent of the
programming language, since it works on the executable machine code.

Bound-T User Manual Introduction 3

1.3

Target program, target processor

To use Bound-T effectively, the user must also know the structure of the target program - the
program being analysed. In some cases, the user also needs to understand the architecture of
the target processor that will run the target program.

User guide

The rest of this manual consists of two parts: a user guide that introduces Bound-T in a tutorial
and informal way, and a reference manual that explains all the details.

The user guide is organised into chapters as follows:

+ Installing Bound-T is explained in Chapter 2. The computer on which Bound-T is installed
and used is known as the host computer, and it may be quite different from the target
computer on which the target program runs or will run.

+ Using Bound-T is explained in Chapter 3, in a tutorial style that introduces the basic
methods, options and results. The next-to-last section tells how to get started with the
analysis of a real program and the last section explains stack-usage analysis.

« Chapter 4 suggests how to write programs that Bound-T can analyse.
+ Chapter 5 shows how to write assertions to control and support Bound-T.

You may also have use for the glossary in Chapter 10.

Reference manual

The reference manual part of this document contains the following chapters:

+ Chapter 6 lists and explains all command-line options and arguments for Bound-T.
+ Chapter 7 explains all the outputs from Bound-T.

+ Chapter 8 defines the syntax and meaning of the assertion language.

« Chapter 9 lists all warning messages and error messages, with explanations and advice on
solving the problems.

+ A glossary of terms in Chapter 10 concludes the manual.

Target-Specific Application Notes

Target processors

Bound-T is available for several target processors, with a specific version of Bound-T for each
processor. All Bound-T versions are used in the same general way as explained in this User
Manual. Additional information for specific targets is provided in separate Bound-T Application
Notes.

Please refer to http://www.bound-t.com/app_notes for a list of the currently supported target
processors and Application Notes.

Introduction Bound-T User Manual

1.4

Languages, compilers, kernels

Bound-T is largely independent of the programming language and execution environment of
the target program. When necessary, separate Bound-T Application Notes advise on using
Bound-T with specific target languages, compilers, real-time kernels or target operating
systems.

Please refer to http://www.bound-t.com/app notes for the currently available Application
Notes.

Hard Real Time Programming Model

Execution Skeletons to order

Bound-T contains special high-level support for target programs that follow the Hard-Real-Time
(HRT) programming model, an architectural style for concurrent, real-time programs originally
defined by the European Space Agency.

For an HRT program, Bound-T can generate so-called execution skeletons with detailed worst-
case execution-time information as required by HRT schedulability analysis.

It's optional

Using Bound-T's HRT functions is quite optional. Bound-T can be used for non-HRT
applications without knowing anything about the HRT model and how Bound-T supports this
model.

It's described elsewhere

This manual describes how Bound-T is used in its basic mode, without the special HRT feaures.
There is a separate manual (Tidorum document ref. TR-UM-002) that explains how to use
Bound-T in HRT mode. See http://www.bound-t.com/hrt-manual.pdf.

Bound-T User Manual Introduction 5

2.1

2.2

2.3

2.4

2.5

INSTALLING BOUND-T

Delivery Medium and Instructions

Installation instructions are provided on the delivery medium or as hard-copy enclosed with
the medium. Specific installation instructions are usually provided for each type of host
platform (workstation and operating system).

On a typical platform, an installation of Bound-T for one target processor consists of a "bin"
directory folder with three executable programs: Bound-T itself and two auxiliary programs.
On Unix-like platforms the folder also contains two short executable shell-scripts that assist the
auxiliary programs.

Support for each additional target processor type adds one executable of Bound-T itself to this
folder. The auxiliary programs are the same for all targets.

The dot program for handling the graphical output is not included on the delivery medium.
Install it from http://www.graphviz.org.

Disk Space Requirements

The disk space consumed by Bound-T depends on the host platform but allowing 20 MB should
be ample for one type of target processor. Each additional target processor type needs
approximately 10 MB more disk space.

Processor and Memory Requirements

Bound-T usually places about the same demands on the host workstation's processor speed and
memory size as a typical compiler does.

For complex target programs the arithmetic analysis of loop-bounds may require a great deal
of time and memory. However, experience shows that a normal desktop PC can handle many
arithmetic analysis problems, and the larger problems are better dealt with by disabling
arithmetic analysis with the option -no_arithmetic and asserting loop-bounds manually, or by
simplifying the target program.

Host-Specific Usage Instructions

Advice on using Bound-T on various host platforms is given in separate platform-specific
Application Notes included on the installation medium or enclosed as hard-copy.

Verifying the Installation

The installation instructions and host notes show how to get started by using Bound-T on
examples provided with the installation. These examples are sufficient to verify that all
components of Bound-T are functional.

Installing Bound-T Bound-T User Manual

3.1

3.2

USING BOUND-T

Preliminaries

Bound-T is used as an additional tool in a software development environment. It is not a stand-
alone development tool, so you will need the usual kit of program editors, compilers and
linkers.

To use Bound-T, you need:

1. The target program for which execution time bounds are wanted. The program must be
provided in an executable form, compiled and linked for the target processor. Source code
for the target program is not absolutely necessary but makes it easier to control Bound-T.

2. A version of Bound-T that supports the specific target processor and executable file format
(e.g. COFF or ELF) and runs on your host platform (e.g. Linux or MS Windows).

3. Usually, knowledge about the processing load of the target-program, such as the maximum
size of data structures, is also required.

If your linker produces a binary format that Bound-T does not support, note that the freely
available GNU tool objcopy, a component of the GNU binutils tool-set, can be used to convert
between various binary formats.

If the target program is concurrent (multi-threaded), a scheduling-analysis tool will also be
useful, but is not required for using Bound-T (nor is one included). Typical scheduling analysis
tools use Rate-Monotonic Analysis (RMA) or Deadline-Monotonic Analysis.

Running Bound-T
Bound-T is started with a command of the form
boundt <options> <target exe file> <subprogram names>

This command requests Bound-T to compute upper bounds for the worst-case execution time
of the named subprograms within the given executable target program file. See chapter 6 for a
full list of the command-line options.

This computation can either succeed fully automatically, or succeed only after some additional
assertions are given. Chapter 5 shows how to write assertions when needed.

For an HRT-oriented analysis, Bound-T is started with a command of the form
boundt -hrt <more options> <target exe file> <TPOF name>

See section 1.4 for more about the HRT analysis mode.

The command name, written just boundt above, usually includes a suffix to indicate the
target processor, for example boundt_avr names the Bound-T version for the Atmel AVR
processor. Please refer to the relevant Application Note for the exact name.

Bound-T User Manual Using Bound-T 7

3.3 Easy Examples : Loops
At last, some code!
To show what Bound-T can do, consider the following C function that computes the sum of the
elements of a vector of floating-point numbers:
#define VECTOR_LENGTH 100
float sum vector (float vector[])
{ int i;
float sum;
sum = 0.0;
for (i = 0; i< VECTOR_LENGTH; i++)
sum += vector[i];
return sum;
}
Assume that this function is stored in the file sum.c and compiled and linked (together with
some main function, not shown) into an executable program called summer.exe. Then, the
Bound-T command
boundt summer.exe sum vector
will display the worst-case execution time (WCET) of sum_vector as the last field of the output
line:
Wcet:summer.exe:sum.c:sum vector:3-10:1532
The WCET is given as the number of instruction cycles (1532 in this example); the
corresponding number of seconds or microseconds of real time depends on the particular
target processor and its clock frequency, as explained in the Application Note for this processor.
The numbers in the preceding field, 3-10, are the source-code line-numbers of the subprogram.
How did it do that?
How does Bound-T compute the worst-case execution time? To use Bound-T effectively, it helps
to know the general method, although it is not necessary to understand the details.
First, Bound-T reads in the executable program and uses the symbolic debugging information
to find the entry point of the code of the sum vector function. Then, Bound-T decodes the
machine instructions to generate the control-flow graph of sum_vector and to locate the loop.
Bound-T analyses the arithmetic of the looping code and infers that the loop is executed 100
times. Bound-T reports this by printing
Loop_Bound:summer.exe:sum.c:sum _vector:7-8:99
(The loop-bound is reported as 99 instead of 100 because Bound-T computes the number of
times the looping code goes back to the start of the loop.) This defines the exact sequence of
machine instructions that are executed in a call of sum_vector, and Bound-T simply adds up
their execution time to give the WCET.
8 Using Bound-T Bound-T User Manual

How does it know the execution time of the instructions?

For simple target processors each type of instruction has a fixed execution time — so many
clock ticks. Sometimes the execution time depends on the sort of operands the instruction uses,
for example memory operands taking longer than register operands, and Bound-T takes this
into account.

On pipelined processors the execution time can depend on what other instructions are in the
pipeline. Bound-T models the pipeline state to include this effect.

For some complex instructions, such as multiplication, division or floating point instructions,
the execution time can vary depending on the values of the operands — the numbers being
multiplied, for example. Bound-T usually assumes a worst-case execution time for such
instructions.

Some target processors have several kinds of memory, at different memory addresses and with
different access times. For example, on-chip memory is usually faster than off-chip external
memory. For such processors, Bound-T analyses the address in each memory-accessing
instruction to find the memory areas it can access and thus the access time. If the memory area
remains unknown, Bound-T uses the access time for the slowest type of memory.

Some target processors have cache memory or branch prediction units or other types of
acceleration mechanisms that store execution history and have a large effect on instruction
execution time. Some target processors have several internal functional units that work in
parallel, more or less asynchronously, also affecting the execution time. In its present form,
Bound-T does not support such target processors.

Syntax is only sugar

Since Bound-T works on the binary, executable code and not on the source code, it's not picky
about the way loops are written: for-loops, while-loops, do-while-loops or even goto-loops are
all acceptable, as long as the loop is counter-based. For example, here is sum_vector with a do-
while-loop:

#define VECTOR_ LENGTH 100

float sum vector (float vector[])
{ int i = 0;
float sum = 0.0;
do {
sum += vector[i];
} while (++i < VECTOR LENGTH);
return sum;

Goto is not harmful

Not only can loops be written with the goto statement, but the goto can also be used in other
ways, for example to exit from a loop in the middle. The same holds for other control-flow
statements such as the C statements continue and break and the Ada exit statement.

Any control structures in the programming language can be used, as long as the loops are
counter-based and nicely nested within each other (in technical terms, the control-flow graph
must be reducible).

Bound-T User Manual Using Bound-T 9

3.4 Larger Examples : Calls

The root calls its children

In the above examples, the target subprogram did not call any other subprograms. Such calls
are of course allowed, and Bound-T will automatically analyse the call graph and compute
WCET bounds for all called subprograms, and finally for the "root" subprogram named as the
argument on the command line.

If the WCET of a subprogram depends on the actual value of a parameter, Bound-T tries to
compute the WCET separately for each call of a subprogram. This can extend progressively to
calls within this call, and so on. An example follows.

What if vector-length is a parameter?

A flexible vector-summing function should have the vector-length as a parameter, for example
called n:

float sum vec_n (float *vector, int n)
{ int i;
float sum;
sum = 0.0;
for (i = 0; i < n; i++)
sum += vector[i];
return sum;

}

Now the command
boundt summer.exe sum vec_n

will report that sum_vec_n "could not be fully bounded". The reason is that Bound-T found no
(reasonable) upper bound on the loop-counter i, because there is no (reasonable) upper bound
on the parameter n. Bound-T points to the source of the problem as follows:

sum_vec_n
Loop unbounded at sum.c:5-6

However, when the target program calls the sum_vec_n function, the call gives an actual value
for the parameter, for example thus:

float sum two (void)

{
float v1[40], v2[1234];
float suml, sum2;

suml = sum vec_n (vl, 40);
sum2 = sum vec_n (v2, 1234);

return suml + sum2;

}

If the above function is stored in sum_two.c, then compiled and linked into summer.exe,
the command

boundt summer.exe sum_two

10 Using Bound-T Bound-T User Manual

3.5

will compute a WCET, for example:
Wcet:summer.exe:sum two.c:sum two:4-12:30607

Although Bound-T again failed to bound the loop in sum_vec_n as such, it repeated the analysis
for each of the two calls of sum vec n in sum _two. With n known to be 40 or 1234,
respectively, Bound-T could compute loop-bounds and WCET for each call and thus also the
total WCET for sum_two.

The results for each call are reported in the following form, slightly abbreviated here for
reasons of line-length:

Loop_Bound:summer.exe:sum.c:sum_two=>sum vec_n:5-6:
Loop_Bound:summer.exe:sum.c:sum_two=>sum_vec_n:5-6:
Wcet_Call:summer.exe:sum.c:sum_two=>sum vec_n:4-10:
Wcet_Call:summer.exe:sum.c:sum_two=>sum vec_n:4-10:

39
1233
628
18904

Loops within loops

Nested loops are handled in the same fashion, for example:

float sum matrix (float *matrix[], int m, int n)
{ int i, 3;

float sum;

sum = 0.0;

for (i = 0; i < m; i++) {

for (3 =07 3 < nj j++)
sum += (matrix[i])[]];
}
return sum;

}

Since the loop-limits m and n are again parameters, Bound-T cannot compute a WCET for this
subprogram as such. Once m and n are given values in a call of sum_matrix, the WCET can be
computed just as in the earlier example with sum_vec n.

Harder Examples : Assertions

While-loops may be confusing

Next, consider the more complex C function binary search that looks up a value in a sorted
vector using a divide-and-conquer approach:

int binary_search (int *vector, int val)
{ int low, high, mid;
low = 0;
high = VECTOR_LENGTH - 1;
while (low <= high)
{
mid = low + (high - low) / 2;
if (vector[mid] == val)
return mid;
else if (vector[mid] < val)
low = mid + 1;

Bound-T User Manual Using Bound-T 11

else
high = mid - 1;
}

return -1;

}

If this function is stored in the file bins.c and compiled and linked into the executable
program file bins, the Bound-T command

boundt bins binary search

reports that the subprogram could not be fully bounded because no bounds were found for the
while-loop.

When Bound-T analysed the control and data flow of binary search, it could not find any
variables that act as loop counters with simple initial and final values and simple increments.
For a non-trivial algorithm such as binary search this is not very surprising.

Assertions make it clear
What can be done to work around this problem? The Bound-T user must help out by telling
Bound-T the maximum number of times the loop can repeat. This is done with an assertion

placed in a separate assertion file. Chapters 5 and 8 will explain this fully, but here is how to
do it in this example.

Assuming that VECTOR_LENGTH is 100, the maximum number of iterations is 7. The assertion
takes the form

subprogram "binary search"
loop repeats <= 7 times; end loop;
end "binary search";
If this assertion is placed in a file prog.bta and Bound-T is run with the command
boundt -assert prog.bta bins binary search

the analysis succeeds and Bound-T displays the WCET bound, for example as

Wcet:bins:bins.c:binary search:4-18:129

Counters make it clear, too

Another way to help Bound-T find bounds on loops is to add loop-counters when there are
none to start with. For example, the binary search function could be changed as follows:

int count = 0;

while (low <= high)

{
mid = low + (high - low) / 2;
count += 1;
if (count > 7) break;

}

12

Using Bound-T Bound-T User Manual

3.6

Now the loop-repeat condition contains an explicit limit on a counter value, and Bound-T can
compute a WCET bound without any help from assertions. The limit can be made a parameter
of the subprogram, of course, instead of a constant (7) as in this example.

Eternal loops take a little longer

Much has been said about finding bounds on the number of iterations of loops. But what if the
program contains an eternal loop? We call a loop eternal if it cannot possibly terminate, either
because there is no instruction that could branch out of the loop, or because all such branch
instructions are conditional and the condition has been analysed as infeasible (always false).

Obviously, the execution time of a subprogram that enters an eternal loop is unbounded.
Nevertheless, since real-time, embedded programs are usually designed to be non-terminating,
they usually contain eternal loops. To analyse the execution time of an eternal loop you must
assert an assumed number of repetitions of the loop. This will be explained in section 5.17.

What Bound-T Can Do

This section outlines Bound-T's current abilities, which are, of course, constantly being
extended. This is generic information, applicable to all target processors. Target-specific
Application Notes define more precisely Bound-T's abilities and limits for each target.

Control flow tracing

Bound-T can decode all target processor instructions. Bound-T can analyse the control-flow
and call-graph of any subprogram that follows the processor's calling standard and where the
destination addresses of each branch are statically defined in the code.

For normal branches, which the compiler generates for conditional or looping statements, or
for calls that give the real name of the callee, the destination address is usually an immediate
literal in the branch instruction, and so is statically defined.

Note that for a conditional branch, although the possible destinations must be known statically,
the condition (boolean expression) that selects the actual destination can be dynamically
computed at run-time, and usually is.

Switches and cases

Large and dense switch/case statements often use a simple form of dynamic destination
addressing in which the case-selector is used as an index to a table that gives the starting
address of the corresponding branch of the switch/case statement. Bound-T contains specific
data-flow analysis to derive static bounds on the value of the case-selector and thus find the
case-address table and the possible destinations of such a branch.

However, the current version of Bound-T is limited in the kind of switch/case code it can
analyse. Refer to the Application Notes for particular target processors and target compilers for
details.

Counter-based loops

As the two examples in section 3.3 showed, sometimes Bound-T can analyse the target
subprogram well enough to arrive at a WCET bound automatically, but sometimes the user
must provide assertions to guide and constrain the analysis. The most important factor that
decides the need for user assertions is the complexity of the loop-termination conditions.

Bound-T User Manual Using Bound-T 13

3.7

The data-flow and loop-analysis algorithms currently implemented in Bound-T are designed to
handle counter-based loops automatically. A counter-based loop is a loop that always
increments (or decrements) a counter variable on each iteration, and terminates when the
counter becomes greater than (or less than) a limit.

It is not necessary that a counter-based loop is actually written as a for-loop in the target
program source code; what matters is the way the logical exit condition is written, and the way
the counter variable is updated.

The counter's step (increment or decrement) can be positive or negative, but it must have the
same sign for all loop iterations. The absolute value of the step can vary from one iteration to
another, as long its lower bound is nonzero. The initial and final values of the counter need not
be known exactly; as long as they are bounded in suitable directions, Bound-T will compute
the worst-case number of loop iterations, using the value of the step that has minimum
absolute value, and those extreme values of the initial and final values that are farthest from
each other.

To determine a loop-counter's initial value, step, and limit value, Bound-T can follow any
computation in the target program that uses integer addition, subtraction and multiplication
by a constant. Values of parameters are propagated into calls, but not in the other direction
(from callees to callers).

When Bound-T stumbles

As already said, deducing the worst-case execution time of an arbitrary program is unsolvable
in principle, so any tool like Bound-T must fail when the target program is complex enough.
When Bound-T cannot handle a problem automatically, it is usually possible to write assertions
that let Bound-T solve the problem. Of course, in this case the validity of Bound-T's results
depends on the validity of the assertions, which is the user's responsibility.

An alternative solution is to change the target program to make it easier to analyse. For
example, if the target program contains a while-loop that Bound-T cannot find bounds for,
simply adding an iteration counter and limit to the loop will solve the problem (and perhaps
make the target program more robust, too).

Chapter 4 advises on programming styles that help Bound-T analyse the program.

What Bound-T Cannot Do

The analysis algorithms in Bound-T have been chosen and tuned to handle many forms of
loops and other program structures automatically. However, sometimes the target program is
too complex or inscrutable for these algorithms. Here is a list of things Bound-T cannot
currently do, ordered approximately from the most common to the least common problems.
Fortunately, most problems can be worked around as explained below.

Uncounted loops

Bound-T cannot infer the maximum number of loop repetitions for loops that do not have
explicit counters and limits on the counters. As in the examples in section 3.5, this can be
worked around with assertions or with source-code changes.

14

Using Bound-T Bound-T User Manual

Multiplication, division etc

The method Bound-T uses to analyse the loop-counter computations handles only addition and
subtraction of variables and multiplication by constants. If the computation of a loop-counter's
initial value, step or limit-value involves any arithmetic operation beyond this, such as the
multiplication of two variables, the value becomes "unknown" to Bound-T.

The same work-arounds apply as for loops without explicit counters.

Multiple-precision arithmetic

Bound-T bases its analysis on a model of the native instructions in the target processor, using
the native number of bits per value (word length). For processors with a small word length,
such as 8 bits, the compiler (or assembly-language programmer) has to construct wider
arithmetic from two or more 8-bit parts and two or more 8-bit instructions connected by some
form of carry flag. Bound-T usually does not model such multiple-precision arithmetic which
means that it usually cannot bound loops that use multiple-precision counters, for example 16-
bit counters on an 8-bit machine.

The target-specific Application Notes explain the types of arithmetic and operands that Bound-
T supports for the target processor.

Aliasing and pointer chasing

If a variable is not directly assigned within a loop, Bound-T assumes that it is unchanged
(invariant) throughout the loop. This assumption may be wrong if the variable is accessed
indirectly through pointers, that is, via a memory reference with a dynamically computed
address. The pointer-access may be explicit in the source program, or it can result from implicit
aliasing between parameters that are call-by-reference.

Bound-T records which global variables are directly assigned in each subprogram. Each call of
the subprogram is then considered to assign unknown values to these global variables, which is
important if the call is in a loop that uses this global variable in its loop-counter computation.
However, if the called subprogram assigns the global variable via a pointer, Bound-T does not
include the assignment in the analysis of the loop-counter arithmetic, which may lead to wrong
results.

Although Bound-T has an option (-warn access) to emit a warning messages for all dynamic,
indirect memory accesses that it cannot resolve, most of these are just array accesses and are
usually irrelevant to loop counters. Thus, with the present version of Bound-T, the user is
responsible for avoiding aliasing that could distort the analysis of loop bounds.

Overflow in the target program

The method Bound-T uses to analyse the loop-counter computations assumes that these
computations do not overflow when the target program is executed. If overflow occurs, the
bounds computed by Bound-T may be incorrect, or Bound-T may fail to find bounds at all.

Note that this refers to overflow in some future execution of the target program, not to
overflow in Bound-T's own computations, which are checked against overflow. We believe that
the component tools, oc and Ip_solve, also contain internal overflow checking.

The only work-around is to change the target program to guard against overflow, and to not
use overflow on purpose in loop-counter computations. It is feasible to extend Bound-T to
consider overflow, and we are studying how to do it efficiently.

Bound-T User Manual Using Bound-T 15

Unsigned arithmetic

The method Bound-T uses to analyse the loop-counter computations assumes that the variables
can take both positive and negative values and that there are no wrap-around effects from
unsigned arithmetic. For example, in common programming languages decrementing an
unsigned integer variable that has the value zero gives a large positive value of the formand
not the value -1. Such wrap-arounds are similar to overflow and are currently not handled by
Bound-T.

Usually, the work-around is to use only signed variables and signed arithmetic instructions in
the target program's loop counters. However, check with the Application Note for the target
processor as there may be target-specific solutions. It is quite feasible to extend Bound-T to
include unsigned arithmetic and this is planned for future versions. It may already be
implemented for specific target processors; again, please check the Application Note for your
target.

Jumps and calls via pointers

Except for some switch/case statements and some locally dynamic calls, Bound-T cannot
handle a branch to an address that is not known until run-time. The most common cause of
such dynamic branches is calling a subprogram via a pointer. This restriction also excludes
object-oriented programming with dynamically bound methods such as C++ virtual functions.

When Bound-T finds a dynamic call that it cannot resolve, it issues an error message and
handles the call as if it took no time and had no effect. If you know which subprograms can
actually be called by this call, you can give Bound-T this information as an assertion, or you
can use Bound-T to find the maximum WCET of these potential callees and add it to the WCET
that Bound-T reports for the caller.

When Bound-T finds a dynamic jump that it cannot resolve, it issues an error message and
handles the jump as if it were a return instruction. That is, the WCET reported for the
subprogram that contains the jump does not include the execution after the jump. If you know
the possible targets of the jump, you may be able to use Bound-T to find the maximum WCET
of the code after the jump and add it to the WCET that Bound-T reports for the subprogram
that contains the jump. However, it is probably easier to change the target program to get rid
of the dynamic jump.

For dynamic calls and jumps, the closest alternative program structure is to write a switch/case
statement or a nest of if-then-else statements in which the various branches contain static calls
or jumps to all the possible callees or jump targets.

Exceptions and traps

Many target processors and some programming languages perform automatic run-time checks
on the computation, for example for numerical errors such as division by zero or for logical
errors such as array index out of bounds. When a check fails the normal program flow is
interrupted and execution continues at the address of the handler routine for the exception or
trap. Execution may or may not return to the original program flow. Obviously this changes the
execution time, perhaps radically.

There are basically two kinds of traps: hardware traps and software traps.

For hardware traps the check and possible branch to a trap handler are an implicit part of
normal instructions. For example, the processor could be designed so that all addition
instructions check and trap on overflow.

16

Using Bound-T Bound-T User Manual

3.8

For software traps the check or the branch to the trap handler are programmed by specific
instructions. For example, most processors are designed to that an addition overflow just sets
an overflow flag. To take an overflow trap the addition instruction must be followed by a
conditional branch instruction that branches to the trap handler if the overflow flag is set.

Bound-T generally assumes that no hardware traps occur in the execution under analysis.
Thus, the WCET bound does not include hardware traps.

Software traps, in contrast, appear to Bound-T as normal program flow and are thus included
in the analysis. However, the address of the trap handler is usually not given statically but in
some kind of "trap table" or "vector table" which means that the trap handler is located via a
pointer and Bound-T may be unable to find the handler for analysis.

Irreducible flow graphs

Bound-T can handle only control-flow graphs that are reducible. A reducible control-flow graph
is one in which each loop is entered at a single point and any two loops are either nested one
within the other or are entirely separate (no shared instructions). It is commonly observed that
nearly all programs are reducible in the source code form, but sometimes the compilers emit
irreducible object code, perhaps due to optimisation. Assembly-language subprograms such as
run-time library routines are sometimes also irreducible, perhaps due to manual optimisation.

There is currently no work-around for this limitation, other than reducing the level of
optimisation or changing the way the offending loops are coded in the target program. Any
subprogram with an irreducible flow-graph must be excluded from the analysis by assserting
its WCET as shown in section 5.5.

Recursion

Bound-T cannot analyse recursive calls. Bound-T builds WCET bounds in a bottom-up way
from the lowest-level subprograms (leaf subprograms) towards higher-level subprograms (root
subprograms). If the subprograms are recursive this bottom-up method does not work and
Bound-T reports an error. However, you can analyse recursive programs by using assertions to
slice the call graphs into non-recursive parts. This will be explained in section 5.18 in
connection with the assertion language.

Approximations

When Bound-T computes upper bounds on worst-case execution time, it uses three types of
approximation, corresponding to three sources of unknown variation in execution time.

Instruction-level approximations

The execution time of some instructions in the target processor may be inherently variable. For
example, the time can depend on the data being processed, or on the history of recently
executed instructions and memory accesses. For each instruction Bound-T uses an upper bound
on the execution time that takes into account some of this variation for the context of this
instruction. The details depend on the target processor but in general the analysis includes
pipeline effects but not cache effects.

Although these dynamic features are increasing strongly in high-end processors, many smaller,
embedded processors are still quite deterministic, with fixed instruction-execution times. The
Application Note for a particular target processor will describe the instruction-level
approximations in detail.

Bound-T User Manual Using Bound-T 17

Loop-count approximations

The bounds on loop iterations computed by Bound-T are upper bounds. Early exits (breaks)
from loops can make the real number of iterations smaller.

A similar approximation occurs for "non-rectangular" nested loops where the limits of the inner
loop depend on the index of the outer loop. A typical example is a pair of loops that process
the upper (or lower) triangle of an NxN square matrix. Here the current version of Bound-T

can only give, automatically, an N2 bound on the number of executions of the inner loop-body.
However, the real bound, N(N+1)/2, can be asserted, if the inner loop-body contains a feature
that can be used to identify it.

Feasible path approximations

In a sequence of conditional statements, loops or other control structures, the several
conditional expressions are sometimes correlated so that only a subset of paths can actually
occur. For example, this happens if a conditional of the form "if A" is followed by a conditional
of the form "if not A", where the value of A is unchanged.

Bound-T is generally not able to correlate the conditions, but will compute the WCET over all
apparently possible paths, allowing any combination of condition values, including logically
impossible combinations. If the branches have very different execution times, a considerable
over-estimate in WCET can result.

In some cases the approximation can be corrected with assertions. For example, if the code is
in a loop, and the branches can be identified by some of their features (such as the calls they
contain), one can assert an execution-count bound on certain branches that is less than the
number of iterations of the loop. This forces Bound-T to "by-pass" these branches for a
selectable fraction of the loop iterations. Section 5.4 shows some examples.

3.9 Context-Dependent Execution Bounds
The inputs of a subprogram
Most of your subprograms probably have parameters and the execution time usually depends
more or less strongly on the actual values of those parameters. Perhaps the subprogram also
uses global variables that influence the execution time.
For brevity, we use the term input variables or simply inputs for all the parameters and global
variables that influence the execution bounds of a given subprogram: the bounds on execution
time or stack usage (stack analysis is described in section 3.11). Some subprograms have no
inputs and thus have constant execution bounds, but most do have some input variables. Take
the following Ada subprogram as an example:
procedure Nundo (X : Integer; N : Integer) is
begin
if X > 10 then
Start_Engine;
end if;
for T in 1 .. N loop
Mark Point (I);
end loop;
end Nundo;
18 Using Bound-T Bound-T User Manual

The value of the parameter X influences the execution time of Nundo because the Start Engine
subprogram is called only for some values of X. The value of the parameter N influences the
execution time because it sets the number of iterations of the loop that calls Mark_Point.

Each call of the subprogram may have different input values and may thus have a different
execution time and stack usage. Can Bound-T take this into account? Yes, in some ways, but it
depends a lot on how your program computes and passes parameter values and how the
subprograms use parameters. This section tries to explain how and when Bound-T can find
such input-dependent execution bounds.

Essential inputs

Some inputs to a subprogram are essential for the analysis in the sense that their values must
be known in order to compute execution bounds. Consider again the example subprogram
Nundo above. If the value of N is unknown then the number of loop iterations is unknown and
there is no upper bound on the execution time. (One could argue that N is at most
Integer ' Last, the largest possible value of type Integer, so the loop can repeat at most
Integer ' Last times. But this upper bound is probably a huge overestimate and we ignore it.)

A value (or an upper bound) on N is thus needed to get an upper bound on the execution time
of Nundo. Therefore N is an essential input variable for Nundo.

The same cannot be said for the X parameter. If the value of X is unknown we can simply
assume the worst case, include the call of Start Engine in the analysis, and get an upper bound
on the execution time of Nundo that is valid for all values of X, even if it is overestimated for
values of X less or equal to 10. Thus X is not an essential input for Nundo.

Bound-T tries to find input-dependent execution bounds for a subprogram only when the
subprogram has some essential inputs. More on this later, also to show that the classification of
inputs into essential or non-essential is not always so clear-cut as in the Nundo example.

Calls, call sites, and call paths

To explain how Bound-T does input-dependent analysis we have to define some terms that
separate the static and dynamic aspects of subprogram calls.

+ A call site is point (an instruction) in the target program that calls a subprogram (the callee)
from within another subprogram (the caller). When there is no risk of confusion we will use
the shorter term call.

Call sites are a static concept; we are not yet talking of the dynamic execution of the call when
the program is running. A call site is identified by the address of the instruction that transfers
control from the caller to the callee. Each call site has a return point that is usually the next
instruction in the caller.

Why talk about calls and call sites here? Because the calls pass parameter values — inputs — to
the callee subprogram. Different calls (call sites) can pass different values. We can hope that an
analysis of the call, and of the code that leads to the call, will reveal bounds on parameter
values that we can use to find bounds on the execution of the callee. However, different
executions of the same call site can pass different parameter values, so some over-estimation
may remain even for call-site-specific execution bounds.

Sometimes parameter values are set in some high-level subprogram and then passed through
several levels of calls until they reach the subprogram for which they are esential inputs. This
motivates:

« A call path is a list of zero or more call sites such that the callee of a call in the list is the
caller of the next call in the list (if any).

Bound-T User Manual Using Bound-T 19

« The depth of a call path is the number of call sites in the list.

A call path is still a static concept; we are not yet talking of the dynamic executions of these
calls. In particular, even if some call on the path lies within a loop and so can be executed
many times the call path does not distinguish between the iterations of the loop.

For example, assume that subprogram A contains a call to subprogram B which contains three
calls, one to subprogram C and two to subprogram D. Assume further that A also calls C and C
also calls D so that the call-graph looks like the diagram in Figure 2. The calls are numbered
calll to call6 for identification.

call2

calll

call5

call4 —
call3 ‘ v
C

call6

H

Figure 2: Example of calls and call paths

As the figure shows there are four ways to reach subprogram D from subprogram A, depending
on which calls are used:

- from A through calll to B, then through call3 to D,
- from A through calll to B, then through call5 to D,
- from A through calll to B, then through call4 to C, then through call6 to D,
- from A through call2 to C, then through call6 to D.

Note that a call path is certainly not a complete definition of how execution goes from the first
caller to the last callee — from A to D in the example. As already said, the call path concept
ignores looping. It also ignores the fact that there are often several ways (execution paths) to
go from the entry point of a subprogram to a given call within the subprogram - all such ways
give the same call path.

Executions and contexts

In contrast to calls and call paths, the execution of a subprogram is a dynamic concept: during
the execution of the program, control reaches this subprogram, the code in the subprogram is
executed, and the subprogram (usually) returns to its caller. The execution of a call means that
control reaches the call and then passes to the callee which is executed. The execution of a call
path means that control reaches the first call on the path, passes to the callee, and in the callee
to the second call on the path, and so on until control reaches and executes the last call on the
path.

« The full context of a subprogram execution is the call path that was executed to reach the
subprogram, starting from a given root subprogram.

20

Using Bound-T Bound-T User Manual

For the example in Figure 2, if subprogram A is taken as the root subprogram then subprogram
D can be executed in four different full contexts:

- (calll, call3)
- (calll, call5)
— (calll, call4, call6)
- (call2, call6).

The main point here is that Bound-T groups subprogram executions by their context. Thus we
can find different execution bounds for each call path leading to the subprogram. However, we
hope to find execution bounds without having to consider the full call path from the root, and
so we define:

+ A suffix context of a subprogram execution is any suffix of the full context. That is, any call
path that ends with a call to this subprogram, or the null call path (a list of no calls).

For the example in Figure 2 the subprogram D has the nine suffix contexts listed in the table
below in order of increasing depth. The table also shows depth of the suffix context and the
full contexts that match the suffix context. Real programs usually have more full contexts per
suffix context than this small example has.

Table 1: Example of suffix contexts and full contexts

Suffix context for D Depth Matching full contexts for D

null call path 0 all full contexts (all executions of D)
call3 1 (calll, call3)

call5 1 (calll, call5)

callé 1 (call2, call6)

(calll, call4, call6)
(calll, call3)
(calll, call5)
(call2, call6)
(calll, call4, call6)
(calll, call4, call6)

(calll, call3)
(calll, call5)
(call2, call6)
(call4, call6)
(calll, call4, call6)

WIN|IN|DN|DN

The execution bounds that Bound-T computes for a subprogram always come with a suffix
context such that the bounds are valid for all executions of the subprogram in this context.

Thus, if Bound-T computes execution bounds for subprogram D in the example above then the
bounds apply as follows, depending on the suffix context of the bounds:

— If the context is null, the bounds are valid for all executions of D whatever the full context
of the execution. For this reason the null context is also called the universal context and
such bounds are universal bounds or context-free bounds.

- If the context is call3, the bounds are valid for any execution of D from call3. In the
example the only full context that matches this suffix context is (calll, call3).

— If the context is call6, the bounds are valid for any execution of D from call6. In the
example there are two full contexts that match this suffix context: (calll, call4, call6) and
(call2, callb).

Bound-T User Manual Using Bound-T 21

— If the context is (call4, call6) the bounds are valid for any execution of D from call6 within
an execution of C from call4. In the example the only full context that matches this suffix
context is (calll, call4, call6).

- And so on for the other possible contexts of D.

First we ignore inputs

For each subprogram Bound-T first tries to find execution bounds in the null context — context-
free bounds that apply universally to all executions of the subprogram.

The subprogram is analysed in isolation, not in the context of any particular call or call path.
The values of the inputs are then generally unknown. However, the analysis uses all assertions
that apply to input variables or to variables defined and used within the subprogram, as long
as the assertions apply universally (to all executions of the subprogram and not only to a
particular call).

If that fails, we look deeper ... and deeper ...

When Bound-T cannot find context-free execution bounds on a subprogram it analyses the
subprogram in ever deeper suffix contexts until it finds execution bounds, and then it stops. In
other words, when the subprogram has some essential inputs (with unknown values in the null
context) Bound-T tries deeper contexts until the context defines values (or sufficient bounds)
for the essential inputs at each (feasible) call of the subprogram.

The context-free analysis in Bound-T traverses the call-graph in bottom-up order. That is, we
first analyse the leaf subprograms — those subprograms that do not call other subprograms —
then subprograms that only call leaf subprograms, and so on to higher levels in the call-graph
up to the root subprogram(s). If a callee subprogram has context-free execution bounds these
bounds are thus known when the caller is analysed.

When Bound-T analyses a caller subprogram it finds all calls from this subprogram to callees
that do not have execution bounds (whether context-free bounds or bounds in the context of
this call); these are known as unbounded calls. For each unbounded call Bound-T uses the
analysis of the caller to find bounds on the inputs to the callee. If some such bounds exist
Bound-T re-analyses the callee in the context of these bounds, that is, using these bounds as
the initial state on entry to the callee.

When an unbounded call leads to the re-analysis of the callee Bound-T may find further
unbounded calls in the callee, leading to re-analysis of their callees, and so on. Thus context-
dependent re-analysis spreads top-down in the call-graph.

Call-specific assertions on variable values can help context-specific analysis by directly defining
input values for the subprogram being analysed (when the assertion applies to a call of this
subprogram, the last call in the context) or indirectly by defining values on other variables that
enter the computation of the input values (when the assertion applies to some other call in the
context).

The command-line parameter -max_par_depth defines the largest context depth that Bound-T
tries. If a subprogram has some full context such that Bound-T finds no execution bounds for a
suffix context of depth max_par depth then Bound-T emits an error message and considers
the subprogram's execution unbounded in this context. In other words, max_par_depth sets
an upper bound on the number of call levels through which Bound-T tries to find values or
bounds on essential inputs.

22

Using Bound-T Bound-T User Manual

How it works in the example

This subsection shows step by step how the context-free and context-dependent analysis works
for the example program shown in Figure 2. The description is long; if you feel that you
understand the idea you can skip this subsection.

The analysis of the program in Figure 2 proceeds as follows, assuming that the root
subprogram is A. Subprograms are analysed in bottom-up order in the call-graph. Thus D is the
first subprogram to be analysed, followed by C, B, and finally A.

1. First Bound-T looks for context-free execution bounds on D. If this analysis succeeds Bound-
T uses these bounds for all calls of D. That is, it uses these context-free bounds on D's
execution time (and/or stack usage) for call3 and call5 in the analysis of subprogram B and
for call6 in the analysis of subprogram C. In this case the analysis of D stops here and
Bound-T goes on to analyse C, B, and A in that order. But the other case is more interesting
and the analysis then proceeds as follows.

2. If Bound-T does not find context-free bounds on D it postpones further analysis of D until
the analysis of the direct callers of D: subprograms B and C. That is, Bound-T will re-analyse
D in the suffix contexts call3, call5 and call6, all of depth one.

3. Next Bound-T looks for context-free bounds on C. C contains call6 which is an unbounded
call (because the callee, D, has no context-free bounds). Therefore Bound-T tries to find
bounds on the inputs to D at call6. If it finds some such bounds:

+ Bound-T re-analyses D in the context of call6 (a depth-one context). If it finds execution
bounds they become the definitive bounds for call6; Bound-T uses these bounds for all
executions of call6. Assume otherwise, that call6 remains an unbounded call. This
means, firstly, that Bound-T will try deeper contexts for this call (if max_par depth
permits) and secondly that the context-free analysis of C fails. Accordingly Bound-T
postpones further analysis of C (and thus further analysis of call6) until the analysis of
the direct callers of C: subprograms A and B.

4. Next Bound-T looks for context-free bounds on B. Here the unbounded calls are call3 and
call5 to D and call4 to C. Assuming that some callee inputs are bounded at each call, then:

« Bound-T re-analyses D in the contexts of call3 and call5 (both are depth-one contexts).
Assume that call3 gets execution bounds but call5 does not. Bound-T then uses these
bounds on call3 as the bounds on all executions of call3, that is, it does not try to analyse
deeper contexts that lead to call3. Since call5 remains unbounded the context-free
analysis of B fails.

+ Bound-T re-analyses C in the context of call4. C contains call6 which is still unbounded,
so Bound-T again tries to find bounds on the inputs for D at call6 within this new
analysis of C; if some bounds are found, Bound-T re-analyses D with these bounds, that
is, in the depth-two context (call4, call6). If this analysis finds execution bounds Bound-T
will use these bounds on D for every execution of D that has the suffix context (call4,
call6). If Bound-T also finds execution bounds on all other parts of C it will use these
bounds on C for every execution of C that has the suffix content call4. But let us again
assume the harder case where call6 remains unbounded which also means that C
remains unbounded in the context call4.

To summarise the situation at this point in the analysis: We found no context-free execution
bounds on B, C, or D. We found execution bounds on D in the context call3 but not in the
contexts call5 and call6. We found no execution bounds on C in the context call4 and have not
yet analysed C in its other depth-one context, call2. We have not yet tried to analyse A, but A is
next in the bottom-up order of the call-graph, so here we go:

Bound-T User Manual Using Bound-T 23

5. The next subprogram to be analysed is A, the root subprogram. Root subprograms can only
have universal, context-free execution bounds (unless there are several root subprograms
and some root calls another root, which is unusual). The unbounded calls within A are calll
and call2. Assuming that Bound-T finds bounds on the inputs for B and C, respectively, at
these calls Bound-T re-analyses the callees in these contexts, so:

B is re-analysed in the context of calll. The unbounded calls in B are call5 and call4.
Assuming that Bound-T finds bounds on the inputs for D and C, respectively, at these
calls, then:

« Bound-T re-analyses D in the context (calll, call5). Assume that it finds execution
bounds on D in this context.

« Bound-T re-analyses C in the context (calll, call4). C contains call6 which is still
unbounded in this context so Bound-T tries to find more bounds on the inputs for
call6, now from the deeper context (calll, call4). Assuming that such bounds are
found:

« Bound-T re-analyses D in the context (calll, call4, call6). Assume that it finds
execution bounds on D in this context. This makes call6 bounded in the context
(calll, call4).

Assume that all other parts of C are also bounded in the context (calll, call4).

Thus all calls in B are bounded in this context (call3 was bounded earlier, in the null
context for B, and call4 and call5 were bounded in the present context, calll).

Assume that all other parts of B are also bounded in this analysis. Thus we have
execution bounds on B in the context calll and so calll is bounded in A.

C is re-analysed in the context of call2. C contains call6 which is still unbounded in this
context (the execution bounds that we found, above, on call6 apply to a different
context (calll, call4) for C). Assuming that Bound-T finds bounds on the inputs for D at
this call:

« Bound-T re-analyses D with all the input bounds collected from the context (call2,
call6). Assume that it finds execution bounds on D in this context.

Assume that all other parts of C are also bounded in this analysis. Thus we have
execution bounds on C in the context call2 and so call2 is bounded in A.

Thus, all calls within A have execution bounds. Assuming that all other parts of A are also
bounded we finally get execution bounds on A, the root subprogram.

This method of re-analysing subprograms in ever deeper contexts is evidently inefficient if
many subprograms need a deep context for their analysis. The method works well enough
when most subprograms get context-free bounds or need only shallow context for their
analysis. But the main importance of the method for you, as a user of Bound-T, is not its
computational efficiency but how the results of the analysis depend on the properties of the
target program under analysis. The rest of this section focusses on that question.

What does this mean?

The main things to remember from the above discussion are:

« Bound-T only tries to find context-dependent bounds when it fails to find context-free
bounds, that is, when some essential input values are unknown without context.

« Bound-T explores contexts only as far (as deeply) as is necessary to find execution bounds,
that is, until the context defines the essential input values.

24

Using Bound-T Bound-T User Manual

+ However, when Bound-T does make a context-specific analysis it tries to find context-
specific values or bounds on all inputs to the subprogram, not only on the essential inputs,
and uses all such values or bounds in the analysis.

The rest of this section tries to explain what this means in terms of the design of the target
program, using examples.

Examples of essential and non-essential inputs

First some examples to illustrate when inputs are essential and when not. There are some
complex cases in which even this decision may depend on context so the classification of
inputs into essential and non-essential is a simplification of reality.

« The conditions in if-then(-else) statements are usually not essential.

An input that appears in an if-then(-else) condition can have a large effect on the execution
time when one branch of the conditional statement has a much larger execution time than the
other branch, but this does not make the input essential. For an example, see the Nundo
subprogram, above, and its parameter X.

 Similarly, the selector (index) of a switch-case statement is usually not essential.

A switch-case selector can have a large effect on the execution time when the different cases
have very different execution times. But this does not make the selector essential.

+ An input that controls a conditional statement or a switch-case statement can determine
which other inputs are essential.

For example, consider the following variation of the Nundo procedure where the changes are
shown in bold style:

procedure Nundo2 (X : Integer; N : Integer) is
K : Integer := N;
begin

if X > 10 then
Start_Engine;
K := 55;

end if;

for T in 1 .. K loop
Mark Point (I);
end loop;

end Nundo2;

Here the loop is controlled by the local variable K which is initialized to the parameter N but
changed to 55 when X is greater than 10. In a context-free analysis X is unknown, thus the
loop may have the upper bound N, so N seems essential. However, if we analyse Nundo2 in a
context that provides no bounds on N but implies that X = 13, say, then the analysis may show
that K is necessarily set to 55 which means that the loop is bounded although N is still
unknown.

Another variation could use a conditional statement to choose which of several parameters
defines the loop bound; if a context defines the choice condition only the chosen parameter is
essential. In yet another variation the parameter-dependent loop is contained within the if-then
statement; if a context makes the choice condition false then the loop cannot be reached in this
context and the parameter that sets the loop-bound is not necessary in this context.

Bound-T User Manual Using Bound-T 25

 Inputs that seem essential can be dominated by constants that make them non-essential
(but can cause large over-estimates).

For example, consider this modified form of the Nundo subprogram, again with changes in
bold style:

procedure Nundo3 (X : Integer; N : Integer) is
begin

if X > 10 then
Start_Engine;
end if;

for I in 1 .. Integer'Min (N, 1000) loop
Mark Point (I);
end loop;

end Nundo3;

The only difference with respect to the original Nundo is that the upper bound on the loop
counter I is now defined as the smaller of N and 1000. This means that Bound-T finds an upper
bound of 1000 loop iterations even when the value of N is unknown. Thus N is no longer an
essential input. However, the context-free execution bounds (1000 iterations) may be greatly
over-estimated compared to context-dependent bounds for smaller values of N.

Non-essential inputs can matter

Consider again the Nundo subprogram that was introduced at the start of this section with its
two inputs X (not essential) and N (essential). Assume that the program contains the following
call where Nundo is called with X equal to 7 and N to 31:

Nundo (X => 7, N => 31);

When Bound-T analyses Nundo in the context of this call it uses the essential N value to bound
the loop. However, it also uses the non-essential X value and finds that the condition X > 10 is
false and thus that execution cannot reach the call to Start_Engine. This should give very good
execution bounds that apply to the case X = 7, N = 31.

In fact, since Nundo does not use X for any other purpose these bounds apply when N = 31 for
any value of X less or equal to 10, but Bound-T does not make use of this fact. If there is
another call with such X and N values, for example Nundo (X => 5, N => 31), Bound-T will
make a new analysis of this call and will not reuse the execution bounds from the first call.

Now assume that the call defines the value of N but not that of X, as in:
Nundo (X => Y, N => 31);

where Y is some input to the caller and is thus unknown in the context of just this call. When
Bound-T analyses Nundo in the context of this call it uses the essential N value to bound the
loop. It has no bounds on the value of X so it includes a possible call to Start Engine. The
execution bounds thus apply to the case N = 31, for any value of X, and are overestimated for
values of X less or equal to 10. Since X is not an essential input for Nundo Bound-T is satisfied
with these bounds for this call even if an analysis in a deeper context might set bounds on Y,
thus on X, and thus give tighter execution bounds.

26

Using Bound-T Bound-T User Manual

3.10

Forcing context-dependent analysis

To repeat: if Bound-T finds context-free execution bounds on a subprogram it uses these
bounds for all calls of this subprogram, even if context-dependent analysis could give better
(sharper) bounds. Similarly, if Bound-T finds execution bounds on a subprogram for a certain
suffix context, it uses these bounds for all calls of this subprogram in matching contexts even if
an analysis in some deeper context could give better (sharper) bounds. At present there is no
way to force Bound-T to look for (deeper) context-dependent bounds in such cases.

The only work-around currently available is to analyse the subprogram separately for each
desired context under assertions that define the inputs for the context. You then feed the
resulting WCET bound for each context into the analysis of the caller as an assertion on the
execution time of the call to the context-dependent subprogram. This is admittedly
cumbersome.

Getting Started With a Real Program

Suppose you have a real target program and want to use Bound-T to find out something about
the program's real-time performance, where do you start? Here is a suggestion.

The suggested sequence of steps, below, assumes that the target program has not been written
with Bound-T in mind, so it does not try a fully automatic analysis. This will also help you
understand how the final WCET values are computed and the assumptions or approximations
that are used.

Here are the suggested steps:

1. Decide which parts of the target program are of interest. The parts could be individual
subprograms, interrupt handlers, threads or tasks. Make a list of the subprograms that will
be used as root subprograms for Bound-T.

2. To get an overview of each root subprogram, run Bound-T on this subprogram with the
option -no_arithmetic. This option prevents Bound-T from trying to find loop-bounds
automatically, so Bound-T will give you a listing of all the loops in the root subprogram and
any callees.

As an alternative to -no_arithmetic, use the option -max_par_depth 0 to let Bound-T try to find
loop-bounds that depend only on local computatios (context-free bounds). This is often quick
enough for a first look. You will get a listing of the loop-bounds that were found and a listing
of the so-far unbounded loops.

Note, however, that the option -no_arithmetic may prevent the proper analysis of switch-case
statements. If this happens Bound-T should warn you that certain subprograms contain
“unresolved dynamic jumps”. You must then enable arithmetic analysis at least for these
subprograms. Section 8.5 explains how to use assertions for that.

When you are studying a particular subprogram the option -alone is useful. This option
restricts the analysis to the subprogram(s) you name on the command line, without going
deeper in the call graph.

3. Inspect the so-far unbounded loops in the source-code of the target program. For each loop,
decide whether to bound it automatically or by an assertion.

If you are familiar with the assembly language of your target processor you can use the option
-trace decode to view the disassembled instructions as Bound-T analyses them.

4. Take each subprogram that has so-far unbounded loops, starting at the leaves of the call-
tree and going on to higher-level subprograms. Write the necessary assertions and run
Bound-T on the subprogram, using the assertions for this subprogram and also the

Bound-T User Manual Using Bound-T 27

3.11

assertions you wrote earlier for the lower-level subprograms. Verify that the assertions are
sufficient to bound the targeted loops and that Bound-T finds bounds for the other loops
automatically. Change or add assertions when necessary. Possibly write alternative
assertions for different scenarios, for example nominal cases, error cases or different
application "modes" as often occur in embedded programs.

When step 4 reaches the root subprograms, you will have the WCET bound for each root
subprogram and a call-graph that shows how this WCET is built up from the WCETs of the
lower-level subprograms.

For large target programs, it is convenient to implement step 4 as a separate shell-script or
batch command file for each subprogram and perhaps collect these into a Makefile. The shell-
script should combine the necessary assertion files, run Bound-T with the chosen options, and
store the output in a file for browsing. By setting up such shell-scripts, the whole analysis or
any part of it can be re-run easily if the target program or the assertions are changed.

The assertion files and analysis scripts are also useful as a record of how you determined the
time and space bounds for your application. This record can be used as "performance case"
documentation, for example to show to certification authorities as part of the "safety case"
documentation for a critical system.

Stack Usage Analysis

Stack analysis to avoid stack overflow

Like execution time, stack memory usage is also a dynamic attribute of a program. A program
that exceeds its allocated stack memory will often fail (for example, through a stack-overflow
trap) or behave randomly when non-stack memory is wrongly overwritten and its content
destroyed. However, small embedded processors may not have memory to waste on safely
oversized stacks, especially since each thread usually needs its own stack area.

For programs that use the stack in a suitable way, Bound-T can compute a worst-case upper
bound on the stack usage. You can remove the risk of stack overflow by allocating at least this
amount of stack space.

This section explains how stack usage analysis works in Bound-T, focusing on general aspects
and leaving the target-specific aspects to the Application Notes for each target processor.

Command line

Stack usage analysis is optional and is activated by a specific command-line option (-stack or
-stack_path). Stack usage can be analysed together with execution time (-time, the default) or
separately (-no_time).

Results

Bound-T reports the stack-usage bound in a basic output line that starts with Stack, as in:

Stack:summer.exe:summer.c:sum vector:3-10:HW_stack:26

This output line reports that the subprogram sum_vector, together with its callees, needs at
most 26 units of space on the stack called HW stack. The unit of stack usage depends on the
target processor but is usally the natural unit for memory size on that processor. For example,
on an octet-oriented processor this could mean 26 octets of stack space, while on a processor
built around 32-bit words it could mean 26 words = 104 octets. The unit is of course defined
in the Application Note for the target.

28

Using Bound-T Bound-T User Manual

Stack mechanisms

Different target processors have very different stack mechanisms. The most common
mechanism are these:

+ no hardware stack at all,
- a fixed-size stack that is used only for return addresses and cannot be used for data,

+ a stack in main memory that is used both for return addresses and for data and has a
software-defined size.

The processor may have special instructions for accessing the stack, for example "push" and
"pop" instructions. The processor may have general-purpose instructions that are also suitable
for stack operations, for example load and store instructions with register-indirect addressing
and auto-increment or auto-decrement of the pointer register.

For small hardware stacks that only hold return addresses the software usually has no choice in
how it uses the stack. When the processor hardware is not so constraining, the processor
manufacturer sometimes defines software rules for passing parameters and using the stack for
local variables. This definition is called the procedure calling standard or the application binary
interface definition (ABI) for this processor. Otherwise, the choice of stack-pointer register and
stack-usage conventions are left to the programmers and compiler developers. When different
compilers follow different conventions it may be impossible to link together their object files
into a working program.

Multiple stacks and stack names

When the processor's hardware stack holds only return addresses, but the programming
language provides subprograms that may be reentrant or recursive, it is common for the
compiler to define its own software stack for parameters and local variables. Thus, some target
programs use two stacks, hardware and software, or perhaps even several software stacks for
different purposes. Software stacks are of course used also when the processor has no
hardware stack at all.

The Application Note for each target explains which stacks are used on this target; this may
also depend on which compiler is used and even on which compiler options are used. Bound-T
analyses the usage of each stack separately.

Each stack has a name, for example "HW-stack" or "SW-stack". Bound-T includes the stack
name in the output from stack usage analysis. The Application Notes explain the stack names
for each target processor.

Local stack height and total stack usage

For stack usage analysis, Bound-T generally is not concerned with the details of parameter-
passing mechanisms and stack lay-out (although those are important for context-sensitive
analyses). Instead, the important factor is the amount of stack space that a subprogram
allocates, called the local stack height of the subprogram, and how these locally allocated stack
areas add up along a call-path to give the total stack usage of the root subprogram.

We generally assume that stack-space is local to a subprogram: when a subprogram returns, it
must deallocate all stack space that is has allocated. However, some target processors or
compilers may behave differently; please see the Application Notes. During its execution a
subprogram may allocate more stack space, or release some or all of its stack space, or release
some stack space allocated in the caller. For example, in many processors a call-subroutine
instruction (in the caller) pushes the return address on the stack and the return-from-
subroutine instruction (in the callee) pops it; in Bound-T such a return instruction makes the

Bound-T User Manual Using Bound-T 29

local stack height negative. Likewise, in some software calling conventions the caller pushes
stack-located parameters and the callee pops them; this makes the local stack height negative
in the callee after the parameters are popped.

Bound-T models the local stack height in the same way as it models the values of registers and
variables in memory. For example, a "push" instruction will increase the local stack height by
the size of the pushed data. Arithmetic analysis (or, if we are lucky, just constant propagation
analysis — see section 6.5) can give bounds on the local stack height in a subprogram. This
gives a bound on the stack-space that a subprogram uses for itself.

Take-off height and stack usage of a call

When subprogram A calls subprogram B, the total stack-space used by A and B together for this
call is the sum of

+ the local stack height in A when the call occurs, and
+ the total stack usage of B.

The local stack height in the caller (A) when a call occurs is here termed the take-off height for
the call. The sum is called the stack usage of the call.

Thus, if we have an upper bound on the stack usage of B (either a general bound, or specific to
the context of this call) and an upper bound on the take-off height for the call, the sum of
these bounds is an upper bound on the stack usage of the call.

With these definitions in hand, we can explain how Bound-T computes an upper bound on the
total stack usage in a subprogram S, including all its callees, as follows:

« If S is a leaf subprogram (that is, S calls no other subprograms), we take the upper bound
on the local stack height of S.

« If S is not a leaf subprogram, we take the maximum of the upper bound on the local stack
height of S and the upper bounds on stack usage of all calls in S (which, as defined above,
adds the call’s take-off height to the callee’s stack usage).

This definition is the same as saying that Bound-T considers all call paths rooted at S and takes
the maximum upper bound on the stack usage of any such call path. However, the upper
bound on the local stack height in S may be larger than that of any call path, in which case the
bound on local stack height is also the upper bound on total stack usage.

Worst-case stack path

The (bound on the) total stack usage is defined by the (bound on the) call-path that uses the
most stack space; this call path is called the worst-case stack path. There may of course be
several call paths with the same stack usage; they are all called worst-case stack paths but
Bound-T shows only one of them in its output.

The stack usage analysis always finds a worst-case stack path, but Bound-T displays this path
only if the option -stack path is chosen. In this case the path is displayed by a sequence of
output lines starting with Stack Path. There will be one Stack_Path line for each subprogram in
the worst-case stack path and these lines traverse the path in top-down order. For example, the
path from the root subprogram main via fnoo to emak would be shown as:

Stack Path:prg.exe:prg.c:main:34-42:SP:5:15
Stack Path:prg.exe:prg.c:fnoo:11-32:SP:6:10
Stack Path:prg.exe:prg.c:emak:43-66:SP:4:4

30

Using Bound-T Bound-T User Manual

These output lines show that main needs at most 15 units of space on the stack called SP. Of
this space, main itself uses 5 units (that is, the local stack height in main is at most 5) and the
call to fnoo uses the remaining 10 units. The subprogram fnoo itself uses 6 units and emak uses
the remaining 4 units.

The worst-case stack path is often also the longest call path, that is, the one with the largest
number of nested calls. Still, a short call path can use a lot of stack space if the subprograms
on the path have many parameters or many or large local variables.

It can also turn out that some subprogram S on the worst-case path uses only a little stack
when it calls other subprograms, but at other times uses so much stack for its own purposes
that its total stack usage is dominated by its local stack height. In this case, the worst-case
stack path ends at S although S contains calls to other subprograms, giving longer call paths.

When the target program uses several stacks, the upper bound on stack usage and the worst-
case stack path is analysed separately for each stack. Some stacks may have the same worst-
case path, others may have a different worst-case paths.

The worst-case stack path may or may not be the worst-case execution path in terms of
execution time. That is, an execution that reaches the worst-case stack usage may be much
faster than the WCET; vice versa, an execution that reaches the WCET may use much less stack
than the worst-case stack path.

Safe, unsafe or unknown stack bounds

If the local stack height of a subprogram is defined by a computation that Bound-T cannot
analyse, the stack usage analysis may fail to find an upper bound on the local stack height in
this subprogram and thus for any call path that includes this subprogram.

However, even if the analysis fails to find a safe upper bound on local stack height, it may still
find some values for the local stack height and it will then report the largest value found as a
kind of "lower bound" on the worst-case local stack usage. For example, assume that the
analysis finds an upper bound of 20 units on the stack usage of subprogram B, but fails on the
subprogram A which calls B. It is then likely that A and B together will use at least 20 units of
stack. Moreover, the analysis may be able to bound the take-off height of the call A — B even if
it cannot compute the local stack height everywhere in A. If the analysis finds an upper bound
of 11 units for the take-off height, it is likely that A and B together use at least 11 + 20 = 31
units of stack.

Bound-T reports such unknown or unsafe stack usage bounds in several ways: first, as a
message to say that the (maximum) local stack height is unknown for a subprogram; second,
as an error message to say that the subprogram could not be fully bounded; third, as Stack and
(if chosen) Stack Path lines with a special form; and finally as an entry in the list of
unbounded program elements.

In the special Stack and Stack_Path lines an unsafe stack usage has the form "number + ?",
where the number is the "lower bound" on the worst-case stack usage. For the example above,
the Stack line for A would be as follows (assuming that this stack is named SP):

Stack:ab.exe:ab.c:A:101-114:SP:31+?

With -stack_path and assuming that the single call A — B is the worst-case stack path for A, the
Stack_Path lines would be:

Stack _Path:ab.exe:ab.c:A:101-114:SP:11+2:31+7?
Stack_Path:ab.exe:ab.c:B:207-221:5P:20:20

Bound-T User Manual Using Bound-T 31

This shows that the stack usage of B is at most 20 units (all local consumption) while that of A
is more complex: A is likely to use at least 11 units locally, which together with B’s bound
means that the upper bound on the total stack usage is likely to be at least 31 units.

Context-dependent stack usage

The amount of stack space that a subprogram uses may depend on the input parameters and
thus on the context (the call path). For example, an integer parameter may determine the size
of a local array that the subprogram stores on the stack.

Bound-T supports context-dependent stack-usage bounds in the same way as it supports
context-dependent loop bounds. Bound-T first tries to bound the stack usage without context
information; if this succeeds, this generic bound is used for all calls of the subprogram. If the
context-independent analysis fails, Bound-T tries context-dependent analysis for ever longer
call paths; when stack usage bounds are found for some context, these bounds are used for all
matching contexts. That is, if Bound-T finds stack bounds for the subprogram B, in the context
A - B, it will use the same bounds for B in all call-paths that end with this call: ... - A - B.

When Bound-T fails to find stack usage bounds for some context (null or otherwise), it issues
an error message.

Assertions for stack usage missing

For the execution-time analysis, Bound-T offers assertions to specify the execution time of a
subprogram or a given call of a subprogram. At present, Bound-T does not offer such assertions
for stack usage analysis. If you want to exclude a subprogram from the stack usage analysis
you can do so by asserting its execution time, but this will leave the subprogram's stack usage
undefined (unbounded). Bound-T will report this as warnings and errors and will report the
final stack usage bound as an unsafe bound of the form "number + ?" where the number is the
stack usage bound that omits the variable part of the stack usage of the excluded subprogram
but includes the fixed part (the part that is imposed by the calling protocol as the initial value
of the local stack height).

32

Using Bound-T Bound-T User Manual

4.1

4.2

WRITING ANALYSABLE PROGRAMS

Why and How

To get the best results from Bound-T, you should write your programs to make them analysable
by Bound-T, by using suitable styles of design and coding. As you do so, you may well find that
the program becomes clearer also to human readers, and also more robust and predictable.

These design and coding styles (or rules, if you will) have nothing to do with the layout of
source code, or the naming of variables and functions; since Bound-T works on the machine
code, all those source-level issues have no effect. The important points are, rather:

+ All loops should have counters, at least "last resort" counters.

+ The initial value, increment, and final value of the counter should be simple (at most first
degree) expressions, and should be passed as single parameters rather than in structures or
arrays.

+ Dynamically computed jumps, such as switch/case statements, should be avoided, or
limited to forms for which your compiler creates code that Bound-T can analyse.

« Dynamically computed calls, such as calls through function pointers, should be avoided as
much as possible.

We will show examples as we go along.

Count the Loops

A loop counter is a variable that grows on each iteration of the loop, such that the loop
terminates when the counter reaches or exceeds some value. Of course, the counter may as
well be decreased on each iteration, and terminate the loop when it reaches or falls below
some value. The former is an up-counter and the latter a down-counter.

An up-counter example in Ada, with i a loop counter:

for i in 1 .. 17 loop
Foo (A, B(i));
end loop;

A down-counter example in C, with j a loop counter:
j=17;
do {
Foo (A, B[]]);
j-=2;
} while (j > 0);

During the arithmetic analysis of a subprogram, Bound-T finds the potential loop counter
variables for each loop and tries to bound the initial value, the step value (increment or
decrement), and the limit (loop-terminating) value of each potential loop counter. If it
succeeds, it bounds the number of repetitions of the loop. If there are several loop counters for
the same loop, Bound-T uses the one that gives the least number of repetitions.

Bound-T User Manual Writing Analysable Programs 33

To be avoided are simple while-loops such as polling loops, for example waiting on an A/D
converter:

Start_AD Conversion (channel);
while AD Is Busy loop

null;
end loop;

Obviously, Bound-T cannot know how many times this loop runs. On the other hand, can you?
For a robust, fault-tolerant program, surely it would be better to place an upper bound, say
100, on the number of polls:

Start_AD Conversion (channel);

polls := 0;

while AD Is Busy and polls < 100 loop
polls := polls + 1;

end loop;

Now polls is an up-counter and Bound-T determines that the loop runs at most 100 times. Note
that the same effect can be had in different ways, one alternative being

Start AD Conversion (channel);

for polls in 0 .. 99 loop
exit when not AD Is_Busy;
end loop;

In nested loops, each level should have its own counter variable. For example, assume that the
program is processing a rectangular image stored as an array pix indexed O .. pixels — 1,
containing a certain number of image rows (scan lines), each with cols pixels. The image could
be scanned by two nested loops in this way:

i = 0;
while i < pixels loop
-- Here pix(i) is the start of a row.
next row := i + cols; -- Start of next row.
while i < next_row loop
process pix(i);
i =1+ 1;
end loop;
end loop;

Bound-T cannot find loop-bounds in the above code because the same counter (i) is used in the
inner loop and the outer loop, and moreover the counter range for the inner loop is different
on each iteration of the outer loop. Instead, use a different counter for the inner loop, and
make its initial and final values independent of the counter of the outer loop:
i = 0;
while i < pixels loop
for j in 0 .. cols — 1 loop
process pix(i + Jj);
end loop;
i =i + cols;
end loop;

In this form of the code Bound-T has a good chance of finding the loop-bounds if it can find
bounds on the values of the variables pixels and cols.

34 Writing Analysable Programs Bound-T User Manual

4.3

4.4

Simple Steps and Limits

A loop counter is useful for Bound-T only if Bound-T can compute static bounds on the initial
value, the step and the limit value. With the current analysis algorithms, this means that each
of these values should be of one of the following forms:

« aliteral value, such as 123,
+ asimple expression (see below) computed from such values, or

- an independent input parameter (not a component of an array or a record/struct) which is
given such a simple actual parameter value at some call of the subprogram under analysis.

Bound-T propagates literal integer values along the program flow and into calls (for one or
more levels), but not back up from callees to callers.

First Degree Formulas

While propagating values for loop-counter analysis, Bound-T can only evaluate formulas of
degree 1 in any variable. The reason for this is that Bound-T uses a formalism called
Presburger Arithmetic, which is a solvable subset of integer arithmetic but does not allow
multiplication of variables (which essentially is the reason why it is solvable).

In practice, this means that you should avoid using multiplication in your loop-counting
formulas, except when one or both of the factors are compile-time literals. For example,
assume that you are implementing a C subprogram Sum to the following specification:

float Sum (float image[], int rows, int cols);
/* Computes the sum of the floating point image which is */
/* stored in image[] row-wise with no gaps between rows. */

An optimizing C programmer would probably write this body for Sum:

{ int pixels, i;
float total = 0.0;
pixels = rows*cols;
for (i = 0; i < pixels; i++) {
total += image[i];
}

return total;

}

Bound-T may be unable to bound this loop because it does not know the value of rows*cols,
even if rows and cols are known (from a call). The loop should be written in the nested form:

{ int i, row start, J;

float total = 0.0;

for (i = 0; i < rows; i++) {
row_start = cols*i;
for (j = 0; Jj < cols; j++) {

total += image[row_start + j];

}

}

return total;

}

Although this code also contains a multiplication to compute row_start, this does not influence
the loop counters and so does not hinder the analysis.

Bound-T User Manual Writing Analysable Programs 35

4.5

4.6

For target processors that have a native multiplication instruction Bound-T's constant-
propagation analysis may be able to compute the value of rows*cols when the values of the
factors are known, and then Bound-T should be able to bound the Sum loop in its original
unnested form.

Sign Your Variables

When a program variable has an unsigned type (C) or modular type (Ada), special arithmetic
wrap-around rules apply if the variable is assigned an expression with a negative value. For
example, if an unsigned 16-bit variable is decremented starting from the value zero, it will get
the value 2'°-1. These rules are similar to overflow rules, and Bound-T currently cannot
handle them in its arithmetic analysis. Thus, loops that use unsigned counter variables or
unsigned counter arithmetic usually cannot be automatically bounded.

Therefore we recommend that all loop-counter variables should be declared as signed variables
and only instructions meant for signed arithmetic and signed comparisons should be applied to
them, as detailed in the target Application Notes. However, for some target processors it may
be better to use unsigned counters, so please refer to the relevant Application Note for your
target.

In the Ada language, loop counters are often of an enumerated type or a non-negative integer
type (type natural or positive) for which the compiler may use unsigned-arithmetic
instructions. We are working to extend Bound-T to handle such code.

Go Native by Bits

Most programming languages provide integer types of different widths, that is, different
number of bits and different numerical ranges. For example, the C language provides char,
short, int, long and perhaps more types, while the Ada language lets the programmer define
application-specific integer types by stating the required range, as in type counter type is
range O .. 670. For both languages the compiler chooses the actual number of bits in the
physical representation of the type, following some rules laid down in the language standard
and taking into account the word size of the target processor.

Bound-T's arithmetic analysis models the native instructions of the target program which
means that it models arithmetic on the native word size. The analysis of loop bounds thus
works best if the loop counters also use the native word size. When possible you should declare
the loop-counter variables and related quantities (initial and final values and counter steps) to
have the native number of bits. For example, on an 8-bit processor such as the Intel-8051
architecture loop counters should be 8 bits (usually char in C), while on a 32-bit processor
such as the ARM they should be 32 bits (usually int or long in C).

« If a loop counter is declared to be narrower than the native word size, the compiler may
have to insert masking operations to make the code work as the language requires. These
masking operations are usually bitwise logical and instructions and may confuse Bound-T's
analysis of the loop counter.

+ If a loop counter is declared to be wider than the native word size, the compiler has to use
two or more words (registers) to store the variable and has to generate instruction
sequences for each arithmetic operation. For example, a 16-bit addition on an 8-bit machine
is usually implemented by an 8-bit add of the lower octets followed by an 8-bit add-with-
carry of the higher octets. Bound-T is generally unable to deduce that such instruction
sequences represent a 16-bit addition and thus will fail to bound the loop.

36

Writing Analysable Programs Bound-T User Manual

4.7

4.8

4.9

Using the native word size may be impossible; for example, a loop that repeats 1000 times
cannot use an 8-bit counter. You must then use a counter that is wide enough and assert the
loop bound.

Aliasing, Indirection, Pointers

Most programming languages support the concept of pointers or access variables. Thus, there
can be an integer variable n, say, and a pointer p that can point to some integer variable.
Assuming that p currently points to n, the value of n can be changed either by a direct
assignment to n, such as n := 5, or by an indirect assignment via p, such as p.all := 5 (Ada) or
*p = 5 (C). The two names, n and p.all or *p, are then aliases for the same integer variable.

Aliasing can also result from parameters that are passed by reference, since the same variable
may then be accessible via several different parameters, and perhaps also directly (as a global).

Bound-T currently does not analyse aliasing (also called "points-to analysis"). Thus, if your
program modifies loop-counting variables (either counters, or limits, or steps) via aliased
references or pointers, Bound-T may give incorrect loop-bounds. It is therefore most important
to avoid such coding practices if you wish to rely on automatic loop bounding.

Bound-T attempts to resolve the true address of all dynamic (indirect, indexed) memory
accesses, and this may reveal some aliases which are then handled correctly. If an address is
not resolved, Bound-T by default does not emit a warning because the failure is usually
harmless: the unresolved addresses usually access arrays and not loop counters. To be quite
certain they should be manually inspected. Use the option -warn access to make Bound-T issue
warnings for all unresolved dynamic memory accesses.

Of course we intend to improve Bound-T in this area.

Switch to Ifs

To implement switch/case statements, many compilers use complex code that involves
indexed or sorted tables of addresses. While we try to make Bound-T understand such code, it
may be safer to avoid switch/case statements and instead use a cascade of conditionals (if -
else if — else). Moreover, for many forms of switch/case statements Bound-T must use its most
powerful form of analysis, called “arithmetic” analysis, and this can take a long time.

The Application Note for a specific target processor or target compiler will explain which
switch/case forms are supported. Sometimes the right compiler options can make the compiler
emit analysable switch/case code.

No Pointing at Functions

A static call is a subprogram call that defines the callee subprogram statically and directly by
giving the actual name or address of the callee. However, many programming languages also
support dynamic calls — subprogram calls where the callee is defined by some form of dynamic
run-time value. The C language provides function pointer variables; the Ada language provides
access-to-subprogram variables; object-oriented languages provide late-bound or “virtual”
methods.

In the machine code, a static call instruction defines the entry address of the callee by an
immediate (literal) operand, while a dynamic call uses a register operand.

Bound-T User Manual Writing Analysable Programs 37

A static call has exactly one callee; every execution of the call invokes the same callee
subprogram. In contrast, a dynamic call may invoke different subprograms on each execution,
depending on the entry address that is computed, so a dynamic call in general has a set of
possible callees.

Bound-T needs to know the callee(s) of each call in order to construct the call graph of the root
subprogram to be analysed. This is obviously much easier for static calls. For dynamic calls
Bound-T can find the callees automatically only in some special cases and only if the
computation of the callee or callees depends only on statically known data in the calling
subprogram (not, for example, on parameters of the calling subprogram or on global
variables). Therefore you should avoid dynamic calls in the target program. The main
alternative is to replace each dynamic call by a control structure that selects between the
equivalent set of static calls — a switch/case structure, or an if-then-else cascade.

If you must use dynamic calls you can use assertions to list the possible callees for each
dynamic call. See section 5.7 for examples and section 8.14 for the assertion syntax.

38

Writing Analysable Programs Bound-T User Manual

5.1

WRITING ASSERTIONS

What Assertions Are

When the looping structure of the target program is too complex for Bound-T to find good loop
bounds automatically, the user can help with user assertions that fill in the gaps in the
automatic analysis. These assertions can directly state loop-repetition bounds or other
constraints on the execution paths. The assertions can also, or instead, state constraints on
variable values or other items from which automatic analysis can derive loop bounds and other
bounds on the execution path.

Assertions can also improve the precision of the automatic analysis by making the computed
worst-case time-bounds closer to the real worst-case times. For example, an assertion can limit
the number of times a computationally heavy branch in a conditional statement in a loop is
chosen, giving a realistic mix of light and heavy executions of the statement.

Embedded control programs often have several "modes" of execution. For example, the
attitude-control software on a spacecraft may have a safe mode, a coarse-pointing mode and a
fine-pointing mode. The active software tasks, their activation frequencies and their execution
paths can be quite different for different modes. Thus, the worst-case execution time analysis
and schedulability analysis should be done separately for each mode. You can use assertions to
select the mode-specific execution paths.

Finally, you can use assertions to analyse special cases such as cases where the target program
has empty inputs or invalid inputs. Sometimes it is useful to know the execution time of such
special cases even if it is much less than the execution time of normal cases.

The assertion file

You write assertions in a text file, using the text editor of your choice, and use the option
-assert filename to tell Bound-T to use this assertion file in the analysis. You can use this option
several times to use assertions from several files. Examples of assertions were already shown in
Chapter 3. The present chapter introduces the full assertion language by description and more
examples. Chapter 8 defines the formal syntax and meaning of the assertion language.

The assertion language is "free format" and treats line separators and comments as white-
space. White-space can appear between any two lexical tokens (keywords, numbers, strings).
You can thus lay out and indent the assertion text as you please. The examples in this chapter
generally use indentation systematically but divide the text into lines less systematically,
depending on the length and structure of the assertion text.

It is a good idea to motivate and describe you assertions in the assertion file. Comments can be
written anywhere in the file where white-space can appear. A comment begins with a double
hyphen "--" and extends to the end of the line.

Target-specific issues

The assertion language is designed to be generic and independent of the target processor.
Nevertheless, the types of assertion that can be handled may depend on the target, in
particular on the compiler and linker and on the form and content of the symbolic debugging
information in the executable file.

The target-specific Application Notes explain such limitations, which may also depend on the
target compiler options, such as the optimisation level.

Bound-T User Manual Writing Assertions 39

While the assertion language is generic, the target processor and the target programming tools
define how assertions should refer to subprograms and variables by name or by machine-level
address. The target-specific Application Notes explain the naming rules.

Assertion pre-processing

Bound-T reads the assertions from one or more optional input text files named with the -assert
option. It may be convenient to combine assertions from several files, for example if the
program uses libraries for which assertion files already exist. However, for reusable libraries
the assertions must often use different numbers, for example different loop bounds, depending
on the application that uses the library. For such cases we recommend that a preprocessor such
as cpp or m4 be used to preprocess the assertion files. This will allow the use of macros
(#defines) to parametrise the assertions, for example by the size of the input-data assumed in
the worst-case scenario.

5.2 Assertion = Context + Fact
An assertion expresses some fact that holds in or for some context, within the target program
under analysis.
Facts
The following sorts of facts can be asserted:
+ variable value range (minimum, maximum or both),
+ execution count of a call or loop,
+ worst-case execution time of a subprogram or a call,
+ the possible callees of a dynamic (indirect, computed) call,
 invariance (constancy) of a variable in a part of the program,
+ value or range for some target-specific property in a part of the program.
Contexts
The following sorts of contexts can be used in assertions:
 the whole program (global context),
+ asubprogram,
+ aset of loops,
+ aset of calls.
The set of loops or calls is defined by syntactic or semantic properties. Nesting the loop or call
context within a subprogram context limits the set of loops or calls to those within this
subprogram. Otherwise the set can contain loops or calls from any subprogram.
There are actually two kinds of subprogram context: the subprogram entry point, where facts
about the initial state (entry state) can be asserted, and the subprogram body, where facts that
hold throughout the subprogram can be asserted. Figure 3 below shows an example assertion
file and points out the different kinds of facts and contexts in the file.
40 Writing Assertions Bound-T User Manual

variable value

in global context ——variable "factor" >= 20;:

all calls to "Halt" comment
~ -— Assume Halt is never calledJ
E§ execution f :
Q — : i .
%% count for call rep eat 0 tlmes’,.....,é
© end calls; variable value on
subprogram entry
subprogram "routing" (é;;riable "n" 10;2)
variable vajue] variable "retry" 1 5;
in subprog body Y ——.—
loop éthat calls "send": loop description
repetition] o : o
count for loop ———————repeats 10 times;.
X variable value __,—évarlable msglen” 12;
2 in loop context end loop; call description
S
©
S opulation for
o p o — icalls to "send"ithat are in (loop).
s call description i =
_Q
S
0n

] ‘repeat <=1 time;é
execution] :

count for call end calls;

call to "send" that is not in (loop)

call block in variable "msglen" <= 20;.
subprogram et ;

end call; variable in
call context

end "routing";

subprogram "signal"

execution time | Etime 312 cycles;§
for subprogram : -

subprogram
block

end "signal";

Figure 3: An assertion file

The rest of this chapter discusses and gives examples of most types of assertions. We will first
focus on the facts that can be asserted and the allowed combinations of fact and context. Then
we will show in more detail how to define contexts, in particular loop and call contexts. For

Bound-T User Manual Writing Assertions 41

5.3

simplicity we will assume execution time (WCET) analysis but many of the examples are valid
also for stack usage analysis. Stack usage analysis usually requires fewer assertions because
loops do not have to be bounded.

Assertions on the Repetition of Loops

Why?

An repetition assertion for a loop bounds the number of times the loop is repeated (iterated)
each time execution reaches this loop. The form of the assertion is “repeats N times” where N is
a number or a range of numbers. (There is a nice point about which parts of the loop are
repeated this number of times; see section 8.10 for an exact definition.)

For analysing execution time, you must give assert a repetition bound for each loop that
Bound-T does not bound automatically. Even for automatically bounded loops you may use a
repetition assertion to set a smaller repetition bound if the automatically determined bound is
unrealistically large.

Consider unrolling

Bound-T applies loop-repetition assertions to the machine-code form of the loop. There are
several compile-time code optimizations that can alter the number of repetitions of the loop.
For example, if the source-code loop copies 40 octets from one place to another, the compiler
may decide to “unroll” the loop so that it instead copies 20 words of 16 bits or 10 words of 32
bits. The source-code loop-bound of 40 may correspond to a loop bound of 20 or 10 in the
machine code. Other optimizations or code transformations may reduce the number of
repetitions by one or change it in other ways.

Thus, to assert the correct repetition count you should look at the machine code and not only
at the source code. See section 8.10 for a precise explanation of the meaning of a repetition-
count assertion for a loop. Instead of loop-repetition assertions you could try to help the
automatic loop-bound analysis by asserting bounds on variable values as explained in
section 5.8 below.

Looping in a subprogram

The most common assertion bounds the number of repetitions of a loop in a subprogram. The
assertion must identify the subprogram (usually by name), the loop (or loops) in question
(usually by some properties of the loops) and state the number of repetitions. Thus, the
assertion consists of a “subprogram block” that contains a “loop block” that contains an
repetition-count fact.

Here is how to assert that in the subprogram Reverse List the two loops that call Swap_Links
repeat (each) exactly 100 times:

subprogram "Reverse List"
all 2 loops that call "Swap_ Links"
repeat 100 times;
end loops;
end "Reverse List";

The part “all 2” says that we expect this assertion to match exactly two loops in Reverse List. If
there are less than two or more than two loops that call Swap_ Links Bound-T will report an
error in the assertion-matching phase.

42

Writing Assertions Bound-T User Manual

Looping in any subprogram

If loops with certain properties have the same repetition bound in all subprograms, the same
loop-block can be made to apply in all subprograms by writing the loop-block alone, in the
global context, without an enclosing subprogram block.

Here is how to assert that any loop in the whole program (or the part of the program we are
now analysing) that uses (reads) the variable Polling Count repeats at most 24 times:

all loops that use "Polling Count"
repeat <= 24 times;
end loops;

The keyword all (without a following number) means that any number of loops can match this
assertion.

Nested loops

Bound-T analyses nested loops independently. It may find bounds for all, none or any levels of
a loop nest, so you may need to help by asserting bounds for all, none or any levels. The level
that an assertion addresses is identified by saying whether the loop contains or is contained in
another loop.

For example, assuming that the subprogram Add Matrix contains a two-level loop nest, that is
an outer loop that contains an inner loop, here is how to assert that the outer loop repeats 10
times and the inner, 20 times:

subprogram "Add Matrix"
loop that contains (loop) -- The outer loop.
repeats 10 times;
end loop;
loop that is in (loop) —-- The inner loop.
repeats 20 times;
end loop;
end "Add Matrix";

For deeper nesting, the descriptions “contains (loop)” and “is in (loop)” must be extended to
describe the nesting of the inner or outer loop, too. For example, here is how to assert bounds
on a three-level loop nest in the subprogram Multiply Matrix:

subprogram "Multiply Matrix"
loop that contains (loop that contains (loop)) -- Outermost loop.
repeats 10 times;
end loop;
loop that contains (loop) and is in (loop) —-- Middle 1loop.
repeats 15 times;
end loop;
loop that is in (loop that is in (loop)) —-- Innermost loop.
repeats 20 times;
end loop;
end "Multiply Matrix";

Bound-T User Manual Writing Assertions 43

5.4

Non-rectangular loops

In some nested loops, the number of repetitions of the inner loop is not constant but depends
on the iteration number of the outer loop. For example, here is an Ada loop that traverses the
“lower triangle” of a 100 x 100 matrix M:

for T in 1 .. 100 loop
for J in 1 .. I loop -- Note the upper bound!
Traverse (M(I,J));
end loop;
end loop;

The outer loop repeats 100 times. The inner loop repeats I times where I is the counter for the
outer loop. On the first iteration of the outer loop (I = 1) the inner loop repeats once; on the
last iteration of the outer loop (I = 100) the inner loop repeats 100 times. At present, it is not
possible assert such a variable bound for the inner loop, nor can Bound-T deduce such a
variable bound automatically.

As a work-around, you can assert an “average” bound on the inner loop such that the total
number of repetitions of the inner loop is correct, or close. In this example, when the outer
loop is finished the inner loop has been repeated a total of 100 % (100 + 1) / 2 = 5050 times.
Thus, the average number of repetitions of the inner loop for each repetition of the outer loop
is 5050 / 100 = 50.5. The closest possible assertion is 51 repetitions:

loop that is in (loop) repeats 51 times; end loop;

This assertion corresponds to a total of 51 X 100 = 5100 repetitions of the inner loop, an
overestimation of 50 repetitions compared to the true number of 5050 repetitions.

In this example you can remove this overestimation because the inner loop always calls the
subprogram Traverse and you can assert the total number of times this call occurs as follows:

call to "Traverse" repeats 5050 times; end call;

This assertion makes Bound-T compute a WCET bound that corresponds to exactly 5050
repetitions of the inner loop. (However, you also have to make the loop assertion unless
Bound-T bounded the loop automatically.) The next section shows more examples of
execution-count assertions for calls.

Assertions on the Execution Count of Calls

Why?

An execution-count assertion for a call defines the number of times the call is executed in each
execution of the caller. The form of the assertion is “repeats N times” where N is a number or a
range of numbers.

It is never necessary to assert the execution count of calls, because Bound-T can determine a
finite WCET bound without such assertions as long as all loops are bounded (automatically or
by assertions). However, execution-count assertions on calls can often improve (sharpen) the
WCET bound. Without such assertions, the WCET bound may include an unrealistically
(infeasibly) large number of some calls, or even some calls that should not be included at all
because they represent a scenario that you want to exclude from the analysis.

44

Writing Assertions Bound-T User Manual

You can use an execution-count assertion for a call to exclude certain execution paths
completely, or to limit the number of times certain execution paths are taken within loops.
However, sometimes a better way may be to help the automatic control-flow analysis by
asserting bounds on variable values as explained in section 5.8 below.

Don't take that path in that subprogram

Perhaps the most common assertion of this type is to exclude a certain path in a subprogram
by asserting that a call in that path is executed zero times. The usual reason for this is to
exclude certain unusual scenarios from the worst-case analysis.

The assertion must identify the subprogram (usually by name), the calls in question (usually
by the name of the callee) and state that the call is executed zero times. Thus, the assertion
consists of a “subprogram block” that contains a “call block” that contains an execution-count
assertion.

Assume that the subprogram Invert Matrix calls the subprogram Report_Singularity if it detects
an error. The following asserts that no such call is never executed, in other words, that the
error case is excluded from the analysis:

subprogram "Invert Matrix"
all calls to "Report_Singularity"
repeat 0 times;
end calls;
end "Invert Matrix";

The resulting WCET bound for Invert Matrix will not include execution paths that involve calls
to Report_Singularity.

Don't take that path in any subprogram

When all calls to a certain callee subprogram should be excluded everywhere (from all caller
subprograms) the easiest way is to mark the callee subprogram unused as explained in
section 5.11. That will also prevent the (useless) analysis of the callee subprogram itself.

If you want to exclude all calls to a subprogram from the analysis of the callers, but still want
to analyse the callee subprogram itself, the call-block and its execution-count assertion can be
made to apply in all caller subprograms by writing the call-block alone (in global context)
without an enclosing subprogram block. Here is how to assert that the subprogram Halt is
never called:

all calls to "Halt"
repeats 0 times;

end calls;
Whenever Bound-T finds a call to Halt this assertion makes the execution path that leads to the
call infeasible. However, Bound-T will still analyse the Halt subprogram itself, although this
analysis is not needed for the analysis of callers. To prevent this useless analysis, also give an
execution-time assertion for Halt, for example

subprogram "Halt" time 0 cycles; end "Halt";

or simply assert that Halt is unused:

subprogram "Halt" unused; end "Halt";

Bound-T User Manual Writing Assertions 45

and then you can drop the assertion on calls to Halt as redundant.

Don't call every time

It is common for loop bodies to include call statements that are conditional, so they are not
necessarily executed on every iteration of the loop. If there are no assertions to prevent it,
Bound-T will compute a WCET bound that assumes that every loop iteration takes the longest
path through the loop-body. If the longest path includes a conditional call that in reality is
executed rarely, for example only once for every 100 loop iterations, the WCET bound may be
strongly overestimated. To make the WCET bound more precise, you can assert a smaller
execution count on the call.

Assume that the subprogram Emit_Message contains a loop that stores bytes in a buffer one by
one and calls Flush Buffer when the buffer becomes full, as in the following Ada-like
pseudocode:

procedure Emit Message is
begin
for K in 1 .. Message Length loop
put message byte number K in Buffer;
if Buffer is full then
Flush Buffer;
end if;
end loop;
Flush Buffer;
end Emit Message;

(The purpose of the final call to Flush_Buffer is to emit the partially filled buffer.) Assume that
Message Length is at most 1000 and that the Buffer can hold up to 100 bytes. The longest path
through the loop body includes the call of Flush_Buffer, so by default the WCET bound for the
loop will include 1001 calls of Flush Buffer (1000 in the loop plus the one at the end).
However, at most 11 calls can occur in a real execution (10 in the loop plus the one at the
end). The WCET bound will probably become much more accurate if we assert this:

subprogram "Emit Message"
call to "Flush Buffer" that is in (loop)
repeats <= 10 times;
end call;
end "Emit Message";

Note that this assertion does not apply to the last call of Flush Buffer because it specifies the
call property “is in (loop)”. However, the effect would be the same without this restriction
because the automatic analysis knows that the last call executes once, so an additional
assertion that it executes at most 10 times has no effect.

No totalisation

We can build on the last example, Emit Message and Flush_Buffer, to illustrate a short-coming
of the current assertion language. A real implementation of Emit Message could be more
complex and have several statements that put bytes in the Buffer followed by conditional calls
to Flush_Buffer. For example, the message might be divided into a header and a trailer with
one loop generating the header and another loop generating the trailer. If the header and
trailer lengths can vary independently, but the total message length is still at most 1000 bytes,
we know that the total number of calls of Flush Buffer is still at most 10, but we cannot assert
this because an assertion like

46

Writing Assertions Bound-T User Manual

5.5

5.6

all calls to "Flush Buffer" repeat <= 10 times; end calls;

applies separately to each statement that calls Flush_Buffer. The call in the header loop will
contribute 10 calls to the WCET bound and so will the call in the trailer loop, for a total of 20
Flush_Buffer calls in the WCET bound for Emit_Message.

You can work around this problem by asserting a smaller number of call repetitions, for
example 5 repetitions for each call.

Assertions on the Execution Time of a Subprogram

Why?

If you assert an execution time for a subprogram Bound-T will not analyze the subprogram at
all. Instead, Bound-T assumes that any call to this subprogram takes the asserted time. There
are several situations in which this is useful:

+ The subprogram is not yet implemented, but it has an execution time budget and you want
to analyse the overall execution time under this budget.

+ Bound-T cannot analyse the subprogram for some reason (for example due to an irreducible
flow-graph or recursive calls), but the subprogram's execution time has been determined in
some other way.

+ The subprogram was already analysed and its WCET bound is known, but you do not want
to re-analyse the subprogram, perhaps because the analysis takes a long time. For example,
library subprograms or kernel subprograms may be handled in this way.

If you know that the subprogram is never called, and so there is no need to analyse it, you
should assert that the subprogram is unused; see section 5.11.

Time of a subprogram

An assertion of this kind consists of a subprogram block that contains a time fact. Here is how
to assert that any call of the subprogram Change_Priority takes 23 cycles:

subprogram "Change Priority"
time 23 cycles;
end "Change Priority";

Assertions on the Execution Time of a Call

Why?

The execution time of subprograms often depends on the calling context. Bound-T can
sometimes analyse this dependency automatically, for example when loop-bounds depend on
parameter values in a simple way. When an automatic context-dependent analysis is not
possible you can assert a context-dependent execution time manually, by asserting the
execution time of a specific call of the subprogram. This makes the overall WCET bound more
accurate than if a context-independent worst-case time were used for all calls.

Bound-T User Manual Writing Assertions 47

You would typically determine the execution time for a specific call by analysing the
subprogram separately under specific assertions for this call. For example, you may assert that
some paths in the subprogram cannot occur in this call. Then you translate the resulting WCET
bound into an execution-time assertion for the call and analyse the caller under this assertion.

Calling from one subprogram

Suppose that the subprogram Find Angle contains a conditional call to Reduce Argument as in
the following C code:

void Find Angle (double arg; double *angle)

{
if (fabs(arg) > PI) Reduce_Argument (&arg);
*angle = Find Normal Angle (arg);

}

The execution time of a call to Find Angle may depend greatly on whether or not it actually
calls Reduce Argument, that is, on the magnitude of the arg parameter. However, Bound-T does
not analyse floating-point computations and so it cannot solve this context dependency and
will use the worst-case time (including Reduce Argument) for all calls of Find Angle. On the
other hand, for a given call of Find_Angle you may know that arg will be small enough so that
Reduce_Argument is not called. For example, such a constraint may be a precondition as in the
following subprogram:

void Compute_Shadows (double *args[]; double main_arg)

/* Precondition: All args[0..255] are between -PI and PI. */
/* Note that this precondition does not apply to main_arg. */
{ double angles[256], main_angle;

Find Angle (main arg, &main_angle);
for (i=0; i<255; i++) Find Angle (args[i], &(angles[i]));
}

The subprogram Compute_Shadows contains two calls to Find_Angle. The first call (before the
loop, for main_arg) may call Reduce Argument. The assumed precondition on the args
parameter means that the second call (in the loop) never leads to a call of Reduce Argument.
This means that the WCET bound for Compute_Shadows may be greatly over-estimated if the
context-independent WCET bound for Find_Angle is used for both calls.

To make a context-dependent analysis, analyse Find Angle separately (that is, as a root
subprogram) under an assertion that excludes the call of Reduce_Argument:

subprogram "Find_Angle"
call to "Reduce Argument" repeats 0 times; end call;
end "Find_Angle";

Assume that this gives a WCET bound of 127 cycles for Find Angle. Now we can analyse
Compute_Shadows with a context-specific time for the second call of Find_Angle. The context of
the assertion is Compute_Shadows and this call, while the asserted fact is the execution time of
the call:

subprogram "Compute Shadows"
call to "Find Angle" that is in (loop)
time 127 cycles;

48

Writing Assertions Bound-T User Manual

5.7

end call;
end "Compute Shadows";

Thanks to the part “that is in (loop)” the execution time of 127 cycles applies only to the
Find_Angle call that is in the loop where we know that Reduce Argument is not called. The
other call (for main_arg) uses the context-independent WCET bound for Find Angle that
includes a possible call to Reduce Argument. If this bound for Find Angle is 321 cycles, for
example, the context-dependent analysis improves the WCET bound for Compute_Shadows by
256 x (321 - 127) = 49 664 cycles.

Calling from any subprogram

If the same execution time assertion should apply to all calls with certain properties within any
subprogram, the call-block and time-fact can be written in a global context and not within a
subprogram block. For example, here is how to assert that anywhere in the program, any call
of the subprogram Copy Block that is executed within a loop that defines (writes to, assigns to)
the variable short_counter takes at most 912 cycles:

all calls to "Copy_Block"
that are in (loop that defines "short counter")
time 912 cycles;

end calls;

Remember that Bound-T can only detect that a loop defines short_counter if the code in the
loop uses a static addressing mode to assign a value to short_counter, or a dynamic addressing
mode that Bound-T can resolve to a static address for short _counter.

Problems with manual work

This manual method of context-dependent analysis is not elegant and causes extra work if the
program must be analysed again. In the future, Bound-T may offer a way to write specific
assertions for the analysis of a callee subprogram in the context of a specific call. Bound-T will
then automatically find a specific WCET bound for this call by re-analysing the callee under
these assertions.

Assertions on the Callees of a Dynamic Call

Why?

Most programming languages support subprogram calls where the called subprogram - the
callee — is determined at run-time by some dynamic computation, and not statically at compile-
time. Calls of this sort are known as dynarmic calls in contrast to static calls.

On the source-code level static calls state the name (identifier) of the callee directly, while
dynamic calls generally dereference a function pointer variable (in C terms) or an access-to-
subprogram variable (in Ada terms). In the machine code, a static call instruction defines the
entry address of the callee by an immediate (literal) operand, while a dynamic call uses a
register operand or other dynamic operand.

A static call has exactly one callee; every execution of the call invokes the same callee
subprogram. In contrast, a dynamic call may invoke different subprograms on each execution,
depending on the entry address that is computed, so a dynamic call in general has a set of
possible callees.

Bound-T User Manual Writing Assertions 49

5.8

While Bound-T can try to analyse the computation that defines the callee(s) of a dynamic call,
this (currently) succeeds only in very simple cases where the dynamic computation is local to
the calling subprogram. Thus, to analyse a program that includes dynamic calls, you must
usually tell Bound-T what the possible callees are, based on your understanding of the target
program.

Where?

An assertion giving the possible callees obviously must be given in the context of a dynamic
call. This dynamic call is usually located in a specific subprogram body, but it can, in principle,
also be in a global context.

Dynamic call from a subprogram

Here is how to assert that the (only) dynamic call in the subprogram Take Action always calls
one of the subprograms Stop, Brake or Shut_Down:

subprogram “Take_Action”
dynamic call calls “Stop” or “Brake” or “Shut Down”;
end call;

end “Take_ Action”;

Any dynamic call in a certain kind of loop

If an assertion on the callees of a dynamic calls is written in a global context (without
specifying the containing subprogram) it is usually necessary to limit its application to calls
with some specific properties; otherwise the same assertion would apply to all dynamic calls in
the whole program.

As a (contrived) example, the following asserts that when a dynamic call is contained in a loop
that (statically) also calls the subprogram Start Speed Change, then the possible dynamic
callees are Slow _Down or Speed Up:

all dynamic calls
that are in (loop that calls “Start Speed Change”)
call “Slow_Down” or “Speed_Up”;

end calls;

Assertions on Variable Values

Why?

You use assertions to control the execution paths that Bound-T includes in its analysis. As
shown in the preceding sections, assertions on the repetition of loops or the execution count of
calls give direct control over the path. However, there are some problems with such assertions.
Firstly, they require you to study the code of the subprogram under analysis, to identify the
loops and calls for which such bounds should be asserted and to compute these bounds
yourself. Secondly, Bound-T interprets loop-repetition assertions relative to the machine code
of the loop, which means that the assertion should take into account any compiler
optimizations as discussed in section 5.3. Optimizations that duplicate code or merge similar

50

Writing Assertions Bound-T User Manual

code may duplicate or merge call instructions and should be taken into account in execution-
count assertions for calls. Thirdly, it may be hard or impossible to identify (describe) the loop
or call context for an assertion because the loops or calls have no distinguishing properties.

You can avoid these problems with direct repetition or execution-count assertions by instead
asserting bounds on the values of the variables that determine the execution path, for example
the number of loop repetitions, and letting Bound-T's analysis deduce loop-bounds and feasible
paths. On the other hand, this indirect control over execution paths works only if the variables
determine the path in a way that is simple enough for Bound-T to analyse and if Bound-T
actually performs this analysis. In particular, if Bound-T has found a context-independent
WCET bound for a subprogram it will not try to find context-dependent bounds even if more
assertions on variable values apply in specific contexts.

Where?

Bounds on variable values can be asserted in all contexts: subprogram body, subprogram entry,
loop, call, or global context. The variable in question can be a global variable, a subprogram
parameter or a local variable. Note that an assertion on a global variable can be given for a
non-global context, for example for a subprogram or a call, and then applies only in this
context.

In fact, Bound-T does not really distinguish between global variables and local variables; it just
maps the variable identifier to a memory location or a register and applies the assertion there.
Global variables are usually statically allocated (static memory address) while local variables
are often kept on the stack or in registers, but this distinction is not universal.

Globally

The simplest kind of variable-value assertion applies to a global variable in the global context.
For example, assume that a data-logger program has a global variable num_sensors that shows
from how many sensors it collects data. Here is how to assert that at most 15 sensors are active
at any point in the program:

variable "num sensors" <= 15;

This assertion should let Bound-T analyse and bound automatically any loops in the program
that run from 1 to num_sensors, for example.

In a subprogram body

Continuing the above example, assume that the data-logger program has a subprogram
Initialize that executes additional statements when there are no sensors, that is when
num_sensors is zero. If you want to exclude this case from the analysis, here is how to assert
that num_sensors is greater than zero within this subprogram:

subprogram "Initialize"
variable "num sensors" > 0;
end "Initialize";

If this assertion is given together with the earlier global assertion that num_sensors is at
most 15, the global assertion applies in all subprograms, including Initialize, but within
Initialize the local assertion also holds. Thus, within Initialize the num_sensors variable must be
in the range 1 .. 15. This could also be asserted directly as follows:

Bound-T User Manual Writing Assertions 51

subprogram "Initialize"
variable "num_sensors" 1 .. 15;
end "Initialize";

Note that these assertions let Initialize change num_sensors, but they do claim that the value
will never be greater than 15 or less than 1 within Initialize.

On subprogram entry

Perhaps you know the value that a variable has at the start of a subprogram, but not how the
variable changes within the subprogram. You can make a variable-value assertion apply only
on entry to the subprogram by writing the assertion in parentheses after the subprogram name,
at the start of a subprogram block. Still continuing with the data-logger example introduced
above, here is how to assert that num_sensors is less than 5 on entry to the subprogram
Initialize:

subprogram "Initialize" (variable "num_sensors" < 5;)
end "Initialize";

Since the assertion applies only on entry to Initialize, it says nothing about how Initialize
changes num_sensors. For example, Initialize can increase num_sensors to 11 without violating
this assertion.

If this assertion is given together with the earlier global assertion that num_sensors is at
most 15, the global assertion also holds on entry to Initialize, giving an upper bound of
min (15, 4) = 4 for num_sensors on entry to Initialize.

In a loop

As an example of a variable-value assertion in a loop context, here is how to assert that the
variable N is greater than 2 during any execution of the (only) loop in the subprogram
Fill_Buffer:

subprogram "Fill Buffer"
loop
variable "N" > 2;
end loop:
end "Fill Buffer";

This assertion does not constrain the value of N at any point outside the loop. The loop can
change N as long as the new value is also greater than 2.

Note that the set of statements that belong to the loop are defined by the loop logic rather than
by the syntax. For example, in the following Ada loop the statement that sets N to 1 is not
within the logical loop because it is followed by an exit statement and so is not repeated:

for k in 1 .. num_sensors loop
Sample Sensor (k);
if Done then
N := 1;
exit;
end if;
end loop;

Thus, this loop conforms to the assertion that N is greater than 2 in the loop.

52

Writing Assertions Bound-T User Manual

For calls

When the time or space usage of a subprogram depends on its parameters, or on some global
variables that have different values in different calls, you may want to assert that these
parameters or variables have certain values at a specific call or set of calls. You can do so by
writing variable-value assertions in the context of this call or set of calls. Here is how to assert
that the variable N equals 8 at any execution of any call to the subprogram Clear that occurs in
the subprogram Fill Buffer:

subprogram "Fill Buffer"
all calls to "Clear"
variable "N" 8;
end calls;
end "Fill Buffer";

Variable value bounds asserted in a call context apply in the caller, immediately before the
execution flows from the caller to the entry point of the callee. They do not imply any
constraints on variable values during the further execution of the callee.

Variable bounds asserted in a call context are used only for the context-dependent analysis of
the callee for this call. Such assertions are thus useful only if Bound-T has not found context-
independent bounds on the callee, because only in this case does Bound-T attempt context-
dependent analysis of the callee. The presence of call-context assertions currently does not
force a context-dependent analysis of the callee.

Global variables in calls

An assertion on the value of a global variable in a call context has the same effect as the same
assertion in the entry context of the callee subprogram. Call-context assertions are however
more flexible since you can use different values for different calls. Moreover, call-context
assertions may imply bounds on the actual parameter values for this call as explained below.

Local variables in calls

When there are assertions on variable values in a call context, and some of these variables
occur in the call's actual parameter expressions, the parameter-passing mechanism of the call
translates the asserted bounds on the caller's variables into bounds on the callee's (formal)
parameters. For example, consider an Ada call of the form

Send Nulls (N => K + 1);
where N is a formal parameter to Send_Nulls and K is a local variable in the caller. Assume that
the code for the caller keeps the caller's variable K in register r6, but the code for Send Nulls
expects the parameter N to be passed (by value) in register r0, and that we assert

call to "Send Nulls" variable "K" 4; end call;

The result is to assert that r6 at the call has the value 4 and so r0, representing the parameter
N of Send_Nulls, has the value 4 + 1 = 5 on entry to this invocation of Send Nulls.

Do not assert foreign local variables in calls

Take care to assert call-specific bounds only on global variables or variables that are local to
the caller or formal parameters of the caller. Assertions on the value of a variable that is local
to other subprograms (such as the callee) will probably not work correctly, because Bound-T

Bound-T User Manual Writing Assertions 53

translates the variable name to a machine-level local variable reference (such as a stack offset
or a register reference). Bound-T then applies this machine-level reference in the caller, so that
the assertion in fact bounds an unrelated local variable of the caller.

In particular, do not use the callee's formal parameter names in a call-context assertion. For
example, assume that the formal parameter N of Send_ Nulls (see the example in the preceding
subsection) is passed via the stack and not in register rO as assumed above. Now, although the
above assertion on K for the call to Send Nulls has the effect of bounding the formal parameter
N, it cannot be written as follows:

call to "Send Nulls" variable "N" 5; end call; -- Wrong!

Since the symbol table maps N to “the first stacked parameter”, this (wrong) assertion in fact
bounds the value of the first stacked parameter of the caller, which probably has nothing to do
with K or N.

You can break this rule only if you are sure that the formal parameter is mapped to a statically
addressed memory location or a statically named register so that the machine-level parameter
reference points to the same physical storage location when interpreted in the caller and in the
callee.

5.9 Assertions on Variable Invariance

Why?
When Bound-T analyses the computations in a subprogram or a loop it is often important to
know if some part of the code, such as the loop body or a call, can change the value of a
certain variable, or whether the variable is invariant (unchanged) over that code. Bound-T tries
to detect invariant variables automatically but this analysis, like many others in Bound-T, is not
complete and can miss some invariances. This can cause some other analysis to fail. For
example, Bound-T may fail to find repetition bounds for a loop if it does not detect that the
loop-counter variable is invariant over a call in the loop body. You can work around such
problems by asserting the invariance of the variable.
However, using invariance assertions is difficult: it is not easy to understand when they can fix
a problem and which invariances should be asserted. We aim to strengthen Bound-T's
automatic invariance analysis to reduce the need for invariance assertions.
An invariance assertion can apply to a subprogram context, a loop context or a call context. We
will discuss the subprogram context last because it is the strongest form.
Running example
Assume that num_data is a global integer variable and consider the C subprogram Scan_Data
that has a loop that counts from 1 to num_data and calls Check:

void Scan_Data

{ int n;

num _data = 100;
for (n = 1; n <= num_data; n++) Check(n);
}
54 Writing Assertions Bound-T User Manual

Assume further that Check has a conditional assignment to num_data. Since Check may change
num_data, Bound-T cannot deduce that the loop in Scan Data repeats 100 times. However,
suppose that we know that the condition in Check is false in this context so that in fact
num_data is unchanged. Below you will see different ways to assert this invariance and let
Bound-T analyse the loop.

In a call

An invariance assertion for a call context means that this call does not change the variable in
question, although other calls of the same subprogram may change it. Here is how to assert
that num_data is invariant in the call from Scan_Data to Check:

subprogram "Scan_Data"
call to "Check"
invariant "num data";
end call;
end "Scan Data";

In any call

An invariance that holds for all calls of a subprogram can be asserted in a global call context,
without an enclosing subprogram block. Here is how to assert that no call of Check changes
num_data:

all calls to "Check"
invariant "num data";
end calls;

In a loop

An invariance assertion with a loop context means that the variable retains its value in any
repetition of the loop body. In other words, when execution enters the loop head with a certain
value for this variable and goes through the loop body and back to the loop head, the variable
has the same value again, even if it had different values in between.

For the above example with Scan_Data, Check and num_data, another way to assure Bound-T
that num_data is invariant in the loop-counter code is this:

subprogram "Scan_Data"
loop
invariant "num data";
end loop;
end "Scan_Data";

Note that the final pass through the loop — the pass that ends the loop and does not return to
the loop head — can change the variable. For example, num_data can be asserted as invariant in
the following Ada loop, although its value on exit from the loop is different from its value on
entry to the loop:

loop
num_data := num data + 1;
exit when <some condition>;

Bound-T User Manual Writing Assertions 55

num _data := num data — 1;
end loop;

In any loop

An invariance that holds for all loops can be asserted in a global loop context, without an
enclosing subprogram block. Here is how to assert that num_data is invariant in any repetition
of any loop that contains a call of Check:

all loops that call "Check"
invariant "num data";
end loops;

In a subprogram

An invariance assertion with a subprogram context means that the variable in question is
invariant in all calls and all loops within this subprogram. The subprogram may contain
assignments to the variable as long as the variable remains invariant in loop repetitions. Other
subprograms called from this subprogram may change the variable temporarily as long as they
restore its original value on return.

Here is how to assert that num_data is invariant in this sense within Scan_Data:

subprogram "Scan_Data"
invariant "num data";
end "Scan Data";

This assertion implies those call-context and loop-context invariance assertions shown above as
nested in subprogram blocks for Scan_Data. In fact, it implies the following:

subprogram "Scan_Data"

all loops invariant "num data"; end loops;

all calls to "Check" invariant "num data"; end calls;
end "Scan_Data";

It also implies the analogous "all calls" invariance for any call from Scan Data to any
subprogram, not just for calls of Check.

Note that the invariance in the subprogram context of Scan_Data does not conflict with the
assignment of 100 to num_data in Scan_Data. Note also that it does not imply invariance over
a call of Scan Data. In fact, a call of Scan Data probably changes num data with this
assignment.

5.10 Assertions on Properties
Why?
For some target processors, the behaviour or timing of instructions depends on target-specific
factors that Bound-T cannot analyse in general. For example, accessing certain memory
locations may be delayed by "wait states" and the number of wait states may depend on the
56 Writing Assertions Bound-T User Manual

memory area or on processor configuration. The version of Bound-T for each target processor
defines a set of such "properties" for the target (this set may be empty). Each property has a
name and you can assert the value or range of values the property has in a certain context.

The available properties and their meanings are completely target-specific and are explained in
the relevant Application Notes.

Bounds on properties can be asserted in all contexts except subprogram entry. However,
properties for call contexts are currently not used (they have no effect).

Globally
Assuming that the current target processor has a property read ws, perhaps expressing the
number of wait-states necessary for reading memory, here is how to assert that Bound-T should

assume the value 1 for this property globally:

property "read ws" 1;

Inner context overrides outer context

Property assertions differ from variable-value assertions in that property assertions for inner
(more local) contexts override assertions for outer (more global) contexts. For example, you
can mix global context, subprogram context and loop context as follows:

property "read ws" 1; -- Global context.

subprogram "Copy"

property "read ws" 2; -- Subprogram context.
loop
property "read ws" 3; -- Loop context.

end loop;
end "Copy";

The result is that Bound-T will use, for read ws, the value 3 in the (single) loop in the Copy
subprogram, the value 2 elsewhere within Copy, and the value 1 everywhere else.

5.11 Special Assertions on Subprograms

Whether the subprogram returns

Some subprograms never return to the caller; the best known example is the exit function in C.
Knowing that a subprogram never returns can simplify the analysis of other subprograms that
call the non-returning subprogram. Here is how to assert that exit never returns:

subprogram "exit"
no return;
end "exit";

Bound-T User Manual Writing Assertions 57

Whether to use arithmetic analysis

The Presburger-arithmetic analysis that Bound-T uses to find loop-bounds and other facts can
be quite expensive in time and space. There is a command-line option (-arithmetic) to enable or
disable this analysis globally for all analysed subprograms, but it is sometimes useful to enable
or disable it for individual subprograms. Therefore, the assertion language lets you override
this command-line option. Here is how to enable arithmetic analysis for the subprogram
Involutor:

subprogram "Involutor"
arithmetic;
end "Involutor";

And here is how to disable it:

subprogram "Involutor"
no arithmetic;
end "Involutor";

Whether to integrate the callee into the caller's analysis

In special cases it may be useful to tell Bound-T not to analyse a subprogram separately, but as
a part of the code of every caller, as if the called subprogram were “inlined” in the caller. Such
integrated analysis may be necessary for subprograms that do not follow the normal calling
conventions, for example library routines that the compiler invokes as part of the “prelude” or
“postlude” code to set up or tear down local stack frames.

The following assertion shows how to specify integrated analysis for the subprogram C$setup:

subprogram "CS$setup"
integrate;
end "C$setup";

Bound-T may default to use integrated analysis for some predefined routines under some
target processors and target compilers; if so, it will be explained in the relevant Application
Notes. Such a default cannot be disabled by an assertion.

An integrated subprogram does not, in fact, appear as a “subprogram object” in Bound-T's
model of the program structure. Thus it is not useful to assert anything else for such a
subprogram. Moreover, since the subprogram is not analysed on its own, Bound-T does not
report any analysis results such as a WCET bound or stack usage bound for the subprogram.
Instead Bound-T includes the subprogram's execution time and stack usage in the results for
the calling subprograms.

Likewise, a call to an integrated subprogram does not appear as a “call object” in Bound-T's
model of the program structure. Thus, it is not possible to assert anything for such a call, nor
to use the existence of the call as a property that identifies a containing loop, for example.

Whether the subprogram is used at all

A program is often analysed under certain assumptions that define (limit) the scenarios to be
included in the analysis. For example, one often wants an analysis of the “nominal” scenarios
in which no run-time errors happen. One aspect of such scenarios may be that they never use

58

Writing Assertions Bound-T User Manual

5.12

(call) certain subprograms, for example error-handling subprograms. Bound-T provides a
dedicated form of assertion, as in this example that states that subprogram “Show_Error” is
never used:

subprogram “Show_Error”
unused;
end “Show_Error”;

An unused assertion has two effects: firstly, Bound-T considers all calls to this subprogram to
be infeasible (never executed); secondly and consequently, Bound-T does not analyse this
subprogram. The analysis results would be irrelevant.

The keyword unused can also be written as not used.

Whether to show the subprogram in the call-graph drawing

Bound-T can help you understand your program by drawing the call-graph as explained in
section 7.6. However, sometimes the call-graph is cluttered because some utility subprograms
are called from many places. For example, on some processors multiplication or division are
implemented by library subprograms so the drawing may have a multitude of call-arcs to these
subprograms. You can make the call-graph clearer by asserting that certain subprograms
should be hidden (omitted). For example, the following hides the subprogram m$divi:

subprogram “m$divi”
hide;
end “m$divi”;

The hiding assertion does not apply “recursively”: if m$divi calls some other subprograms these
are not automatically hidden but will appear in the call-graph drawing unless you assert that
they should be hidden too.

Scopes and Qualified Names

Scopes qualify names

Assertions refer to program entities by names (identifiers, symbols). A name can be a
subprogram name, a variable name or the name of a statement label. It is common to use the
same basic name for many different variables in a program, for example, many loop counters
may be called i or count. Sometimes the same basic name is used for different subprograms, for
example in different modules. Bound-T tries to separate such synonyms by adding scopes to the
names.

Scopes are nested hierarchically. The scope levels that are used depend to some extent on the
target processor and the target compiler and linker, but typically the top level identifies the
module (source-code or object-code file) and the next level (if any) identifies the subprogram
that contains the entity in question. The scope system is explained in the relevant Application
Notes.

The “fully qualified” name of an entity consists of the scope names followed by the basic
name, all enclosed in quotes and separated by a delimiter character that is usually the vertical
bar '|'. For example, the local variable i defined in the subprogram fill buffer defined in the
module (file) buffering would have the fully qualified name “buffering|fill buffer|i”.

Bound-T User Manual Writing Assertions 59

If the buffering module contains another subprogram initialize that has its own local variable i,
this would be “buffering|initialize|i”. If another module sink contains another
subprogram initialize that has its own local variable i, this would be “sink|initialize|i”.

Unique suffix suffices

You can always use the fully qualified name to identify a subprogram or a variable, but it is
enough to give those scope levels (starting from the bottom) that make the name
unambiguous.

“wen

In the examples above, the variable name “i” is clearly ambiguous. The partially qualified
name “initialize|i” is also ambiguous because it occurs in two modules, buffering and
sink, so you must use the fully qualified names “buffering|initialize|i” and “sink|
initialize|i” to refer to these two i variables.

The partially qualified variable name “fill buffer|i” is enough to identify the i in
fill_buffer because (in this example) there is only one subprogram called fill buffer.

The unqualified subprogram name “£ill buffer” is also unambiguous for the same reason.
The two initialize subprograms have to be qualified as “buffering|initialize” and
“sink|initialize” respectively.

Default scope

The assertion language provides the keyword within to let you set a default scope that is
prefixed to all names. Continuing on the examples above, after the default scope definition

within "buffering|initialize";

[0

you can write just “i” instead of “buffering|initialize|i”.

When a default scope is defined it applies to all name strings that start with a normal
character. Here the name “fill buffer|i” would be interpreted as “buffering|
initialize|fill buffer|i” which would probably not be a valid name. To ignore
(escape) the current default scope, put the delimiter character at the start of the name, as in
“| £i11l buffer|i”.

m

The default scope can be cleared by defining a null string as the default scope: within

Different delimiters

Some target compilers may use the vertical bar character '|' within names which means that it
cannot be used to delimit scope levels. The assertion language provides the keyword delimiter
for changing the scope delimiter, for example to a diagonal slash as follows:

delimiter '/';

Afterwards you would write for example “fi11 buffer/i” to refer to the variable i in the
subprogram fill_buffer.

5.13 Naming Subprograms
When writing assertions you may need to write a subprogram name in four places:
+ To define a subprogram context: subprogram "Foo" .. end "Foo";

60 Writing Assertions Bound-T User Manual

5.14

+ To define a call context: call to "Foo" .. end call;
« To characterize a loop by a call: loop that calls "Foo";
« As acallee of a dynamic call: dynamic call calls "Foo".

In all places you can either use the name or the entry address of the subprogram.

By symbolic name

Subprograms are usually named by writing the subprogram name in quotes: "Foo". If the name
is ambiguous (occurs in several modules, for example) it has to be qualified by a sufficient
number of scope levels: "database |Foo".

You must use the subprogram's link-name, that is, the name that the linker uses for this
subprogram. In some target environments the link-name equals the source-code name (the
identifier). In other environments the name is slightly modified, for example by prefixing an
underscore so that the source-code name Foo becomes the link-name " Foo". The Application
Notes for the target will explain this modification, if any. You can find out the link-names
assigned by the compiler and linker by dumping the target program with some dumping tool
such as the Unix tools nm or objdump, or by dumping the target program with Bound-T as
explained in section 6.2, or by running Bound-T with the option -trace symbols. The last
method also shows the scope that Bound-T assigns to each symbol.

By machine address
Subprograms can also be “named” by their machine-level entry-addresses, in the form
subprogram address "12345"

The form and meaning of the quoted string following the address keyword are in principle
target-dependent and explained in the Application Notes. The string is usually a hexadecimal
number giving the entry address. Of course this is a last-resort method, to be used only if the
function has no symbolic identifier.

Naming Variables

When writing assertions you may need to name variables in three places:

+ To assert bounds on the value: variable "count" <= 15;

+ To characterize a loop by a variable it uses or defines: loop that uses "count";
« To assert invariance: invariant "count".

In all places you can either use the name or the machine address of the variable.

By symbolic name

Most compiler tool-chains generate symbolic information giving the names and addresses of all
global variables, even for an optimised executable. Thus, global variables can be named and
tracked without problems. The same holds for formal and actual parameters.

Many examples of variable naming appeared earlier in this chapter.

In the current version of Bound-T it is not possible to name record/structure components
(members) or array components. Only stand-alone variables can be named symbolically.

Bound-T User Manual Writing Assertions 61

Symbolic information on local variables is sometimes not provided in an optimised executable.
Moreover, it seems likely that optimisation can have drastic effects on the set of local variables,
such as placing them in registers, perhaps even in different registers for different instructions.
The Application Notes should detail how local variables can be named with specific target
processors and target compilers.

You can find out the symbols that are available in the target program by dumping the target
program as explained in section 5.13.

By machine address

Variables can also be “named” by their machine-level addresses, in the form
variable address "12345"

The form and meaning of the quoted string following the address keyword are in principle
target-dependent, just as for subprogram addresses discussed above. It will usually be a
hexadecimal number giving the memory address, but targets may also make processor registers
accessible in this way. For example, the register called r3 in assembly language might be
named as follows in an assertion:

variable address "r3"

The syntax for register names is explained in the relevant Application Note.

Careful with the scope

Please note that Bound-T translates the variable name, as written in the assertion, to an
internal low-level data reference, such as a memory address, or a register name, or a stack
offset relative to the current call-frame pointer. Bound-T does not memorize which high-level
scope was used in this translation. Confusion can result if these scopes are mixed up.

For example, assume that subprogram Foo has a loop that uses a local variable x which the
compiler has placed in register 13, and subprogram Eek has a loop that uses its local variable y
which the compiler has also assigned to register r3.

Under these assumptions, the global assertion
all loops that use "Foo | X" repeat 5 times; end loop;
is translated into an internal form that corresponds to
all loops that use address "r3" repeat 5 times; end loop;
This loop description will match the loop in Foo but also the loop in Eek, and probably will also
match loops in a great number of subprograms that have nothing to do with either Foo or x but

use 13 for their own local purposes. So be careful when describing loops or calls by means of
local variables.

5.15 Identifying Loops
When writing assertions you may have to identify specific loops for the following reasons:
+ To define a loop context.
« To help identify a call by identifying the loop that contains the call.

62 Writing Assertions Bound-T User Manual

+ To help identify another loop by identifying an innner or outer loop.

Unlike subprogram and variables, loops seldom have names and thus we identify loops
indirectly through the properties or characteristics of the loop.

Loop properties
A loop can be identified firstly by the subprogram that contains the loop and secondly by
specific properties of the loop itself.

Writing loop assertions within a subprogram block specifies that the loop(s) to be identified lie
in this subprogram. Writing loop assertions in the global context specifies that the loop(s) to be
identified can lie in any subprogram.

In addition, the following specific properties or keywords can be used to identify loops:

is labelled The loop contains (or does not contain) a specific statement label.

calls The loop calls (or does not call) a specific subprogram.

uses The loop reads (or does not read) a specific variable.

defines The loop assigns (or does not assign) to a specific variable.

isin The loop is contained (nested) in another loop (or is not so contained).

contains The loop contains (or does not contain) another loop.

executes The loop contains (or does not contain) the instruction at a given machine

address. This property is meant as a last resort and is obviously not robust
against changes in the target program, recompilation with different compiler
options, or even relinking with a different memory lay-out.

The properties contains and is in make this identification scheme recursive in the sense that
the properties of an outer loop can be used to identify the inner loop, or vice versa.

Single loops or sets of loops are thus identified by listing some of their properties. Examples
follow. The examples mainly show loop repetition assertions but of course the same loop
identifications can be used to assert other kinds of facts, such as bounds on variable values
within the loop.

A silly example: all loops in the program

There is probably no target program where this would be useful, but just as an example here is
how to assert that every loop in the target program repeats 7 times. Write this in a global
context (not within a subprogram block):

all loops repeat 7 times; end loops;

The only loop in a subprogram

When there is only one loop in the subprogram under analysis, the loop can be identified
simply by writing the loop block within the subprogram block. It is not necessary to add
specific loop properties. For example, here is an assertion that the single loop in subprogram
Stop_Motor repeats 11 times:

subprogram "Stop_Motor"
loop
repeats 11 times;

Bound-T User Manual Writing Assertions 63

end loop;
end "Stop Motor";

All loops in a subprogram

Another case where no loop properties need be given is when the same assertion applies to all
loops in the subprogram in question. The keyword all is then placed before loop, as in this
example that asserts that all loops in the subprogram Print_Names repeat 25 times:

subprogram "Print Names"
all loops repeat 25 times; end loops;
end "Print_ Names";

The loop that calls

When there are several loops in the subprogram that must be distinguished in the assertions,
one or more properties are needed. For example, here is the loop that calls subprogram Foo:

loop that calls "Foo"

Assuming that this loop is in the subprogram Master, here is a complete assertion that this loop
repeats up to 9 times:

subprogram "Master"
loop that calls "Foo"
repeats <= 9 times;
end loop;
end "Master";

In a Calls property, the call is identified only by naming the callee subprogram. It is not
currently possible to identify the call using the other call-properties explained in section 5.16.

The loop that accesses

The variables that a loop accesses (reads or writes) can be used as properties of the loop.
However, only statically accessed integer variables can be used here. Floating-point variables
cannot be used because Bound-T generally does not model floating-point computations. Arrays
(indexed variables) or variables accessed via pointers cannot be used because the accessed
memory location is not statically known.

As an example, here is a C subprogram Subtract Average that subtracts the average value of
one integer vector from another integer vector:

void Subtract Average (int input[], int output[])
/* Subtracts the average of input[] from output[]. */
/* Both vectors are terminated by zero elements. */
{ int i; int sum = 0; int avg;
for (i = 0; input[i] != 0; i++) sum += input[i];
avg = sum/i;
for (i = 0; output[i] != 0; i++) output[i] -= avg;

64

Writing Assertions Bound-T User Manual

Here are some assertions that set a bound of 40 repetitions for the first loop that computes the
sum and 120 repetitions for the second loop that modifies output:

subprogram "Subtract_ Average"
loop that defines "sum" repeats 40 times; end loop;
loop that uses "avg" repeats 120 times; end loop;
end "Subtract_Average";

Note that

+ the counter variable i cannot be used to separate the loops because both loops use i in the
same way (reading and writing), and

« the array variables input and output cannot be used to separate the loops because the loops
access their elements using dynamic (indexed) addressing.

The example identifies the first loop with the property defines "sum". Based on the source
code the property uses "sum" should work, too, and indeed it may work. However, Bound-
T inspects the machine-code form of the loops. In this example an optimizing compiler may
well assign the same storage location (perhaps a register) to both the variables sum and avg.
Both loops would then read this storage location so the uses property would apply to both
loops. Using defines for the first loop is more robust.

You may wonder how we can use the local variables sum and avg in these properties when they
are allocated on the stack and so do not have static addresses. This works because such
variables are usually accessed with static offsets relative to the stack pointer. Bound-T analyses
such accesses as using or defining statically identified (local) variables.

Labelled loop

Despite the general acceptance of “structured” coding styles loops are still sometimes built
from goto statements and statement labels, for example as in this C code:

void search (void)

{
start_over:
... some code ...
if (!done) goto start_over;
}

Assuming that the compiler and linker place the statement label start_over in the symbol-table,
the loop can be identified by the label, for example as follows:

subprogram "search"
loop that is labelled "start_ over"
repeats 10 times;
end loop;
end "search";

The same holds for a loop that is written in a structured way with for or while but still contains
a statement label for some reason. The label can be placed anywhere in the loop; it does not
have to be at the start.

Bound-T User Manual Writing Assertions 65

Last chance: the loop that executes "address"

If there is no better way, you can identify a loop by stating the machine address of an
instruction in the loop. Any instruction in the loop will do; you do not need to pick the first or
last one. This description of the loop is very fragile because any change to the program or to
the libraries it uses is likely to move the loop to a different place in memory which means that
the address in the assertion may also have to be changed. However, the address can optionally
be given as an offset from the start of the containing subprogram, a slightly more robust
definition.

The address or offset is written in a target-specific form, but usually it is simply a hexadecimal
number. For example, here is the loop that executes (contains) the instruction at address 44AB
hex:

loop that executes "44AB"
and here is the same with an offset address:
loop that executes offset "3AO0"

When Bound-T lists the unbounded loops (see section 7.3) the listing shows the offset from the
start of the subprogram to the head of the loop. You can use this value to identify the loop by
“executes offset”.

Nested loops

The way loops are nested can be used to identify a loop by identifying an inner or outer loop
with the keywords contains or isin. See section 5.3 above for examples.

However, note carefully that an outer loop inherits most of the properties of its inner loops.
Thus, if an inner loop calls a subprogram, Bound-T considers that the outer loop also does so
because the outer loop also contains this call. The same goes for the properties defines, uses,
is labelled and executes. You may have to extend the loop identification to compensate for this.
For example, here is how to identify an outer loop that itself calls Check Power, rather than
inheriting that calls property from an inner loop:

loop that calls "Check_ Power"
and not contains (loop that calls "Check Power")

Unfortunately this description does not match an outer loop that itself calls Check Power if the
inner loop also calls to Check Power.

Multiple loop properties

The keyword and can be used to form the logical conjunction of loop properties for describing
a loop or a set of loops. Here is how to assert that any loop that contains a call of Set_Pixel and
is also within an outer loop that contains a call of Clear Row repeats at most 600 times:

all loops that
call "Set Pixel™
and are in (loop that calls "Clear Row")
repeat 600 times;

end loops;

66

Writing Assertions Bound-T User Manual

Getting fancy

By combining properties, quite detailed and complex characterisations can be given, such as:
The loop that is within a loop that calls Foo, and contains a loop that calls Bar but does not call
Fee, and does not contain a loop that defines variable Z:

loop that
is in (loop that calls "Foo")
and contains (
loop that
calls "Bar"
and not calls "Fee")
and not contains (loop that defines "z")

However, it may make more sense to divide the program into smaller subprograms so that
loops can be identified with simpler means.

All N loops

Sometimes the compiler makes loops in the machine code that do not correspond to loops in
the source code. For example, an simple assignment of a multi-word value can lead to a
machine-code loop that copies the words one by one. An "all loops" assertion will apply to such
loops, too, so it may be safer to specify how many loops you expect to cover with the assertion.
Put the number (or a number range) between all and loops, as in the folllowing assertion that
bounds the number of repetitions of the three loops in the subprogram Tripler:

subprogram "Tripler"
all 3 loops repeat 25 times; end loops;
end "Tripler";

If Bound-T finds a different number of loops that match the assertion it reports an error. You
must then change the assertion to identify the loops by some suitable properties.

You can use the all keyword and the optional number of matching loops in the same way also
when the assertion uses loop properties. A loop-block that starts with loop without all is
equivalent to "all 1 loops".

All N loops in any subprogram

When a loop block in the global context (not within a subprogram block) identifies a certain
number of loops with all, the number of matching loops is counted separately for each
analysed subprogram; it is not added up over the whole target program. Thus, if you write in a
global context

all 2 loops repeat 27 times; end loops;

you are asserting that every subprogram to be analysed shall contain two loops and each of
these loops repeats 27 times. This is an unrealistic example; it seems unlikely that all the
subprograms have this structure. A more likely example could be the following:

all 0 .. 1 loops that call "PutStdErrChar"
repeat <= 20 times;
end loops;

Bound-T User Manual Writing Assertions 67

This assertion states that every subprogram to be analysed shall contain at most one loop that
calls PutStdErrChar, and that this loop (if it exists) repeats at most 20 times. The former fact
may reflect some design or coding rule for the program; the latter fact may show the maximum
length of the error messages in this program.

Optimisation as the enemy

The assumption that these loop properties are invariant under optimisation is perhaps
optimistic. Some optimisations that might alter the properties are listed below, together with
some counter-measures.

+ The calls property might be altered by inlining the called subprogram. Inlining can usually
be prevented by placing the caller and callee in different compilation units (source files).

« The uses and defines properties might be altered by optimisation to keep the variable or
parameter in a register. This can be prevented by specifying the variable as "volatile".

« The uses and defines properties might be altered by optimisation to move loop-invariant
code outside the loop. This can be prevented by specifying the variable as "volatile".

+ The contains and is in properties might be altered if some loops are entirely unrolled.

While the WCET of an unrolled loop can be computed automatically, and thus an assertion on
the repetitions of this loop is not needed, the disappearance of the loop means that it cannot
be used to characterise a related loop with contains or is in.

Apparent but unreal looping and nesting

Sometimes a loop description derived from the source code fails to match the machine-code
loop because the programmer has written, within the loop syntax, statements that are really
external to the loop. For example, the following Ada loop seems to contain a call of the
subprogram Discard_Sample:

for K in 1 .. N loop
if not Valid(K) then
Discard Sample(K);
exit;
end if;
end loop;

Note that the call is followed by an exit statement that terminates the loop. Thus the call is
logically not a part of the loop; the loop cannot repeat the call. This means that a loop
description such as loop that calls "Discard Sample" will not match this loop.

The same can happen with loop nesting. For example, at first sight this C code seems to
contain nested loops:

for (k = 0; k < N; k++)

{
if (overlimit([k])
{
for (i = 0; i < k; i++) recalibrate (i);
return;
}
}

68

Writing Assertions Bound-T User Manual

5.16

Note that the inner loop (over 1) is followed by a return statement that terminates the outer
loop (over k). Thus the loop over i is logically not nested in the loop over k. This means that
the k loop does not have the property contains (loop) and the i loop does not have the
property is in (loop).

Identifying Calls

When writing assertions you may have to identify specific calls for the following reasons:
To define a call context.
+ To help identify a loop by identifying a call within the loop.

Unlike subprograms and variables, calls seldom have names and thus we identify calls
indirectly through the properties or characteristics of the call.

Static vs dynamic calls

The most important property of a call is whether the called subprogram - the callee - is
statically defined in the call instruction, or is defined at run-time by some dynamic
computation. Calls of the first kind are static calls and the others are dynamic calls.

On the source-code level static calls state the name (identifier) of the callee directly, while
dynamic calls generally dereference a function pointer variable (in C terms) or an access-to-
subprogram variable (in Ada terms). In the machine code, a static call instruction defines the
entry address of the callee by an immediate (literal) operand, while a dynamic call uses a
register operand or other dynamic operand.

A static call has exactly one callee; every execution of the call invokes the same callee
subprogram. In contrast, a dynamic call may invoke different subprograms on each execution,
depending on the entry address that is computed, so a dynamic call in general has a set of
possible callees.

Call properties

The following properties can be used to identify calls:

The name of the called subprogram (callee). Required for static calls, absent for dynamic
calls.

« The name of the calling subprogram (caller). Optional, since bounds on calls can appear
globally or in the context of the caller.

 The identity of the containing loop. Optional.

All calls must be identified at least by the name of the callee or by saying that the call is
dynamic. For a static call the syntax consists of the keywords call and to followed by the name
of the callee (as explained in section 5.13). The to keyword is optional (syntactic sugar). A
dynamic call is described as dynamic call without naming the callee.

To specify the caller, write the call-block within a subprogram block for the caller.

Examples of call identifications follow. The examples mainly show execution count assertions,
but of course the same call identifications can be used to assert other kinds of facts, such as
bounds on variable values at the call.

Bound-T User Manual Writing Assertions 69

The only call from here to there

The most common way to identify a call is by the names of the caller and the callee. If there is
only one such call, no other call properties need be given. The assertion consist of a
subprogram block that names the caller and contains the call block that names the callee. Here
is how to assert that the only call from Collect Data to Flush_Buffer is executed at most 4 times
in one execution of Collect Data:

subprogram "Collect Data"
call to "Flush Buffer" repeats <= 4 times; end call;
end "Collect Data";

The absence of the keyword all before call means that Bound-T expects to find exactly one call
from Collect Data to Flush_Buffer.

The only dynamic call

If a subprogram contains only one dynamic call it can be identified simply by this property.
Here is an assertion to say that the sole dynamic call in the subprogram Dispatch can only call
the subprograms Start Pump or Start_Engine:

subprogram “Dispatch”
dynamic call calls “Start_Pump” or “Start_ Engine”;
end call;

end “Dispatch”;

All calls from here to there

Another case where no specific call properties need be given is when the same assertion
applies to all calls from one caller to one callee. The keyword all is then placed before call, as
in this example that asserts that no call from Drive to Start Motor is executed more than once,
in one execution of Drive:

subprogram "Drive"

all calls to "Start_ Motor" repeat 0 .. 1 times; end calls;
end "Drive";

All calls from anywhere to there

If the same assertion applies to calls from any caller to a given callee, the call block should be
written in a global context (without an enclosing subprogram block). Here is how to assert that
no subprogram ever executes more than one call to Start_Motor:

all calls to "Start Motor" repeat 0 .. 1 times; end calls;

Call in a loop

In the current form of Bound-T, the only way to identify a subset of calls from the same caller
to the same callee is to describe the calls by the loops that contain them. For example, here is
how to assert that the (only) call from Compute to Abort that is in a loop is not executed at all:

70

Writing Assertions Bound-T User Manual

subprogram "Compute"
call to "Abort" that is in (loop)
repeats 0 times;
end call;
end "Compute";

This can also be done in a global context (not nested in a subprogram block). To assert that no
call to Abort from an inner loop in any subprogram is ever executed, place the following
assertion in a global context:

all calls to "Abort"
that are in (loop that is in (loop))
repeat 0 times;

end calls;

Note that even if the source-code nests a call statement within the high-level syntax of a loop
statement, this does not always mean that the machine-code call is logically within the loop.
See the discussion of "apparent but unreal nesting" at the end of section 5.15.

Non-returning subprograms are never in a loop

A call to a subprogram that is marked "no return" (see section 5.11) is a special case. Logically,
such a call is never contained in a loop because executing the call also means terminating any
on-going loop.

All N calls

Some code transformations or optimizations in the compiler can change the number of
machine-code call instructions (call sites) relative to the number of call statements in the
source code. For example, unrolling loops can increase the number of call instructions, while
merging duplicated code can decrease the number of call instructions. Neither transformation
changes the total number of calls executed, but can change number of times each call
instruction is executed. This should be taken into account in any "all calls" assertion on
execution counts.

For example, assume that a source-code loop in the subprogram Foo contains two conditional
calls to Bar and you know that each of these call statements is executed at most 10 times
although the loop repeats a greater number of times. You could assert this fact as

subprogram "Foo"
all calls to "Bar" that are in (loop)
repeat <= 10 times;
end calls;
end "Foo";

This assertion allows a total of at most 2 X 10 = 20 executions of Bar from the loop. However,
if the compiler unrolls the loop body by duplicating it once, the machine-code loop will contain
four instructions that call Bar and the above assertion would allow up to 4 X 10 =40
executions of Bar from the loop, leading to an overestimated WCET.

To detect when code transformations change the number of call sites, you can specify how
many call sites you expect to cover with the assertion. Put the number between all and calls:

subprogram "Foo"
all 2 calls to "Bar" that are in (loop)
repeat <= 10 times;

Bound-T User Manual Writing Assertions 71

5.17

end calls;
end "Foo";

All N calls from any subprogram

When a call block in the global context (not within a subprogram block) identifies a certain
number of calls with all, the number of matching calls is counted separately for each analysed
subprogram,; it is not added up over the whole target program. Thus, if you write in a global
context

all 2 calls to "Foo" repeat > 5 times; end calls;

you are asserting that every subprogram to be analysed shall contain two calls to Foo and each
of these calls is executed more than five times for each execution of the calling subprogram.
This is an unrealistic example; it seems unlikely that all the subprograms have this structure. A
more likely example could be the following:

all 0 .. 1 calls to "PutStdErrChar"
repeat <= 20 times;
end calls;

This assertion states that every subprogram to be analysed shall contain at most one call to
PutStdErrChar, and that this call (if it exists) repeats at most 20 times for one execution of the
calling subprogram. The former fact may reflect some design or coding rule for the program,;
the latter fact may show the maximum length of the error messages in this program.

Note that neither of these assertion examples bounds the total number of calls (call sites) in
the program nor the total number of executions of these calls.

Handling Eternal Loops

What is eternity?

Much has been said about finding bounds on the number of iterations of loops. But what if the
program contains an eternal loop?

We define an eternal loop as a loop that cannot possibly terminate, either because there is no
instruction that could branch out of the loop, or because all such branch instructions are
conditional and the condition has been analysed as infeasible (always false). Obviously, the
execution time of a subprogram that enters an eternal loop is unbounded. Nevertheless, since
real-time, embedded programs are usually designed to be non-terminating, they usually
contain eternal loops.

Eternal tasks

Eternal loops are typically used in the top-level subprograms of tasks or threads. The loop body
first waits for the event or real-time instant that should activate (trigger) the task, then
executes the actions of the task, and then loops back to wait for the next activation.

72

Writing Assertions Bound-T User Manual

A typical task body in the Ada language has the following form:

task body Sampler is
begin
loop
wait for my trigger;
execute my actions;
end loop;
end Sampler;

Here we have a syntactically eternal loop: there is no statement that terminates or exits the
loop. (The loop could be terminated by an exception, but Bound-T generally does not consider
exceptions in its analysis.)

The same task in the C language might have the following form:

void Sampler (void)

{
while (1)
{
wait for my trigger;
execute my actions;
}
}

Here we have a logically eternal loop: in principle, the while statement can terminate the loop
if its condition becomes false; however, the condition is always true here.

For a logically eternal loop the compiler may or may not generate a conditional branch
instruction to exit the loop. If the compiler finds it unnecessary to generate an exit branch, the
loop will be syntactically eternal on the machine code level. If the compiler does generate an
exit branch, Bound-T will probably discover that the branch condition is always false,
whereupon Bound-T will prune (remove) the infeasible exit-branch from the control-flow
graph and find that the loop is indeed eternal.

Bounding eternity

When Bound-T finds an eternal loop in a subprogram it of course reports it and refuses to
compute an execution time bound for the subprogram - unless you assert a bound on the
number of repetitions of the loop. But what is the point of such an unrealistic assertion? The
point is that you usually need an upper bound on the execution time of one activation of a task:
the statements illustrated as "execute my actions" in the examples above, perhaps including all
or part of the statement "wait for my trigger" depending on where you draw the boundary
between the application task and the real-time kernel. Thus, you need a WCET for the loop
body, which is one iteration of the loop.

Whatever repetition bound you assert for the eternal loop, the WCET that Bound-T computes
also includes the code that leads from the subprogram entry point into the loop. The way to
find a WCET bound for one loop iteration is therefore to analyse the subprogram twice, with
the repetition bounds 0 and 1 (for example), and take the difference of the results.

To avoid this eternal loop stuff, you could separate all the code for one task activation into a
dedicated subprogram so that the eternal loop just contains a call of this subprogram. The
WCET bound for this subprogram is very close to the WCET bound for one task activation; the
difference is just the call instruction and the looping branch instruction, usually just a pinch
(less than a handful) of machine cycles.

Bound-T User Manual Writing Assertions 73

5.18

Eternity as an alternative

Sometimes an eternal loop is used as a last-resort error-handler, for example as in the
following:

void Check Voltage (void)
{
if (Supply Voltage() < Min Supply Volts)
{
// The supply voltage is too low.
// Wait in a tight loop for a reset.
while (1);
}
// The supply voltage is good. Display it.
Display Voltage();
}

In this case, you probably want an execution-time bound for this function that does not include
the eternal loop. You should then use assertions to exclude the loop from the analysis. In the
example above you can assert that the call to Display Voltage actually occurs. However, Bound-
T also requires a bound on the loop, so the assertions would be:

subprogram "Check Voltage"
call to "Display Voltage" repeats 1 time; end call;
loop repeats 0 times; end loop;

end subprogram;

The number of repetitions asserted for the loop is arbitrary, because the assertion on the call
means that the loop is never entered (assuming that Bound-T detects that the loop is eternal).

Handling Recursion

The perils of recursion

Guidelines for embedded and real-time programming usually advise against recursion because
recursion is often associated with dynamic and unpredictable time and memory consumption.
Moreover, some small embedded processors (microcontrollers) have poor mechanisms for
stacks and subprogram calls, which means that a reentrant or recursive subprogram must use
slower or less efficient code for parameter passing and local variables. These are some of the
reasons why Bound-T assumes that the target program is free of recursion.

Trivial recursions: an example

Sometimes target programs use recursion in very limited and predictable ways. For example,
an error-logging module may want to log some of its own errors, such as the fact that the log
buffer was full and some (real) errors were not logged. While this could certainly be
programmed without recursion, it gives us a simple example of limited recursion and how to
handle it in Bound-T. This example is taken from a real application.

74

Writing Assertions Bound-T User Manual

Let's define the interface of the error-logging module as follows (example in Ada):
package Errors is

type Message Type is Integer;
-- An error messade is just an integer number here.
-- Really it would be something more.

Log_Full : constant Message_Type := 99;

-- An error message that means that the Error Log became
-- full and some error messages were not logged. This is
-- always the last message in the (full) log.

procedure Handle (Message : in Message_ Type);

-- Handles the error Message and then inserts the

-- Message in the Error Log.

-- If the Error Log would then be full, the Log Full
-- message is inserted instead of the Message, and is
-- also handled as an error message in its own right.

end Errors;
This module could be implemented as follows:

package body Errors is

Buffer Size : constant := 100;
-— The total size of the buffer for the Error Log.

Buffer : array (1 .. Buffer Size) of Message Type;
-- The buffer itself.

Free : Natural := Buffer_ Size;
-- The space left in the buffer.

procedure Log (Msg : in Message_Type)
-- Inserts the Msg in the Buffer and decrements the count
-- of the remaining space. If this would make the log
-- quite full, the procedure signals a Log_Full error.
is begin
if Free = 1 and Msg /= Log_Full then
-- The buffer is full, the Msg is not logged.
Handle (Log_Full);

else
Free := Free — 1;
Buffer (Buffer’'Last — Free) := Msg;
end if;
end Log;

procedure Handle (Message : Message_ Type)
is begin

Handle the Message in some way;

Log (Message);
end Handle;

end Errors;

Bound-T User Manual Writing Assertions

Here you can see that buffer overflow is detected in the lowest-level subprogram Log, but to
report the overflow it calls Handle (Log Full), which creates a recursion:
Handle — Log — Handle. However, Log calls Handle only if the Message is not Log Full, which
means that the recursion terminates in the second call of Log. The longest possible call-path is
thus

Handle - Log — Handle - Log

This call-path determines the WCET of Handle. The figure below illustrates the path when the
incoming Message has the value 31.

Handle (Message = 31)

Log (Message) —j

Log (Msg = 31)
if Free = 1 and Msg /= Log_Full then
Handle (Log_Full);
else

end if;

L]

Handle (Message = 99)

Log (Message) +

Log (Msg = 99)
if Free = 1 and Msg /= Log_Full then
else
Free := Free - 1;

Buffer(Buffer'Last - Free) := Msg;
end if;

Figure 4: Longest call path in recursion example

Slicing recursive call-paths

How can we find an upper bound on the execution time of the recursive call-path in the above
example? Asking Bound-T to analyse Handle will just result in error messages that complain
about the recursion.

You can make Bound-T analyse a piece of a recursive call-path by asserting the execution time
of one of the subprograms in the call-path. The calls in this subprogram are thereby hidden
from Bound-T which breaks the recursive cycle (if there are several recursion cycles you may
have to break the other cycles in the same way). This analysis gives the WCET for the rest of
the call-path. Then you analyse the call-path again but this time you assert the execution time
of another subprogram in the call-path. You can then combine the WCET bounds on the pieces
to compute the WCET bound for the whole call-path. However, you also have to be careful to
guide Bound-T to choose the right paths within each subprogram. Below we show how to do it
for the example.

76

Writing Assertions Bound-T User Manual

Slicing the example

For our example we can start by hiding the Log subprogram and analysing the Handle
subprogram. Since Handle always calls Log, the analysis always includes the desired path
within Handle whatever execution time we assert for Log; assume we choose 0 cycles so that
the assertions for this analysis are

subprogram "Errors.Log" time 0 cycles; end "Errors.Log";

Assume that the resulting WCET bound for Handle is 422 cycles. Since zero cycles are assumed
for Log this means that the WCET for Handle alone is 422 cycles.

Next, we hide the Handle subprogram and analyse Log. Since Log contains a conditional
statement we must choose which path to analyse. In fact, both cases occur in the recursive call-
path we are considering: the first call of Log uses the path within Log that calls Handle, and the
second call of Log uses the other path within Log, the one that actually inserts the error
message in the buffer. Therefore we must analyse both cases.

To analyse the first path within Log we could either assert a very large time for Handle, so that
the path that calls Handle surely seems to take longer than the other path, or we can force
Bound-T to choose this path in some other way, as in these assertions:

subprogram "Errors.Handle"
time 0 cycles;
end "Errors.Handle";

subprogram "Errors.Log"
call to "Errors.Handle" repeats 1 time; end call;
end "Errors.Log";

Assume that this gives a WCET bound of 56 cycles for Log. Since zero cycles are assumed for
Handle these 56 cycles are also the WCET bound for the first call of Log in the recursive call-
path.

To analyse the second path within Log we use analogous but opposite assertions for Log. We
must still also assert an execution time for Handle, to hide it from Bound-T, but now the
asserted time plays absolutely no role because it is not included in the WCET for Log:

subprogram "Errors.Handle"
time 0 cycles; -- This time is irrelevant.
end "Errors.Handle";

subprogram "Errors.Log"
call to "Errors.Handle" repeats 0 times; end call;
end "Errors.Log";

Assume that this gives a WCET bound of 28 cycles for Log. Since the assertions exclude the
Handle call these 28 cycles are directly the WCET bound for the second call of Log in the
recursive call-path.

Finally, we add up the WCET bounds for the recursive call-path:
+ 422 cycles for the first call of Handle,

+ 56 cycles for the first call of Log,

+ 422 cycles for the second call of Handle,

+ 28 cycles for the second call of Log.

Bound-T User Manual Writing Assertions 77

The total, 928 cycles, is the WCET bound for the recursive call-path.

In summary, to analyse a recursive set of subprograms you must yourself find out the longest
(slowest) recursive call-path, break that call-path into at least two non-recursive pieces,
analyse them separately, and add up the results. Sometimes the longest call-path can be found
or seen easily, as in this example; if that is not the case, you may have to consider a number of
candidates for the worst-case call-path and analyse each candidate as shown here.

78

Writing Assertions Bound-T User Manual

6.1

6.2

THE BOUND-T COMMAND LINE

Basic Form

The Bound-T command has two forms, one for the basic mode of operation and one for the
HRT mode of operation. This manual discusses only the basic mode, where the command has
the form

boundt <options> <target exe file> <root-subprogram names>

The command name, written just boundt above, usually includes a suffix to indicate the
target processor, for example boundt_avr names the Bound-T version for the Atmel AVR
processor. Please refer to the relevant Application Note for the exact name.

<options>

The options choose the analyses to be done, control optional features, select the outputs to be
produced, and specify the assertions to be used, if any.

The options are described in detail below in section 6.4. For the basic mode of operation, the
option -hrt must not be present (see section 1.4 for information on the HRT mode).

<target exe file>

The first argument after the options is the name of the file that contains the target program in
linked, executable form.

Many different file formats (data encodings, file structures) exist for executable files: COFE
ELE AOME S-record files, hex files and others. Sometimes the programming tools for a given
target processor support only one format; sometimes the linker provides a choice of formats for
the executable file. The Bound-T version for a given target processor should support the
executable formats that are commonly used with this processor; please refer to the relevant
Application Note.

< root-subprogram names>

The rest of the arguments are the names (identifiers) of the subprograms for which time
bounds and/or stack bounds are wanted. These subprograms are called roots. Their order is
not important. Bound-T will analyse each of them, and all the subprograms they call.

The name for a subprogram must be given in the form used by the linker, the same form as in
assertions (see section 5.13). The link-name is often slightly different from the identifier used
in a high-level source language; for example, C programming systems often add an underscore
to the function identifier so that the C function "foo" becomes the link name " foo".

For most target processors a root subprogram can also be identified by giving its entry address
in the code, usually in hexadecimal form. The Application Notes for specific targets and cross-
compilers explain the form of link-names and entry addresses.

Special Forms

If Bound-T is invoked with no arguments, it will report an error.

Bound-T User Manual The Bound-T Command Line 79

If Bound-T is invoked with the option -help, it will print out some help on the command format
and the options.

If Bound-T is invoked with the option -version, it will print out its version identification (target
processor and version number).

If Bound-T is invoked with the option -license, it will print out a description of the license
under which it runs. This can be useful for evaluation licenses that are of limited duration.

The options -help, -version and -license can also be used in a normal execution of Bound-T. For
example, -version can be useful documentation for analysis results.

If Bound-T is invoked with the name of a target program file but no root subprogram names, it
will read the target program and display it on standard output, including a dump of the
memory image and the symbolic debugging information. The form of the output is target-
specific.

There may be other special command forms for some targets; please refer to the Application
Note for your target.

6.3 Options Grouped by Function

Command-line options are used to:

- select what to analyse: execution time, stack usage or both;

+ control optional parts and parameters of the analysis;

+ choose what results should be produced,;

+ control the form and detail of the output; and

+ possibly alter (patch) the target program before analysis.

Finally, there are some options that are used rarely and only for troubleshooting.

This subsection lists the options compactly, grouped in this way. The next subsection describes
the options in detail in alphabetical order. The target-specific options are explained in the
relevant Application Notes.

Selecting the analysis

The following options select the kind of analysis that Bound-T will do. The default is -time.

Option Meaning

-hrt HRT mode analysis. The default is basic mode. See section 1.4.
-stack Stack usage analysis. By default not selected. See section 3.11.
-stack_path Stack usage analysis with display of the worst-case stack path.
-time Selects or omits execution-time analysis. Selected by default.
-no_time

80 The Bound-T Command Line Bound-T User Manual

Controlling the analysis

The following options control details of the selected analyses. The defaults are as follows:

-no_alone

-arithmetic

-arith ref relevant

-bold

-calc_max 40_000_000

-const_iter 10

-const_refine effect
-const_refine cond

-flow_iter 5

-max_par_depth 3

Option Meaning

-alone The -alone option analyses only the root subprograms, not the subprograms

-no_alone that the roots call. All non-root subprograms are considered to have zero
execution time and zero stack usage.

-arithmetic Enables or disables analysis of the arithmetic computations. This analysis is

-no_arithmetic

necessary for automatic loop analysis and for analysis of many forms of
switch/case statements. It is enabled by default but can be slow for complex
or large subprograms.

-arith_ref choice

Chooses the subset of dynamic data-memory references that will be
subjected to arithmetic analysis (unless all such analysis is disabled by
-no_arithmetic). By default all references that read (load) relevant data are
analysed but references that write (store) data are not.

-assert filename

Names a file of assertions to guide the analysis. This option can be repeated
to name all the necessary assertion files.

-bold Makes the analysis continue even if some subprogram could not be
bounded.

-timid Makes the analysis stop when some subprogram can't be bounded.

-calc_max N Sets an upper bound N on the magnitude of literal constants that are given
as such to the Omega auxiliary program for the arithmetic analysis. Larger
literals are translated to unknown (unconstrained) values.

-const_iter N Limits the number of iterations of constant propagation followed by

resolution of dynamic data references.

-const_refine item

-no_const

Selects the kind of refinements (partial evaluations) that are applied as a
result of the constant-propagation analysis. All refinements are enabled by
default.

Disables constant propagation analysis.

-flow_iter N

Limits the number of iterations for dynamic control-flow analysis.

-max_anatime duration

Sets an upper limit on the duration of the analysis, in seconds.

-max_par_depth N

Limits the number of parameter-passing levels (contexts) analysed.

-model_iter number

Limits the number of iterative updates of a computation model.

-no_join

Forces arithmetic analysis to model each instruction as an Omega relation.

-no_bitwise_bounds

Disables the arithmetic analysis of bit-wise logical and/or instructions.

-no_orig Disables the value-origin (copy propagation) analysis.
-no_prune Disables the pruning of infeasible parts of control-flow graphs.
-virtual item Controls the analysis of virtual function calls for processor/compiler

combinations that implement this concept.

Bound-T User Manual

The Bound-T Command Line 81

Choice of outputs

The following options choose what Bound-T will produce as output. The default is -quiet.

Option Meaning
-anatime Shows the total elapsed analysis time.
-dot filename Generates drawings of the control-flow graphs and call graphs in a single DOT

file with the given filename. See section 7.6.

-dot_dir dirname Generates a drawing of each control-flow graph and call graph as separate DOT
files within the directory of the given dirame. See section 7.6.

-dot_page size Adds a page-size definition to each generated DOT file. See section 7.6.

-dot_size size Adds a drawing-size definition to each generated DOT file. See section 7.6.

-draw item Chooses the items to be shown in the DOT drawings. See section 7.6.

-help Lists the command-line options (both generic and target-specific).

-license Displays information about the Bound-T license.

-q Disables the output of verbose messages ('notes").

-quiet

-show item Chooses the detailed items to be included in the detailed output.

-stack_path Displays the worst-case stack path for each root subprogram. See section 3.11.

-table Creates a table that shows how the WCET of a root subprogram is built up from
the WCETs of lower-level subprograms. See section 7.4.

-v Enables the output of a lot of verbose messages ("notes").

-verbose

-version Displays the Bound-T version: the target processor and the version number.

-warn item Chooses which types of warnings will be output.

Control over output format

The following options control details of the output from Bound-T. The default options are as
follows:

-lines around
-output_sep ':'
-source base

Option Meaning

-address Shows also the code addresses, not just source-line numbers.

-no_address Shows code addresses only when no source-line numbers are known.

-scope Shows also the scope of each subprogram, for example the name of the module
that contains the subprogram, not just the subprogram name. Implies the option
-draw scope.

-lines around Shows source-line numbers close to the code address, if no exact match.

-lines exact Shows only source-line numbers that match code addresses exactly.

-output_sep C Defines the field-separator character C for the basic output lines.

-source base Source-files omit the directory (folder) path: foo.c.

-source full Source-file names include the directory (folder) path:
/home/bill/src/foo.c.

-split Splits the Wcet and Wcet_Call outputs into “self” and “callees” parts.

82 The Bound-T Command Line Bound-T User Manual

Patching the target program
In some special cases it is convenient to apply small “patches” to the target program before

analysis, that is, small changes to the program's memory image as loaded from the executable
file. Bound-T provides the -patch option for this.

Option Meaning

-patch filename Names a file of patches (changes) to be applied to the loaded memory image of
the target program, before analysis begins. This option can be repeated to name
all the necessary patch files, which will be applied in the same order (thus, the
later files can override patches defined in earlier files).

Troubleshooting and diagnostic options

The following options are useful for diagnosing problems in the analysis but may require more
insight into Bound-T's internal workings than is given in this manual.

Option Meaning

-imp item Enables the internal (implementation) option named by item.
-keep_files Retains certain temporary files instead of deleting them.
-trace item Enables on-the-fly tracing output for various things.

Options in Alphabetic Order

The following table lists the target-independent options in alphabetical order. Note that some
options must be followed by an argument, which is the next argument on the command line
(there must white-space between the option and its argument). Target-specific options may
exist, and are then explained in the Application Note for the target. Target-specific options may
use different conventions for separating an option and its argument.

Numeric arguments can be written in base 10 (decimal) or in some other base using the Ada
notation for based literals. For example, the hexadecimal literal 16#20# equals the decimal
literal 32, or 10#32# in based notation. Underscores can be used to separate digit groups for
clarity, for example 1_200_320 is the same as 1200320.

An italic word in the “Option” column stands for some specific word, number or other choice.
For example, in “-assert filename” the filename part stands for the name of a file. The main
table is followed by sub-tables that give the possible values for such arguments where this
value set is small and fixed.

The notation “[no_] item” means a choice of “item” or “no_item”. That is, the item is either
included or excluded from some optional function. For example, the option -warn no_sign
disables warnings about literals with uncertain sign, while -warn sign enables them.

Table 2: Command-line options

Option Meaning and default value

-address Function Include machine-code addresses in the basic output to indicate
the location of subprograms, loops, calls or other program
parts.

Bound-T User Manual The Bound-T Command Line 83

Option

Meaning and default value

Default

The default is -no_address which see.

-alone

Function

Default

Analyse only the root subprograms listed in the command line,
not any of the subprograms that the roots call. All non-root
subprograms are considered to have zero execution time and
zero stack usage.

The default is -no_alone which see.

-anatime

Function

Default

Show the total elapsed time of the analysis, as an output line
with the keyword Analysis_Time. See chapter 7.

The analysis time is not shown.

-arithmetic

Function

Default

Enforce Presburger arithmetic analysis even when not needed.
This can be overridden with assertions for subprograms as
explained in section 5.11.

See also -no_arithmetic.

Arithmetic analysis is applied only when needed to bound a
subprogram.

-arith_ref none
-arith_ref relevant
-arith_ref all

Function

Default

Chooses the subset of dynamic data-memory references that
will be subjected to arithmetic analysis (unless all such
analysis is disabled by -no_arithmetic).

The none choice prevents all arithmetic analysis of such
references; the relevant choice restricts analysis to references
that read relevant data, but omits references that write data;
the all choice applies arithmetic analysis to all dynamic data
references, whether or not they seem relevant to other
analyses, for example to loop bounds.

At present arithmetic analysis of dynamic data references is
useful only when it can resolve the reference to a single
possible data address (possibly depending on subprogram
calling context). In most cases constant-propagation analysis is
sufficient to resolve such references and it is seldom necessary
to apply the more time-consuming arithmetic analysis.

-arith_ref relevant

-assert filename

Function

Default

Use assertions from the named file. This option can be
repeated to name several assertion files; all the files are used.

No assertions are used.

-bold

Function

Default

Even if the path-bounding phase cannot bound all
subprograms, analysis continues to find the worst-case
measures of the bounded subprograms. Otherwise (see -timid)
the analysis stops after reporting the unbounded parts.

This is the default.

-calc_max number

Function

Default

Specifies the maximum literal value to be included as such in
the arithmetic analysis. Values with a larger magnitude are
considered opaque (unknown). In some cases, the limit may
have to be reduced to avoid overflow in the Omega calculator.

The default limit is 40_000_000.

-const_iter number

Function

Sets the maximum number of iterations of constant propa-
gation alternated with resolution of dynamic data accesses.
See section 6.5.

The Bound-T Command Line

Bound-T User Manual

Option Meaning and default value
Default The default number is 10.

-const_refine [no_] item Function Controls how the constant-propagation analysis is used to
refine (simplify) the model of the target program. The possible
items are listed in a table below. The "no_" prefix disables
refinements of this kind, otherwise the option enables them.
See section 6.5.

Default The default is to apply all possible refinements.

-dot filename Function = Generates drawings of the control-flow graphs and call graphs
in a single DOT format file with the given filename. The file is
created if it does not already exist and overwritten if it exists.
This option overrides the -dot_dir option. See section 7.6.

Default Drawings are not generated.

-dot_dir dirname Function Generates a drawing of each control-flow graph and call graph
as separate DOT files within the directory of the given dirname.
This directory must already exist; Bound-T will not create it.
This option overrides the -dot option. See section 7.6.

Default Drawings are not generated.

-dot_page size Function Adds the command "page=size" in each generated DOT file to
define the page size that DOT should assume. The size is given
as two decimal numbers separated by a comma; the first
number is the page width in inches and the second number is
the page height in inches. See section 7.6.

Default No page size is defined in the DOT file.

-dot_size size Function =~ Adds the command "size=size" in each generated DOT file to
define the drawing size that DOT should aim at (bounding
box). The size is given as two decimal numbers separated by a
comma; the first number is the drawing width in inches and
the second number is the drawing height in inches. See
section 7.6.

Default No drawing size is defined in the DOT file.

-draw [no_] item Function Controls the number and form of the drawings, if some
control-flow graphs are drawn (see option -dof). The possible
items are listed in a table below. If the "no_" prefix is included,
the item is omitted from the drawing, otherwise it is included.

Default See table below.

-flow_iter number Function Set the maximum number of iterations of alternating flow-

analysis and dynamic data/flow resolution.
Default The default number is 5.
-help Function ~ Displays a list of all command-line options, both general
options and target-specific options.
Default None.
-hrt Function ~ Chooses the HRT mode of Bound-T operation. See section 1.4.
Default The basic mode, without HRT features.
-imp item Function Enables the internal implementation option item. We do not

document the possible items here because it would require a
detailed description of Bound-T internal structures.

Bound-T User Manual

The Bound-T Command Line 85

Option Meaning and default value

Default Bound-T works as described in this manual.

-keep_files Function A diagnostic option that makes Bound-T keep as files the input
and output data streams to and from the auxiliary programs
for arithmetic analysis (Omega) and Integer Linear
Programming (Ip_solve). Normally these data are not stored.
See below for file naming rules. This option currently works
only on Linux hosts.

Default These data streams are not stored in files.

-license Function Displays Bound-T license information.

Default Not displayed.

-lines exact Function Selects how target code addresses are connected to source-line

-lines around numbers for display purposes: whether an exact connection is
required or if the closest source-line number around the code
address can be shown instead.

Default -lines around

-max_anatime duration Function Aborts the analysis if it has not finished within the given
duration. The duration is measured in seconds of wall-clock
time (not processor time) and possibly with a decimal part. For
example, -max_anatime 3.5 sets a maximum duration of three
and a half seconds.

Default No limit on the duration of the analysis.

-max_par_depth number Function ~ The bounds of a loop may depend on actual parameter values
passed in from the caller(s), perhaps across many call levels.
This option defines the maximum number of call levels across
which parameter values are analysed to find such call-
dependent loop-bounds.

To disable call-dependent analysis, set the number to zero.

Default The default value is 3.

-model_iter number Function Sets the maximum number of iterations of updates to the
“computation model” of a subprogram. Iterations may be
necessary when analysis resolves dynamic references to
identify new storage cells that take part in the computation.

Default The default value is 5.

-no_address Function Locations are indicated by source-line numbers. Machine-code
addresses are used only if source-line numbers are not
available or no source-line numbers are associated with this
location.

Default This is the default.

-no_alone Function Analyse the root subprograms and all subprograms that are
called from the root subprograms, directly or indirectly. The
whole call-graph below the roots is analysed except as limited
by assertions.

Default This is the default.

86 The Bound-T Command Line Bound-T User Manual

Option Meaning and default value
-no_arithmetic Function Disables Presburger arithmetic analysis. Warnings are emitted
if arithmetic analysis is needed to bound a subprogram. This
option can be overridden with assertions for subprograms as
explained in section 5.11.
See also -arithmetic.
Default Arithmetic analysis is enabled.
-no_bitwise_bounds Function Disables arithmetic analysis of bitwise and-or operators. See
section 6.5.
Default Analysis of bitwise operators is enabled.
-no_const Function Disables constant-propagation analysis. See section 6.5 and
-const_refine.
Default Constant-propagation analysis is enabled.
-no_orig Function Disables value-origin (copy propagation) analysis.
See section 6.5.
Default Value-origin analysis is enabled.
-no_prune Function Disables the pruning (removal) of dead, unreachable parts
from the control-flow graphs. See section 6.5.
Default Pruning is enabled.
-no_time Function Disables the analysis of worst-case execution time. See -time.
Default Execution time is analysed.
-output_sep character Function Defines the character that is used to separate fields in the basic
output lines. See section 7.2.
Default The colon character, ":'.
-patch filename Function ~ Names a file of patches (changes) to be applied to the loaded
memory image of the target program, before analysis begins.
This option can be repeated to name all the necessary patch
files, which will be applied in the same order. Thus, the later
files can override patches defined in earlier files.
Default No patches are used. The executable file is used as it stands.
-q Function Do not display remarks and progress messages (basic output
quiet classified as "notes"). The two forms -q and -quiet are
equivalent. See also -v and its synonym -verbose.
Default Quiet. "Notes" are suppressed.
-scope Function Qualify subprogram names with the scope, in all output. Thus
subprogram foo defined in module Mod will be identified as
Mod |foo. Useful when subprogram names are often over-
loaded. Implies the option -draw scope.
Default Scopes are not shown; only the basic name (foo) is shown.
-show item Function = Requests the detailed output of the analysis results identified
by item. Section 7.5 explains the detailed outputs. The possible
items are listed in a table below.
The option -show callers has an additional role: it adds inverse
call-tree information to the list of unbounded program parts
(see section 7.3).
Default No detailed output is emitted.

Bound-T User Manual

The Bound-T Command Line 87

Option

Meaning and default value

-source base
-source full

Function

Default

Controls the presentation of the names of source-code files and
executable files in the output.

The full choice displays the whole file-name including the path
of folder names: /home/bill/src/foo.c.

The base choice displays only the file-name, no folders:
foo.c.

-source base

-split

Function

Default

Modifies the form of output lines with the keyword Wcet or
Weet_Call by splitting the time bound into "self" and "callees"
parts. See chapter 7.

Only the total WCET is shown, including “self” and “callees”.

-stack

Function

Default

Enables the stack-usage analysis for each root subprogram
named in the arguments. See section 3.11.

Stack usage is not analysed.

-stack_path

Function

Default

Enables stack-usage analysis and also displays the worst-case
stack path — the call-path that accounts for the maximal stack
usage — for each root subprogram. See section 3.11.

Stack usage is not analysed. Under -stack the worst-case stack
path is not shown.

-synonym

Function

Default

Lists all synonyms for all identified subprograms in the
program, at the end of the analysis. A synonym is another
identifier (subprogram or label name) that is connected to the
same code address. This may help you relate the names tha
Bound-T uses (linkage names) to the names in the source-code
of the program under analysis.

Synonyms are not listed.

-table

Function

Default

Generates a table showing how the WCET bounds for each
root subprogram are made up from bounds on the lower-level
callee subprograms. See section 7.4.

No tabular output.

-time

Function

Default

Enables the analysis of worst-case execution time for each root
subprogram named in the arguments.

See also -no_time.

Time is analysed.

-timid

Function

Default

Stops the analysis after the path-bounding phase, if some
subprograms are unbounded. Otherwise (see -bold) the
analysis continues and tries to find the worst-case measures of
the bounded subprograms.

Analysis continues (-bold).

-trace item

Function

Default

Requests on-the-fly tracing of a certain item (an event or stage
within the analysis). The possible items are listed in a table
below.

All tracing is turned off.

The Bound-T Command Line

Bound-T User Manual

Option Meaning and default value

-v Function Displays remarks and progress messages (basic output
-verbose classified as "notes"). The two forms -v and -verbose are
equivalent.
See also -g and its synonym -quiet.
Default This output is suppressed (quiet).
-version Function Displays the version of Bound-T: the name of the target
processor and the version number of Bound-T itself.
Default The version is displayed only when the -help option is used.
-virtual item Function Controls the analysis of virtual function calls for target
processors and programming languages where this concept is
implemented. The possible items are listed in a table below.
Default Static analysis of the set of callees (-virtual static).
-warn [no_] item Function Enables or disables the specific type of warnings named by the

item. The possible items are listed in a table below.

Default See table below.

Drawing options (-draw)

The following table lists the item values that can be used with the -draw option. Multiple -draw
options can be given, with cumulative effect. For example, the command

boundt -draw step -draw cond -dot drawing.dot ...

turns on drawing of both the step-addresses and the edge conditions and names the output file
drawing.dot.

The -draw items fall in five groups that control respectively 1) some properties of all drawings,
2) the form of the call-graph drawing, 3) the choice of subprograms for which flow-graphs are
drawn, 4) which flow graphs to draw for each chosen subprogram, and 5) the information to
be shown in the flow-graph drawings. These groups are explained in the corresponding thre
tables below. The rightmost column in these tables shows the default options which are used if
only the -dot or -dot_dir option is given (and no -draw options). By using items with the no_
prefix you can cancel these defaults. Section 7.6 explains the -dot output.

There is one -draw item that applies to all drawings:

Table 3: Options for all drawings

-draw item Effect Default?
scope Shows also the scope of each subprogram, for example Only if the option
the name of the module that contains the subprogram, -scope is used

not just the subprogram name.

There are a numer of -draw items that control the call-graph drawing:

Bound-T User Manual The Bound-T Command Line 89

Table 4: Options for call-graph drawings

-draw item Effect Default?

bounds The nodes in the call-graph drawing represent execution
bounds for a subprogram rather than the subprogram itself. If
a subprogram has only one set of execution bounds (context
independent bounds), it appears as one node; if it has several
(context dependent) execution bounds, it appears as several
nodes, one for each set of execution bounds.

no_bounds For subprograms with context-dependent execution bounds, all Yes
bounds are summarised into one node in the call-graph, so the
call-graph drawing has one node per subprogram.

scope Shows also the scope of each subprogram, for example the
name of the module that contains the subprogram, not just the
subprogram name. Implies the option -draw scope.

There are some -draw items that control the choice of subprograms for which flow-graphs are
drawn:

Table 5: Options for choosing subprograms for flow-graph drawings

-draw item Effect Default?
deeply Draw flow graphs for all subprograms in the call tree. Yes
no_deeply Draw flow graphs only for the root subprograms named on the

command line, but not for the subprograms they call.

There are several -draw items that define which flow-graphs will be drawn for the chosen
subprograms. In fact each subprogram has only one flow-graph, but when the subprogram has
different context-dependent execution bounds it may be interesting to make a separate
drawing of the flow-graph for each set of execution bounds, to see the different worst-case
execution paths in the flow graph. Any combination of the items in the following table can be
specified, but the items used, min and max are irrelevant if the item all is specified since all
includes all execution bounds. The default is to draw no flow-graphs at all.

Table 6: Options for choosing the flow-graphs to be drawn

-draw item Effect Default?

all Draw a separate flow-graph for each set of execution bounds
for the subprogram.

used Like all but include only execution bounds that take part in the
worst-case execution path of some root subprogram.

min Draw a flow-graph that shows the execution bounds that have
the smallest (minimum) worst-case time bound for this
subprogram. Note that this is not a best-case time bound!

max Draw a flow-graph that shows the execution bounds that have
the largest (maximum) worst-case time bound for this
subprogram.

total Draw a flow-graph that shows the execution counts and times
for the subprogram, within the bounds for the root
subprogram.

90

The Bound-T Command Line Bound-T User Manual

There are several -draw items that control the information to be shown in the flow-graph
drawings:

Table 7: Options for flow-graph drawings

-draw item Effect (what is shown in the drawing) Default?
address The code address range [first, last] of each flow-graph node.
cond The arithmetic precondition of each edge in a flow graph.
count The execution count of each node and edge, in the execution Yes
path that defines the worst-case time bound.
effect The arithmetic effect of each node.
line Source-line numbers corresponding to code addresses. Yes
step The machine addresses of each node.
step_graph Draw each flow step (machine instruction) as a node. By
default each node in the flow-graph represents a basic block.
symbol Symbols (identifiers, labels) connected to each node.
time The execution time of each node and edge. Yes

Options for constant propagation refinements (-const_refine)

The following table lists the item values that can be used with the -const refine option. Multiple
-const _refine options can be given, with cumulative effect. The rightmost column in the table
below shows the default options. By using items with the no_ prefix you can cancel these
defaults.

Table 8: Options for the constant-propagation phase

-const_refine Refined element Default?

item

effect The arithmetic effects of flow-graph steps (corresponding to Yes
target program instructions).

cond The arithmetic conditions of flow-graph edges Yes
(corresponding to conditional branches in the target
program).

Auxiliary program file names (-keep_files)

The -keep_files option makes Bound-T create text files that record the data streams to and from
the auxiliary programs Omega (for the arithmetic analysis phase) and Ip solve (for the
Integer Linear Programming phase). The files are placed in the working directory and are
named as shown in the table below. The part “ N” is a sequential number that separates the
several runs of the auxiliary programs. The number starts from 1 for each run of Bound-T. For
example, the files for the first execution of Ip solve within an execution of Bound-T are
named Ip in 1 and Ip out_ 1. Existing files with these names are overwritten without
warning.

Bound-T User Manual The Bound-T Command Line 91

Table 9: File names for auxiliary program files

Auxiliary program Input file for run N Output file for run N
Omega omega in N omega out N
Ip_solve lp in N lp out N

Detailed output options (-show)

The -show option enables the detailed output of analysis results. Section 7.5 explains the form
and content of this output, which depends on the items selected with -show item. The following
table lists the item values that can be used with the -show option. Multiple -show options can
be given, with cumulative effect. For example, the command

boundt -show loops -show times

turns on detailed output of both the loop-bounds and the execution time of each flow-graph

node.

Table 10: Options for detailed output

-show item What is shown in the detailed output

general

General information, including the full name of the subprogram, the call-
path for context-dependent analysis, and whether the analysis succeeded.

bounds

Computed or asserted bounds on execution time and/or stack usage of the
subprogram.

callers

All call-paths to the subprogram (the inverse call tree).

cells

Input and output cells (variables and registers) for the subprogram.

counts

Execution counts of flow-graph elements (nodes, edges).

deeply

Detailed results (as selected by other items) for all subprograms and calls in
the whole call tree, not just for root subprograms.

full

All other items except callers and deeply.

loops

Loop-bounds for each loop in the subprogram.

model

Final "computation model" for the subprogam, after all analyses and
consequent refinements and solutions of dynamic accesses. Also shows
which parts of the flow-graph are considered feasible, which infeasible.

spaces

Local stack height at significant flow-graph elements. In particular, the take-
off height for all calls from the subprogram.

stacks

The final stack height for each subprogram, that is, the net push or pop
effect of the subprogram on the stack.

times

Execution times of flow-graph elements.

The option -show callers has an additional role: it adds inverse call-tree information to the list
of unbounded program parts. See section 7.3.

92 The Bound-T Command Line Bound-T User Manual

Tracing options (-trace)

The following table lists the item values that can be used with the -trace option for all target
processors. Further jitem values may be defined for some target processors as explained in the
Application Notes for those processors. Multiple -trace options can be given, with cumulative
effect. For example, the command

boundt -trace decode -trace loops ...

turns on tracing of both the decoding process and loop structures.

There may also be further, processor-specific -trace items. If so, they are described in the
relevant Application Note.

This tracing information is intended for troubleshooting and may not be easy to understand
without some insight into the design of Bound-T. If necessary, Tidorum Ltd will help you
interpret the information.

Table 11: Options for tracing

-trace item What is traced

additional Additional processor-specific analysis steps and results. See the processor-
specific Application Notes.

arith Start and progress of arithmetic analysis for each subprogram and each
analysis context.

bounds Building execution-bounds objects.

calc Calculation of data-flow relations, briefly.

calc_full Calculation of data-flow relations, fully.

calls Call instructions found.

call_eff The arithmetic effect of calls, as and when defined.

cells Subprogram input, output and basis cell-sets.

const Constant propagation results.

const_fixp Constant propagation iterations.

context Context data for context-specific analysis.

counters Analysis of loop counters, showing which variables are tested and the
results.

data The simulation of the data state of the program, as part of the flow-graph

construction. Such simulation is an optional and somewhat experimental
analysis phase, used for some target processors, and not yet documented.

dead Dead assignments.

decode Decoding of program instructions. Includes disassembly listing but not the
arithmetic effect (Presburger equations); for this see the item effect.

effect Decoding of program instructions, with disassembly and display of the
Presburger equations that model the arithmetic effect of the instruction.

flow Constructing the control-flow graph element by element.

ilp ILP/IPET calculations; all communication with Ip_solve.

inbounds Bounds on the values of input parameters and globals for calls, when set.

join The joint artihmetic effect of a sequence of consecutive steps (instructions)

in a flow graph (the result of the -imp join optimization).

Bound-T User Manual The Bound-T Command Line 93

-trace item What is traced

joining The process of joining the effects of consecutive steps (see join) in detail.

live The arithmetic assignments that are live (effective) in each basic block in a
flow graph. For more detail, see live_step.

live_fixp Least-fixpoint iteration for live cells.

live_stat Number of live vs. dead assignments.

live_step The arithmetic assignments that are live (effective) in each step
(instruction) in a flow graph.

locus Forming the code location of a program element, for output purposes.

loops Loop structures from control-flow.

map Mapping assertions to code elements.

models Managing computation models (context-dependent refinements of the
arithmetic effects of nodes in the flow-graph of a subprogram).

nodes Completed control-flow graphs by basic blocks.

nubs The steps (instructions) that require arithmetic analysis in a flow graph.

orig Value-origin (copy propagation) analysis results.

orig_fixp Least-fixpoint iteration for value-origin analysis.

orig_inv Invariant cells (variables) from value-origin analysis.

params Parameter-bounds for calls. Mapping parameters from caller to callee.

parse Parsing the assertion file, in detail.

phase Progress through analysis phases: constant propagation, value-origin
analysis, arithmetic analysis, iterations of the same.

proto Analysis of dynamic calling protocols.

prune Pruning dead (infeasible) parts from control-flow graphs.

refine Refinements due to constant propagation.

resolve Resolving dynamic code and data addresses.

scopes Creating lexical scopes from the symbol tables of the target program.

stack All results of stack height and usage analysis.

steps Completed control-flow graphs step by step.

subopt Applying subprogram “option” assertions such as “not used”.

subs The set of subprograms under analysis, when it changes.

summary The summary (total) arithmetic effect of each loop.

symbols Symbols found in the target program.

symins Inserting symbol-table entries, in detail.

unused Subprograms and calls that are asserted to be “unused”.

94 The Bound-T Command Line Bound-T User Manual

Warning options (-warn)

The following table lists the item values that can be used with the -warn option. Multiple -warn
options can be given, with cumulative effect. For example, the command

boundt -warn access -warn symbol ...

turns on warnings for unresolved dynamic memory accesses and for multiply defined symbols.
The rightmost column in the table shows the default warning options. By using items with the
no_ prefix you can cancel these defaults. Note also that there are many kinds of warnings that
cannot be controlled with this option and are always enabled.

Table 12: Options for warnings

-warn item Warnings affected Default?

access Instructions that use unresolved dynamic data access (pointers).

computed_return Calls with dynamically computed return addresses.

eternal Eternal loops that have no exit and thus cannot terminate. Yes
flow Jumps and calls with dynamically computed target address. Yes
large Instructions that contain or involve literal values too large to be

analysed as defined by the option -calc_max.

reach Instructions, loops or calls that become unreachable (infeasible), Yes
in part or in whole, through analysis or assertions. See the
discussion of flow-graph pruning in section 6.5.

return Calls to subprograms that never return.

sign Instructions that contain literal values with an uncertain sign, Yes
where the value can interpreted as an unsigned or signed (two's
complement) value.

symbol Symbols that have multiple definitions in the target-program Yes
symbol-table, that is, symbols that are ambiguous even when fully
qualified by scope (see section 5.12).

Bound-T User Manual The Bound-T Command Line 95

6.5

Virtual function call options (-virtual)

The following table lists the item values that can be used with the -virtual option for the
analysis of virtual function calls. Virtual function calls are those call instructions that are
classified as a call of a virtual (late bound, dispatching) function (method) as defined in the
object-oriented programming domain. Typically this means that the target of the call — the
callee subprogram — is not statically defined, but depends on the dynamically defined class of
the object to which the call is applied. Whether and how Bound-T detects virtual function calls
depends on the target processor and the cross-compiler and is explained in the relevant
Application Notes. Typically, virtual function calls can be detected only when the cross-
compiler creates a description of the class inheritance structure in the symbol-table of the
target program.

Table 13: Options for virtual function calls

-virtual item Meaning Default?

dynamic A virtual function call is modelled as a dynamic call, that is, the callee
address is the result of a computation that Bound-T will try to analyse
but will probably fail to resolve. You may and probably have to assert
the possible callees using a dynamic call assertion.

static A virtual function call is modelled as a set of alternative static calls to Yes
each possible implementation of the virtual function (like a switch-
case statement). As no dynamic calls (in the Bound-T sense) are
created you cannot assert the possible callees using a dynamic call
assertion, but you can use other kinds of assertions to control which
of the alternative static calls can be executed, and how many times.

Optional Analysis Parts

What are they?

The options -no_bitwise_bounds, -no_const, -no_orig, and -no_prune disable some optional
parts of the analysis that Bound-T uses to model the arithmetic computations of the target
program. The options exist to let us experiment with different sets of analyses. Normally you
do not have to understand what these optional analysis parts are; just leave them enabled.
Still, this section explains them briefly, to make this user manual more complete.

Bit-wise Boolean operations

Sometimes compilers apply the bit-wise Boolean operations to loop counters or other data used
in loop counting. Most common is the “and” operation which is used to mask off some
unwanted bits in the datum. By default, Bound-T models the bit-wise and and or operations by
translating them to Presburger constraints on the integer values of the operands and the result
as shown in the table below. The option -no_bitwise_bounds makes Bound-T instead model
these operations as yielding unknown (opaque) values.

Operation Constraint in default model Effect under -no_bitwise_bounds

T:=AandB (0<T)and (T<A) and (T <B) T := unknown
T:=AorB (0<T)and (T< (A + B)) T := unknown

96

The Bound-T Command Line Bound-T User Manual

Note that the symbol “and” in the constraint column means the logical “and” (conjunction of
Presburger conditions), not the bit-wise and as in the operation column. The constraint is
inserted in the arithmetic effect of the instruction that executes the bit-wise operation.

Constant propagation

Before launching the full Presburger Arithmetic analysis of a subprogram, Bound-T tries to
simplify its model of the subprogram's arithmetic by propagating constant values from
definitions to uses. For example, if an instruction assigns the constant value 307 to register R3,
and this is the only value of R3 that can flow to a later instruction that adds 5 to R3 and stores
the sum in R6, Bound-T propagates the constant along this flow and simplifies its model of the
second instruction to add 5 to 307, giving 312, which is stored in register R6. Since this
instruction now assigns a constant value to R6, the propagation can continue to instructions
that use this value of R6, and so on.

Compilers usually apply constant propagation in their code optimization, so why should
further constant propagation in Bound-T be useful? There are three reasons:

+ the instruction set may limit the compiler’s use of constants,
+ a context-dependent analysis may know more constants than the compiler did, and
+ the local stack height may be constant, but not explicit in the instructions.

The instruction set of the target processor may not allow immediate (literal, constant) operands
that are large enough to hold constants known to the compiler. The compiler must then
generate code that computes the constant operand into a register. For example, there is no
SPARC V7 instruction to load a 32-bit constant into a register, so the compiler must use two
instructions: a sethi instruction that loads the high bits followed by an or instruction that loads
the low bits. Nor is it possible to use a constant 32-bit address to access memory, so to access a
statically allocated variable the compiler must generally use three instructions: sethi and or to
load the address into a register and a third instruction to access the variable via this register.
The model in Bound-T is more flexible, so constant propagation in Bound-T can combine the
sethi and or instructions into a single constant load, and further combine that with the
register-indirect memory access into an access with a static address.

Context-dependent analysis in Bound-T means that a subprogram S is analysed in the context of
a call path, that is, under the assumption that the subprogram has been reached via a specific
sequence of calls A - B - ... - S. Bound-T analyses the arithmetic of the call-path to find
bounds on the inputs (parameters, globals) for S. If an input is bounded to a single value, this
value is a static constant in this context and can be propagated over S. Constant propagation
can handle more operations than the normal (Presburger) arithmetic analysis, including
multiplication and bit-wise logical operations. Thus, constant propagation may make the
arithmetic in S analysable for Bound-T where the original arithmetic is not analysable, for
example because the original arithmetic multiplies variables.

The local stack height is similar to a variable (register) for Bound-T. As explained in section
3.11, for stack-usage analysis Bound-T tries to find the maximum value that this variable may
have in the execution of the subprogram under analysis. The instructions that change the local
stack height are usually of two kinds: (1) adding or subtracting a constant to or from the stack
pointer register, and (2) pushing or popping a constant amount of data to or from the stack.
Both translate into adding or subtracting a constant to or from the local stack height.
Moreover, the local stack height generally has a constant initial value on entry to the
subprogram. This means that constant propagation usually simplifies each expression assigned
to the local stack height into a constant, which makes it very easy and fast to find the
maximum local stack height. Thus, stack-usage analysis can often rely only on constant
propagation and avoid the expensive Presburger analysis.

Bound-T User Manual The Bound-T Command Line 97

By finding the local stack height, constant propagation also helps to resolve accesses to local
variables or parameters. Such accesses are often coded using offsets relative to the dynamic
value of the stack pointer. The local stack height must be known in order to translate this offset
to a static offset in the subprogram's stack frame. The static offset identifies the (stacked)
parameter or local variable that is accessed.

The option -no_const makes Bound-T skip constant propagation. When constant propagation is
enabled, some of its effects can be disabled or enabled separately by means of the -const_refine
option.

Value-origin analysis (copy propagation)

Several analyses in Bound-T track the values of variables such as registers or memory locations
along execution paths. These analyses must take into account all assignments to variables. The
more assignments there are, the harder the analysis becomes.

In typical target programs some assignments can be ignored because they are surrounded by
code that saves and restores the original value of the variable. This occurs especially when the
calling protocol requires some registers to be preserved across any call of a subprogram
(“callee-save” registers). Value-origin analysis is designed to detect this and thus to simplify the
other data-flow analyses in Bound-T.

L

Value-origin analysis is similar to analyses called “copy propagation”, “value numbering” and
“static single assignment” (SSA). The analysis applies to one subprogram at a time, in bottom-
up order in the call graph, and works as follows. The arithmetic assignments in the
subprogram are divided into two groups:

1. Copy assignments of the form x := y where the right-hand side (y) is a single variable.

2. Non-copy assignments of the form x := expr where the right-hand side (expr) is an
expression and not a single variable.

Note that instructions that save and restore registers (push, pop or the like) are copy
assignments.

Each non-copy assignment x := expr is taken as the origin of a new value (the value computed
by expr) that becomes the value of x at this point. The value-origin analysis does not try to
compute what this new value actually is; it just keeps track of where the value ends up, that is,
where this origin of x is used.

A copy assignment x := y is not the origin of a value but propagates the origin of y to be the
origin of x.

Special value-origins are defined for the initial values of all variables on entry to the
subprogram.

The analysis propagates these value-origins over the control-flow graph. When the control flow
joins different origins for the same variable, the join point is taken as a new origin of the
“merged” value (corresponding to “phi functions” in SSA). After the analysis we know the
origin of the value of each variable at each point in the flow graph.

Bound-T uses the value-origin analysis to find variables that are invariant across the call of a
subprogram: a variable must be invariant if the variable's value at all return points originates
from its initial value. Knowing such invariant variables simplifies the analysis of the callers of
the subprogram, for example when the caller uses the variable as a loop counter and the call is
in the loop.

The option -no_orig disables value-origin analysis. The invariance of a variable across a
subprogram call is then decided based on the calling protocol and the (static) presence or
absence of assignments to the variable. The calling protocol for the subprogram can specify
that certain variables (usually callee-save registers) are invariant across the call. Otherwise, if

98

The Bound-T Command Line Bound-T User Manual

the subprogram has an instruction that can change the variable, the variable is not considered
invariant across a call. Instructions that can change a variable include assignments to the
variable and calls of lower-level subprograms that can change the variable.

Flow-graph pruning

Subprograms usually contain conditional branches. The condition is a Boolean expression and
often has a form that Bound-T can analyse, in part or in whole. This means that Bound-T can
sometimes deduce that a branch condition must be false, either generally or in the context of a
context-dependent analysis. A false condition means that the conditional branch cannot be
taken, which means that some parts of the control-flow graph may be unreachable, either
generally or in the current context. Such parts, and any execution paths that traverse them, are
also called infeasible.

To simplify the analysis Bound-T will remove or prune the unreachable parts (nodes and edges)
from the control-flow graph. The pruned parts are excluded from the analysis; they do not
contribute to the arithmetic model, nor to the execution time bound, nor to the stack usage
bound.

Pruning is an iterative process: when one element (node or edge) of the flow-graph is found to
be unreachable this may imply that successor elements are also unreachable. When a node is
unreachable, so are all the edges leaving the node. When all edges that enter a node are
unreachable, so is the node.

Bound-T does not deliberately search for unreachable flow-graph parts. Rather, unreachable
parts are discovered as a side effect of some analysis, as follows:

- Constant propagation may find that a branch condition has the constant value false.

+ Arithmetic analysis of the data that reaches a loop, a dynamic memory access or a dynamic
jump may show a null data set, meaning that the loop, access or jump is unreachable.

+ An assertion may state, or Bound-T may itself discover, that the calleee of a call does not
return to the caller, meaning that any control-flow edge from the call is unreachable.

+ An assertion may state that a loop repeats zero times, meaning that the edges from the loop
head to the loop body (including edges back to the loop head itself) are unreachable. If the
loop is an eternal loop or a loop that can exit only at the end of the loop body then the
whole loop (including the loop head) is unreachable.

+ An assertion may state, or Bound-T may itself discover, that a loop cannot repeat even once,
meaning that the “backward” or “repeat” edges from the loop body to the loop head are
unreachable.

« An assertion may state that a call is executed zero times, meaning that the call is
unreachable.

As an extreme case, if all return points in a subprogram become unreachable then the search
for the worst-case execution path will fail and lead to a fault message from the Ip solve
program. In future Bound-T versions this case will instead make Bound-T consider the whole
subprogram unreachable and all calls to the subprogram unreachable.

Unreachability may change the looping structure of a control-flow graph in several ways:
+ If the loop head becomes unreachable then the whole loop is unreachable and is pruned.

+ If all the paths that can repeat the loop become unreachable then the loop is no longer a
loop and is not reported as a loop in the output. However, the loop head and perhaps some
parts of the loop body remain feasible and stay in the flow-graph.

« If all the paths that can exit (terminate) the loop become unreachable then the loop is an
eternal loop. See section 5.17.

Bound-T User Manual The Bound-T Command Line 99

6.6

The option -no_prune disables pruning. However, Bound-T will still mark as unrecahable those
flow-graph edges that have false conditions, which may cause problems in the search for the
worst-case path. Operation with -no_prune has not been well tested and may not work.

Patch files

Patching: why and how

In some (rare) cases it is convenient to patch (that is, slightly alter) the target program for
analysis purposes. Bound-T provides the command-line option -patch for this. This option may
not be supported for all target processors; please check the Application Note for your target.

As an example of a case where patching is useful, consider a SPARC program where the
addresses in the trap vector table are not defined statically (at load time) but dynamically by
the boot code. Thus, Bound-T sees the traps as dynamic calls and is probably unable to find the
callees (the trap-handler subprograms). If these subprograms are nevertheless statically
known, you can patch their addresses into the trap vector table and then Bound-T can find and
analyse the trap handlers, too.

When -patch is supported, the necessary patches should be written in a patch file or possibly
several patch files and these files should then be named in -patch options. Patch files are text
files with a generic (target-independent) surface syntax but where the detailed syntax and
meaning depend on the target processor. The rest of this subsection defines the generic surface
syntax; see the relevant Application Note for the target-specific syntax and meaning.

Generic patch file syntax

A patch file is a text file that is interpreted line by line as follows.
- Leading whitespace is ignored.

— A line starting with “-” (two hyphens, possibly with leading whitespace) is ignored
(considered a comment line).

- Blank and null lines are ignored.
- Meaningful lines contain the following fields, in order, separated by whitespace:

- a code address in a target-specific form (usually a hexadecimal number), denoting the
starting address of the patch;

- a string without embedded whitespace, denoting the main content of the patch in a
target-specific form;

- zero or more strings that represent code addresses or symbols connected to code
addresses, with a target-specific form and interpretation.

The patching process in Bound-T reads patch lines one by one, parses them as defined above,
and applies them in a target-specific way to the loaded memory image of the target program to
be analysed.

Example

Here is an example of a patch file for a SPARC processor. The file changes the SPARC target
program at address 40000810 (hex) by changing the 32-bit word at this address to A1480000
(hex) which encodes the SPARC instruction “rd %psr,%I10”. The first two lines are comments;
the third line defines the change by giving the address and the new content.

100

The Bound-T Command Line Bound-T User Manual

-- The following puts an “rd %psr,%10” instruction
-- at the trap location:
40000810 al_48 00 _00

The form and meaning of SPARC patch files are further explained in the Application Note for
the SPARC version of Bound-T.

Bound-T User Manual The Bound-T Command Line 101

7.1

7.2

UNDERSTANDING BOUND-T OUTPUTS

Choice of Outputs

Bound-T provides a choice of several output formats. The basic format, which is the default
and was illustrated by examples in Chapter 3, is designed to be compact and easy to post-
process by filters or higher-level tools, such as scheduling analysers. Section 7.2 below explains
this format.

When Bound-T fails to find bounds on some parts of the target program, it lists the unbounded
parts in a specific format that is explained in section 7.3.

Specific command-line options enable other forms of output as follows:

+ The -table option gives a table of all subprograms included in the WCET bound, showing
how many calls of each subprogram are included and how much time each subprogram
contributes to the WCET bound. See section 7.4.

The -show option gives a hierarchical, indented representation of the call graph and
selected information about each subprogram and the analysis of that subprogram. See
section 7.5.

« The -dot option creates drawings of the control-flow graphs and call graphs in DOT form.
See section 7.6.

The -trace option can give a lot of detailed outputs about the progress of the analysis, on the
fly, but this is meant for troubleshooting and the format is not explained here. Please contact
Tidorum Ltd if you need to understand -trace output.

Basic Output Format

The fields

The basic output format consists of lines with fields separated by colon characters (or the
character defined with the -output _sep option). The first field is a keyword such as Note, Weet,
or Loop Bound that shows the type of the line. The second through fifth fields contain the
name of the target-program executable, the source file, the subprogram or call being analysed,
and the code location, respectively.

The remaining fields, starting from the sixth field, depend on the type of the line, as does the
significance of the code location. Thus, the form is:

key:exe-name:source-name:sub-or-call:code-location:more
Fields that are undefined or not applicable are empty. For example, if Bound-T reports an error
in the format of the program executable, but that does not pertain to any particular source-

code file, subprogram, or code location, it emits a line of the form

Error:exe-name::: :message

102

Understanding Bound-T Outputs Bound-T User Manual

Subprograms and call paths

If a basic output line refers just to a subprogram, for example if it reports that the WCET of the
subprogram has been bounded without considering its parameters, the sub-or-call field
(field 4) contains the subprogram name alone.

If the basic output line reports on the analysis of a call path, the sub-or-call field lists the call
locations in top-down order, separated by “=>". For example, the string

main@71[040A]=>AQ[0451]=>B

indicates a call path starting in the subprogram main, where the instruction at source-line
number 71 and address 040A calls the subprogram A, where the instruction at address 0451
but unknown source-line number calls the subprogram B, where the call path ends. The code
addresses are usually displayed as hexadecimal numbers.

Normally, the bracketed code addresses are omitted if source-line numbers are available for
this location. The option -address includes code addresses in all output whether or not source-
line numbers are found.

Code locations

The code location field (field 5) consists of a source-line number or an instruction address or
both. Either part may also be a range with a lower-bound and an upper-bound. For example,
the code location “66-71[3B5F-3B6D]” means the source-lines number 66 through 71 which
correspond to the instructions at the hexadecimal addresses 3B5F through 3B6D.

Normally, the bracketed code addresses are omitted if source-line numbers are available for
this location. The option -address includes code addresses in all output whether or not source-
line numbers are found.

Source-code lines around a code address

The connections between source lines and code addresses must be provided by the target
compiler and linker and may not be precise or complete. For example, the compiler and linker
perhaps connect a source line only with the address of the first instruction generated for the
source line. If Bound-T then writes an output line that refers to a later instruction generated
for this source line, there is no source-line number connected to exactly the address of this
instruction.

The option -lines around (which is the default) lets Bound-T display the closest matching
source-line number for a given code address. If no source-line number is connected exactly to
this code address, Bound-T first looks for the closest match before this code address. If a
source-line connection is found, it is displayed in the form “number-" to indicate that the code
address comes after source-line number. If Bound-T finds no source-line connection before this
code address, it looks for the closest match after this code address and displays it in the form
“—number” if found.

For example, under -lines around (and -address) the call-path string
main@71-[3C40]=>AR-15[103F]=>B

shows that no line-number is connected exactly with the call from main to A at address 3C40,
but the line number 71 is the closest number known before the call, while for the call from A to
B no source-line number is known at or before the address 103F but the closest line-number
after that address is 15.

Bound-T User Manual Understanding Bound-T Outputs 103

The source-line number displayed under -lines around is usually the “right” one, but sometimes
it can refer to another object-code module and thus to the wrong source file. This typically
happens when the module that contains the code address has been compiled without
debugging options, and so lacks source-line connections, but other modules have such
connections.

The alternative option -lines exact makes Bound-T display only exactly matching source-line
numbers, which means that it often displays only the code address and no source-line number.

Instruction addresses

The form of an instruction address is in fact target-specific so although the examples above
showed addresses as single hexadecimal numbers, some target processors may use other
formats. This is explained in the Application Note for each target processor.

All the output

The following table shows all the forms of basic output line that can occur and explains their
meaning. Remember that fields 2 through 5 always contain the executable file name, source
file name, subprogram name or call-path, and source line numbers or instruction addresses.
However, for messages that report a problem in the assertion file, or in an HRT TPO file, the
name of the relevant file is substituted for the source-file name, and the line number (if
present) also refers to that file.

The explanation of the remaining fields (from field 6 on) first gives the format, using italic
symbols for field values and separating fields with colons, and then explains the meaning of
the symbols. The table is in alphabetic order by the keyword (field 1).

Table 14: Basic output formats

Keyword (field 1) Explanation of fields 6-

Also Gives additional source-code references for the preceding output line. An Also
line arises when an output line refers to a program element with connections to
more than one source file.

The first output line (with a key that is not Also) shows the connections to one
source file. Each appended Also line shows the connections to a further source
file. This happens, for example, in Ada target programs where a program
element can be connected to an Ada package declaration file as well as the
corresponding package body file.

An Also line has only five fields.

Analysis_Time time

An informative output message given once at the end of the analysis and
showing the total elapsed (wall-clock) analysis time in seconds with three
decimals (resolution 0.001 seconds). Note, this is time on the host machine on
which Bound-T is executed, not time consumed by the target program on the
target machine.

This output is optional per the option -anatime.

Call callee source file : callee subprogram : callee line-numbers

An informative message that reports that a subprogram call has been detected
in the subprogram being analyzed. The caller subprogram and the location of
the call are identified in fields 3 through 5; the callee subprogram is similarly
identified in fields 6 through 8.

104 Understanding Bound-T Outputs Bound-T User Manual

Keyword (field 1)

Explanation of fields 6-

This output is optional per the option -trace calls.

Error

message

Reports an error that may prevent further analysis and means that the later
analysis results, if any, are probably wrong in some way. For example, the
command line may have named a subprogram that does not exist in the target
program. Section 9.2 lists and explains all generic error messages that can arise
with any target processor. The Application Notes explain any additional error
messages for specific targets.

Exception

message

As for the Fault case below, but shows that the fault led to an exception being
raised. Please report to Tidorum Ltd. as for a Fault.

Fault

message

Reports an unexpected error that may prevent further analysis and is probably
due to a fault in Bound-T itself, not necessarily in the input data or the way
Bound-T was invoked. Please report any occurrence of this message to Tidorum
Ltd., preferably together with the target executable, the command line and any
other input files (assertion file, TPOF).

Integrated Call

callee source file : callee subprogram : callee line-numbers

Basically the same as the “Call” output line (which see): an informative
message that reports that a subprogram call has been detected in the
subprogram being analyzed. The caller subprogram and the location of the call
are identified in fields 3 through 5; the callee subprogram is similarly identified
in fields 6 through 8. However, for an “Integrated Call” the flow-graph of the
callee becomes a part of the flow-graph of the caller and is analyzed as such;
the callee is not considered a distinct “subprogram” to be analyzed on its own.

Whether a call is analyzed in this “integrated” way can be controlled by an
assertion (see section 8.5). Integrated analysis can be the default for certain
subprograms for some target processors and target compilers; they are usually
library routines that implement prelude/postlude code for application
subprograms.

This output is optional per the option -trace calls.

Loop Bound

number

An informative message that reports the computed upper bound on the number
of iterations of a loop. This is an upper bound on the number of times the loop-
head is re-entered from the body of the loop (via a "repeat edge"), for each time
that the loop is started. For loops in which the termination test is at the end of
the loop body, the bound is usually one less than the number of times the loop
body is executed. See section 8.10 for the terms loop-head and repeat edge.

The bound may depend on actual call parameters, in which case the sub-or-call
field shows the call path to which this bound applies.

Note

message

An informative message, which can be good or bad, but in any case is not
severe enough to be considered worthy of a warning or error message.

These messages are written only if the -verbose (or -v) option is chosen.

Param_Bounds

parameter : bounds

Bound-T User Manual Understanding Bound-T Outputs 105

Keyword (field 1) Explanation of fields 6-

Shows the derived bounds on the parameter in the call identified by fields 3
through 5. The bounds will be used for the context-dependent analysis of the
callee.

This output is optional per the option -trace params.

Recursion_Cycle Calls callee

Shows one call in a recursive cycle of calls between subprograms. When Bound-
T detects a recursive cycle, it first emits an Error line reporting that recursion
exists and then follows this with one or more Recursion_Cycle lines that together
describe a recursive cycle of calls.

In each Recursion_Cycle line, the sub-or-call field names the caller and field 6
names the callee. Here is an example of a cycle with three members, the
subprograms glop, fnoo and emak:
Recursion_Cycle:prg.exe:prg.c:glop:34-42:Calls fnoo

Recursion_Cycle:prg.exe:prg.c:fnoo:11-32:Calls emak
Recursion_Cycle:prg.exe:prg.c:emak:43-66:Calls glop

Note that Bound-T shows only one recursion cycle, but there may be others.

Stack stack : usage

Reports the computed upper bound on the total usage of a certain stack for a
subprogram, as requested by the -stack option. The stack-usage unit depends on
the target processor and is usually the natural unit for memory size on this
processor, such as octets on an 8-bit processor. For example:

Stack:prg.exe:prg.c:main:34-42:HW_stack:15
Stack:prg.exe:prg.c:main:34-42:C_stack:22

These output lines show that the root subprogram main (together with its
callees) needs at most 15 units of space on the stack called HW stack, plus 22
units on the stack called C_stack. See section 3.11.

Stack_Path stack : local-usage : total-usage

Reports on the call-path that causes the worst-case usage of certain stack, for a
root subprogram, as requested by the -stack_path option.

The local-usage is an upper bound on the local stack height in the current
subprogram. This is the amount of stack required for the local variables of the
current subprogram, without considering the stack usage of lower-level callees.

The total-usage is an upper bound on the total stack space required by the
current subprogram together with its lower-level callees.

The stack-usage unit depends on the target processor and is usually the natural
unit for memory size on this processor, such as octets on an 8-bit processor.

There will be one Stack_Path line for each subprogram in the call-path that
requires the most stack, and these lines traverse the path in top-down order,
with the current subprogram indicated in the sub-or-call field. For example, the
path from the root subprogram main via fnoo to emak would be shown as:
Stack_Path:prg.exe:prg.c:main:34-42:5P:5:15

Stack_Path:prg.exe:prg.c:fnoo:11-32:SP:6:10
Stack_Path:prg.exe:prg.c:emak:43-66:SP:4:4

These output lines show that main needs 15 units of space on the stack called
SP. Of this space, main itself uses 5 units and the call to fnoo uses the
remaining 10 units. The subprogram fnoo itself uses 6 units and emak uses the
remaining 4 units. See section 3.11.

Synonym name

106 Understanding Bound-T Outputs Bound-T User Manual

Keyword (field 1)

Explanation of fields 6-

Reports that the subprogram identified in fields 3 through 5 has another name.
The symbol-table in the program connects this name to the same entry address.

This output is optional per the option -synonym.

Time_Table

total : self : calls : min : max : subprogram : source-file : code-location

One row in the tabular break-down of the WCET bound for the root
subprogram identified in fields 3 through 5. This row reports the part of the
WCET bound that is due to the given subprogram which is located in the given
source-file and code-location.

The worst-case execution path of the root subprogram executes the given
number of calls of this subprogram. Together, these calls contribute the given
total time to the WCET bound, of which the self amount is spent in the
subprogram itself and the rest (total — self) in lower-level subprograms. The
lower-level subprograms will be represented by their own Time_Table lines.

The fields min and max show the smallest and largest WCET bound found for
this subprogram (including its callees) over all its calls on the worst-case
execution path of the root. The two fields can be different only if the WCET
bound for subprogram is context dependent.

This output is issued only under the option -table. See section 7.4 for further
explanation.

Unused

Unused subprogram
This subprogram will not be analysed because it is asserted to be unused.

This message is issued only under the option -trace unused.

Unused_Call

callee source file : callee subprogram : callee line-numbers

This call is considered infeasible because the callee subprogram is asserted to be
unused.

See the output line Call for an explanation of the output fields.

This message is issued only under the option -trace unused.

Warning

message

A warning message that means that the analysis results may not be correct . You
should check if the reason for the warning really makes the results wrong; the
warning may be a false alarm of something that does not affect the results.
Section 9.1 lists and explains all generic warning messages that can arise with
any target processor. The Application Notes explain any additional warning
messages for specific targets.

Weet

time

The field time is the computed upper bound on the execution time of the
subprogram named in the sub-or-call field, which has been determined
independently of any actual parameter values (in a "null" context).

If the -split option is used, there are two additional output fields as follows:
time : self : callees

The meaning of time is not changed; self is the part of time that is spent in the
subprogram itself, while callees is the part that is spent in lower-level callees.

The time is given in target-specific units, usually clock cycles.

Weet Call

time

Bound-T User Manual Understanding Bound-T Outputs 107

Keyword (field 1) Explanation of fields 6-

The field time is the computed upper bound on the execution time of a
subprogram call, when the bound depends on the actual call parameters
(context). The sub-or-call field shows the call-path in top-down order, starting
from the topmost subprogram that provides context.

If the -split option is used, there are two additional output fields as follows:
time : self : callees

The meaning of time is not changed; self is the part of time that is spent in the
subprogram itself, while callees is the part that is spent in lower-level callees.

This kind of output can occur only when the option -max_par_depth is positive
(as it is by default).

The time is given in target-specific units, usually clock cycles.

7.3 List of Unbounded Program Parts
When Bound-T fails to find the requested time or space bounds on some parts of the target
program, it first issues one or more error messages (usually the message “Could not be fully
bounded”) and then lists the unbounded parts in a specific but simple format. This section
explains the format.
Call graph framework
The unbounded program parts are listed within a hierarchically indented display of the
relevant portion of the call-graph. This is similar to the structure of the detailed output
described in section 7.5.
Assume, for example, that the unbounded parts lie in the subprograms Foo, Bar, Upsilon and
Chi, which are related by the calls Foo — Bar, Bar — Upsilon and Foo — Upsilon. Assume
further that the call Bar — Upsilon gives enough context (parameter values) to bound some,
but not all parts of Upsilon, while the context in Foo — Upsilon leaves some other Upsilon parts
unbounded. Thus, the execution bounds for the two calls are different.
If Bound-T is asked to find the WCET bound for the root subprogram Main, which calls Foo and
Chi, the unbounded parts are displayed as follows:
Main@23=>Foo
list of unbounded parts in Foo
Main@23=>Foo@104=>Bar
list of unbounded parts in Bar
Main@23=>Foo@104=>Bar@212=>Upsilon
list of unbounded parts in this call of Upsilon
Main@23=>Foo@123=>Upsilon
list of unbounded parts in this call of Upsilon
Main@37=>Chi
list of unbounded parts in Chi
Thus, for each subprogram that contains unbounded parts there is first a line that gives the full
call path from the root subprogram and then the list of unbounded parts. The call path
includes the code locations of the calls (after the '@' characters) giving the source-line number
and/or the machine address of the call.
108 Understanding Bound-T Outputs Bound-T User Manual

If the set of unbounded parts is context-dependent (as for Upsilon in the example) each
different context is shown separately with the list of unbounded parts in that context.

When there are several call paths to the same subprogram, but the analysis results are the
same for these paths, only the longest path is shown (depth-first traversal of the call graph).
Use the option -show callers to list all call paths (see below).

This output includes only subprograms that have some unbounded parts. Fully bounded
subprograms may appear in the call-path strings on the way to a subprogram that has
unbounded parts.

The list of unbounded parts can list unbounded loops, unbounded local stack height and
irreducible flow-graphs.

Unbounded loop

In the list of unbounded parts, an unbounded loop is shown as follows:

call path to the subprogram
Loop unbounded at srcfile:location, offset offset

If the loop is eternal (as defined in section 5.17), the form is

call path to the subprogram
Loop unbounded (eternal) at srcfile:location, offset offset

The srcfile part is the name of the source-code file (full name or base name, according to the
-source option). The code location usually shows the range of source-line numbers for the loop.
It shows the machine-code address range if the option -address is used or if the source line
numbers are unknown. The offset is the code-address offset from the start (entry point) of the
subprogram that contains the loop to the start of the loop (the instruction at the loop head).
The offset can be used to identify the loop in an assertion (see section 8.6).

Unbounded stack

For stack usage analysis (option -stack or -stack path), an unbounded local stack height
appears as follows in the list of unbounded parts:

call path to the subprogram
Local stack-height unbounded for stack name : stack height

The concepts of “stack name” and “local stack height” are explained in section 3.11. The stack
height shown in this output is an “unsafe” or “unknown” value.

Irreducible flow-graph

An irreducible control-flow graph is considered an “unbounded part” if it prevents the analysis.
This is always the case for time analysis but stack usage can sometimes be analysed for
irreducible graphs (by constant propagation).

In the list of unbounded parts, the irreducibility is shown as follows:

call path to the subprogram
Irreducible flow-graph at source file name : code location

Bound-T User Manual Understanding Bound-T Outputs 109

The code location shows the source line numbers and possibly the machine-code address range
for the irreducible subprogram.

All call paths (-show callers)

For solving problems with unbounded loops or other program parts it is often helpful to know
where and how the subprogram in question is called. The option -show callers adds a list of all
the call-paths to the subprogram after the list of unbounded parts in the subprogram. In the
example above, the list for the Upsilon subprogram with -show callers would show the two
possible paths in this way:

Main@23=>Foo@104=>Bar@212=>Upsilon
Loop unbounded at :[31-32]
All paths to Upsilon:
Main@23=>Foo@123=>Upsilon
Main@23=>Foo@104=>Bar@212=>Upsilon

The line with the string “---” marks the end of the list of call-paths. When a subprogram has a
context-dependent set of unbounded parts and thus appears more than once in this output, the
call-paths are listed only in the first appearance.

7.4 Tabular Output
WCET break-down
The -table option makes Bound-T emit a tabular break-down of the WCET bound for each root
subprogram. The purpose of the table is to identify the “hot spot” subprograms that consume
major parts of the execution time. The table can also be useful for checking the scenario that
Bound-T has identified as the worst case as the table gives an overview of which subprograms
are called and how many times they are executed in total.
The table has one row for each subprogram in the call-tree, in top-down order starting from
the root subprogram. Each row in the table is emitted as one basic output line with the key
Time_Table as described in section 7.2.
To understand the structure of a Time_Table line, consider the worst-case execution path of the
root subprogram and how a given lower-level subprogram S occurs in this path.
The path traverses the root subprogram and, via calls and returns, the lower-level
subprograms. Some calls occur in loops and may therefore be repeated many times. The same
subprogram S may be called from several places, from the same or different subprograms.
Whenever S is called, its execution takes some time; part of this time is spent in S itself and the
rest in subprograms that S calls. The execution time of S may be different for different calls, for
example if S has a loop that depends on a parameter.
The Time_Table line for the subprogram S shows:
+ the total number of times S is executed (called) in the root’s worst-case execution path,
- the total (sum) execution time of S including its callees, for all these calls,
« how much of the total time is spent in S itself, in all these calls, and
+ the range (min .. max) of the execution time of S, over all these calls.

110 Understanding Bound-T Outputs Bound-T User Manual

To be precise, here the term “execution time” really means the upper bound on execution time
(WCET) that Bound-T computes. Also, the “worst-case execution path” of the root subprogram
is really the potential execution path that Bound-T considers as the worst-case path, although it
may be infeasible in parts.

Example

Consider the following C program, with line-numbers in the left margin:

O o Ul WN -

o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

You see here a trivial function A,

void A (void);
void B (void);

void C (unsigned
int A count = 0;
int B _count = 0;
int C_count = 0;

void A (void)
{

A _count ++;

}

void B (void)
{
B_count ++;
A ()
C (20);
}

void C (unsigned
{
unsigned char
C_count ++;
for (k = 0; k
{
A ()i
}
H

void main (void)
{ unsigned char
A ()7
for (x = 0; x
{
B ()i
}
C (5);
}

char n);

/* Counts executions of A(). */
/* Counts executions of B(). */
/* Counts executions of C(). */

char n)

< n; k++)

Xj

< 10; x++)

which simply counts how many times it is executed, and a

slightly more complex function B, which also counts its executions and also calls A and C(20).
The function C(n) counts its executions and calls A in a loop that executes n times. At the top,
the main function calls A once, then calls B ten times, and finally calls C(5). The following
figure illustrates the call graph. The numbers on the call-arcs show how many times the call is
executed for one call of main.

Bound-T User Manual

Understanding Bound-T Outputs 111

main, 1 call

self 89 cycles
contains 10 calls of B
contains 11 calls of C
contains 216 calls of A
total 3925 cycles

B, 10 calls
self 120 cycles
contains 10 calls of C

10 contains 210 calls of A

total 3730 cycles

c5) | ¢ 11cals

self 2204 cycles H
contains 205 calls of A
5 total 3639 cycles i

A, 216 calls
self 1512 cycles |
total 1512 cycles

Figure 5: Call-graph for example of tabular output

Since A is called 216 times, the final value of the variable A count in the program is 216.
Compare this with the -table output for A from a WCET analysis of main (this was for an Intel-
8051 target processor):

Time Table:ex:ex.c:main:31-40:1512:1512:216:7:7:A:ex.c:9-12

The fields 3 through 5 (ex.c:main:31-40) show that this Time_Table line represents one row
in the break-down of the WCET bound for the root subprogram main which lies on lines 31-40
of the source file ex. c.

The fields 11 through 13 (A:ex.c:9-12) show that this Time Table line represents the row
for subprogram A, which lies on lines 9-12 of the source file ex. c.

The fields 6 through 10 (1512:1512:216:7:7) show the role of A in the WCET bound of
main:

field 6 shows the total execution time (bound) for all the calls of A executed in one call of
main: 1512 cycles.

field 7 shows how much of the total time is spent in A itself; this is also 1512 cycles because
A calls no other subprograms.

field 8 shows how many times A was executed: 216 times.

field 9 shows the smallest execution time (bound) on A, within these 216 executions: 7
cycles.

field 10 shows the largest execution time (bound) on A, within these 216 executions: it is
also 7 cycles because A is not context-dependent.

112

Understanding Bound-T Outputs Bound-T User Manual

Since each of the 216 calls of A takes 7 cycles, the total time should be 7 x 216 = 1512, which
is consistent with field 6.

Here are all the Time_Table output lines for main:

:main:31-40:3925:89:1:3925:3925:main:ex.c:31-40
tmain:31-40:1512:1512:216:7:7:A:ex.c:9-12
:main:31-40:3730:120:10:373:373:B:ex.c:14-19
:main:31-40:3639:2204:11:99:354:C:ex.c:21-29

Time_ Table:ex:ex.
Time Table:ex:ex.
Time_ Table:ex:ex.
Time Table:ex:ex.

QQQaQaQ

and here is a table that shows the essential fields 6 through 11 in a more readable way.

Table 15: Tabular output example

Subprogram Total time Self time Calls Min Max Remarks
main 3925 89 1 3925 3925 This is the root subprogram, so of
course it is executed exactly once.
A 1512 1512 216 7 7 This was explained in detail above.
3730 120 10 373 373 A context-independent time bound.
3639 2204 11 99 354 Explained below.

The last row for C is the most interesting one. The eleven calls are made up of one call from
main plus one call from each of ten executions of B. The calls B — C take longer (354 cycles)
because the parameter n is 20. The call main — C is faster (99 cycles) because n is only 5.

These context-dependent bounds are also reflected in other basic output lines. The context-
dependent loop-bounds in C are shown as:

Loop_Bound:ex:ex.c:B@18-=> C:26-28:20
Loop_Bound:ex:ex.c:main@39-=> C:26-28:5

The context-dependent WCET bounds appear as:

Wecet Call:ex:ex.c:B@18-=> C:21-29:354
Wcet Call:ex:ex.c:main@39-=> C:21-29:99

The total execution time for the eleven calls of C should thus be 1 x99 + 10 x 354 = 3639
cycles, which agrees with the total time shown on the Time_Table line.

Adding up the times

We have called the time-table output a "break-down" of the WCET bound for the root
subprogram. However, you can easily see in the example above that the sum of the "total"
execution time (bounds) of the lower-level subprograms A, B, C is 1512 + 3730 + 3639 =
8881 cycles, which considerably exceeds the execution time (bound) of 3925 cycles for the
root subprogram main. How is this possible?

This happens because the time table is a flat representation of a hierarchical breakdown. The
"total" time for B includes the execution of A and C when called from B, and the "total time" for
C includes the execution of A when called from C. The sum of the "total" times thus includes
some subprogram executions many times over, and so is meaningless.

Bound-T User Manual Understanding Bound-T Outputs 113

The sum of the "self" times, on the other hand, is meaningful. In the example, the "self" times
sum up as 89 + 1512 + 120 + 2204 = 3925 cycles which is exactly the WCET bound for the
root subprogram. So the "self' times are the real break-down, while the "total" times are
hierarchical sub-totals. The dotted rectangles in the call-graph figure, , show what each such
sub-total includes.

Formatting script

The Time Table output lines are dense and hard to read from the raw Bound-T output. The
following shell script for Unix-like systems selects the Time Table lines, reformats them in a
more readable way and sorts them in order of descending "total" time. The script can be run as
a filter on the output from Bound-T. You can find the script under the name table.sh in the
Bound-T installation package or at http://www.bound-t.com/scripts/table.txt.

echo -e "Total\tSelf\tNum\tTime Per Call"
echo -e "Time\tTime\tCalls\tMin\tMax\tSubprogram"
echo -e "————- \t-—==\t—=—-- \tmmm \t——————— "

egrep '"“Time Table' |
cut -d: -f6-11 |
sort -t: -nr |
tr ':' '\01l1"
) |
expand —tabs=10,20,30,40,50

The script assumes that the Bound-T run uses the default field-separator character, the colon. If
some other character is used, put it as the first argument of the tr command in the script.

For the example in this section, the result of passing the raw Bound-T output through this filter
is the following:

Total Self Num Time Per Call

Time Time Calls Min Max Subprogram
3925 89 1 3925 3925 main

3730 120 10 373 373 B

3639 2204 11 99 354 c

1512 1512 216 7 7 A

Non-appearance of “integrated” subprograms

If the analysis includes subprograms that are analysed as integrated parts of their callers (as
explained further in section 5.11) these subprograms do not appear as rows in the tabular
output. The execution time of an integrated subprogram is included in the execution time of its
callers. The number of calls to an integrated subprogram is not reported at all.

114 Understanding Bound-T Outputs Bound-T User Manual

7.5

Detailed Output

The option -show (which needs an argument) makes Bound-T show the results of the time
and/or stack-usage analysis in a “detailed” format. This is in addition to the basic output
format that was described in section 7.2. The optional detailed format is mainly intended for
testing and troubleshooting at Tidorum Ltd, but it can perhaps give you some insight into the
nature and structure of the analysis results.

Several internal or intermediate analysis results are shown only in this detailed output and do
not appear in the basic output. One example is the reachability or unreachability of flow-graph
parts (-show model).

Output options

The detailed output can show various things as selected by the item arguments to the -show
option. Chapter 6 explains the option syntax and lists the set of jtems with brief explanation.
The subsections below give examples of the output for each possible item.

Call graph framework

The detailed output for one root subprogram is structured as a hierarchically indented display
of the call-graph rooted at this subprogram, similar to the structure of the list of unbounded
program parts described in section 7.3.

If the deeply item is selected (that is, the option -show deeply is used), the detailed output is
structured hierarchically following the call graph. The details for one subprogram or call are
headed by a line that gives the call path. These call-path lines are sequentially numbered and
the sequence number is used to avoid repeating the detailed output when the same analysis
results are used in several contexts.

For example, assume that the root subprogram Main calls the subprogram Bar directly as
Main — Bar and indirectly along the path Main — Foo — Bar. The detailed output from the
analysis of Main would be structured like this:

1 Main
detailed output for the analysis of Main

2 . Main@l2=>Bar

detailed output for the analysis of Bar in this context
3 . Main@23=>Foo

detailed output for the analysis of Foo in this context
4 . . Main@23=>Foo@102=>Bar

detailed output for the analysis of Bar in this context

The periods '." in front of the call-paths are just indentation markers.

If the analysis of Bar is context-dependent, so that Bound-T analyses Bar separately in the
contexts Main — Bar and Main — Foo — Bar, the detailed results of these analyses are output
separately after the call-path lines number 2 and 4, respectively. Otherwise, that is if Bound-T

Bound-T User Manual Understanding Bound-T Outputs 115

uses the same analysis results for Bar in both contexts, the entire detailed output for the latter
context, the call Main — Foo — Bar, consists of the call-path line and a reference to the first
appearance of these results in line 2:

4 . . Main@23=>Foo@102=>Bar

See above line 2.

General information (-show general)

The general information gives the fully scope-qualified name of the subprogram in question,
the source-file name and source-line range, the code address range (at least under the -address
option), the context (call path) on which the results depend (or “none” for context-
independent analysis), and a summary line. The summary line reports if the control-flow graph
is reducible or irreducible, if the control-flow paths are bounded or not, if the execution time
of each flow-graph node has been computed, if the stack space is bounded or not, and if the
subprogram calls some subprograms that were not analysed because assertions replaced them
by “stubs”.

If there are calls to stubs the “stub level” is reported; this is a number that shows the length of
the shortest call-path to a stub, with O = the subprogram is itself a stub; 1 = the subprogram
directly calls a stub; 2 = the subprogram calls a subprogram that calls a stub; and so on.

There may be zero, one or more source-file names and source-line ranges, depending on the
source-to-code map that the compiler generates.

Here is an example, including the call-path line at the start and assuming context-dependent
results:

3 . Main@23=>Foo
Full name libs|Foo
Source file libs.c
Source lines 12-47

Code addresses
Call context

[0A4F-0D17]
Main@23=>Foo

Execution bounds # 10
Reducible, paths bounded, time computed, space not bounded,
calls no stubs.

The “execution bounds” number (10 in the above example) is an internal index that you can
ignore.

Time and space bounds (-show bounds)

The option -show bounds includes the execution time bound and the stack usage bound in the
detailed output. However, the bound is shown only if the corresponding analysis is done.
Assuming that both -time and -stack analysis is selected, the output appears as follows:

3 . Main@23=>Foo

WCET: 124

116

Understanding Bound-T Outputs Bound-T User Manual

Local stack height for P-stack: 12
Total stack usage for P-stack: 44

If no execution time bound is known, the WCET line appears as “WCET is unknown”. If the
WCET for this subprogram or call is asserted, the WCET line appears as “WCET: 124
(asserted)”.

The lines for the local stack height and total stack usage are repeated for each stack in the
target processor.

Loop bounds (-show loops)

The option -show loops includes in the detailed output the computed or asserted repetition
bounds for each loop in the subprogram. For example:

3 . Main@23=>Foo

Loop 1 : libs.c:22-31
Repeat <= 8

Loop 2 : libs.c:35-36
Neck <= 16

The loops are numbered in an arbitrary way except that the number of an inner loop is smaller
than the number of an outer loop. The source-file name and source-line numbers of the loop
are shown, if known.

A computed (automatically determined) repetition bound is shown as “Repeat <= n”. An
asserted bound is shown as “Neck <= n”. Additional output lines show if the loop is
unbounded or eternal.

Callers (-show callers)

The option -show callers adds to the detailed output a list of all call-paths from some root
subprogram to the current subprogram. This is sometimes called the inverse call tree. For
example:

2 . Main@l2=>Bar

All paths from a root to Bar:
Main@l2=>Bar
Main@23=>Foo@102=>Bar

The line with the string “---” marks the end of the list of call-paths. The call-paths to a given
subprogram are listed only in the first appearance of the detailed output for this subprogram.

Execution counts (-show counts)

The option -show counts adds to the detailed output a table that shows how many times the
worst-case execution path executes each part of the control-flow graph. These results are
available only after a successful analysis for WCET. The table also shows which parts of the
flow-graph are reachable (feasible) or unreachable (see the discussion of flow-graph pruning
in section 6.5).

Bound-T User Manual Understanding Bound-T Outputs 117

As elsewhere in Bound-T, the term “node” in this output means a basic block of the flow-graph
and the term “step” means a flow-graph element that models a single instruction or sometimes
a part of an instruction. Thus, a node consists of a sequence of steps, as this table also shows.

Here is an example showing the execution counts in the subprogram Simple when called from
the root msubprogram Main:

2 . Main@l2=>Simple

Execution counts of nodes and edges:

A '+' means feasible, a '-' means infeasible.
Node Count Steps in node
+ 1 1 12

-2 0 3

+ 3 32 4 5

+ 4 32 6

+ 5 1 7

Edge Count S ->T

-1 0 1 -> 2

+ 2 31 4 -> 3

+ 3 1 4 -> 5

+ 4 32 3 >4

+ 5 0 3 ->5

+ 6 1 1 -> 3

The above table shows a control-flow graph with seven steps, numbered 1 to 7, collected into
five basic-block nodes numbered 1 to 5. Node 1 contains the steps 1 and 2 (in that order),
node 2 contains just the step 3, and so on until node 5 that contains just the step 7. In the
execution path that Bound-T considers to be the worst case (take the longest time), nodes 1
and 5 are executed once while nodes 3 and 4 are executed 32 times; node 2 is not executed at
all. In fact, the '-' sign at the start of the line for node 2 means that this node was found to be
unreachable, so of course it is not executed.

There are six edges between the nodes, numbered 1 to 6. Edge 1 goes from node 1 to node 2,
edge 2 goes from node 4 to node 3, and so on until edge 6 which goes from node 1 to node 3.
In the worst-case path, edges 1 and 5 are not executed at all (in fact edge 1 is unreachable).
Edges 3 and 6 are executed once. Edge 2 is executed 31 times and edge 4, 32 times.

Note that edge 5 is considered reachable, but since it is not executed in the worst-case path it
probably represents a quicker execution path, for example an early exit from the loop that
contains nodes 3 and 4.

To find out which machine instructions correspond to each step and node, use the option
-trace decode to generate a disassembly including step numbers, and use the option
-trace nodes to generate a list of nodes with code locations.

The execution counts are also shown in the flow-graph drawing generated with the options
-dot and -draw. See section 7.6.

Computation model (-show model)

The option -show model adds to the detailed output a presentation of the “computation model”
for the current subprogram in the current context. The computation model shows the
arithmetic effect (computations and assignments to variables) of each step in the control-flow
graph, the logical precondition of each edge in the graph, and whether the step or edge is

118

Understanding Bound-T Outputs Bound-T User Manual

reachable or unreachable (see the discussion of flow-graph pruning in section 6.5). The model
also associates each call in the current subprogram with a “calling protocol” that can have
context-dependent attributes.

The model is displayed as three tables: a list of all steps with their arithmetic effects; a list of
all edges with their source and target steps and logical preconditions, and a list of all calls that
shows the step in which the call occurs, the caller and callee, and the calling protocol with its
attributes.

As elsewhere in Bound-T, the term “step” means a flow-graph element that models a single
instruction or sometimes a part of an instruction.

Here is an example of the detailed output of the computation model for a root subprogram
called TempCon. The output is rather long so we insert an explanation of each of the three
tables just after the table in question.

1 TempCon
Computation model:

References to this model: 1

A '+' means feasible, a '-' means infeasible.
Step Effect

+ 1 p = (pt 1), Locl = p, SH = 2
+ 2

-3 n = (n- 1)

+ 4

+ 5

+ 6 r =72

+ 7 r = Locl, p = (p+-1), SH = 1
+ 8

+ 9 b=2?,c=27?

+ 10

The table above lists the ten steps in the control-flow graph of TempCon and shows the
arithmetic effect of each step. The effect is a list of assignments of the form cell = expression.
The cells are registers, flags or memory locations; their names depend on the target processor
and usually have no relation to the source-code variable names.

In this example, the arithmetic effect of step 1 increments cell p, assigns the value of cell p to
the cell Loc1, and assigns the value 2 to the cell SH. All the assignments in one step are done in
parallel so that one first evaluates all the expressions using the original values of the cells and
then assigns the new values to the target cells. This means that step 1 assigns the original
(non-incremented) value of p to Loc1, not the new, incremented value.

Some steps, here for example step 2, have no arithmetic effect. Often such steps model jump
instructions.

When some effect of a machine instruction is not modelled for some reason (too complex or
not interesting for the analysis) it is represented by a question mark '?' and considered to have
an unknown value. In this example, step 6 assigns an unknown value to cell r and step 9
assigns unknown values to the cells b and c.

Reachable steps are shown by '+' signs and unreachable (infeasible) steps by '-' signs. In this
example, only step 3 is unreachable.

Bound-T User Manual Understanding Bound-T Outputs 119

The detailed output for -show model continues with a table of the flow-graph edges:

Edge S -> T Precondition
+ 1 1 -> 2 true

- 2 2 -=> 3 false

-3 3 >4 false

+ 4 2 -> 4 true

+ 5 5 ->6 true

+ 6 4 -> 5 not ((a>b))
+ 7 6 -> 7 true

+ 8 4 -> 7 (a>b)

+ 9 8 -> 9 true

+ 10 7 -> 8 true

+ 11 9 -> 10 true

The above table lists the 11 edges between steps in the flow-graph for TempCon. Reachable
edges are marked '+' and unreachable (infeasible) edges are marked '-'.

For each edge, the column headed “S -> T” shows the numbers of the source step and the
target step. For example, edge number 8 goes from step number 4 to step number 7. A
comparison to the table of steps shows that the unreachable edges, edges 2 and 3, are
connected to the unreachable step 3, which is consistent. However, in general there may also
be unreachable edges between reachable steps.

For each edge, the column headed “Precondition” shows the logical condition that must hold if
the edge is taken (executed). The value “true” indicates an unconditional edge or an edge with
an unknown precondition and “false” indicates a false precondition which is the same as an
unreachable edge. Otherwise, the precondition is a relation between arithmetic expressions
composed of cell values. For example, after executing step 4, the target program can take edge
8 only if the value of cell a is greater than the value of cell b at this time.

Note that the precondition is only a necessary condition for taking the edge, but it may not be a
sufficient one. Thus, a “true” precondition does not mean that the edge is always taken; it
means that the edge can always be taken, as far as the analysis knows.

The last part of the detailed output for -show model is a table of all calls from TempCon to other
subprograms:

Call Step Caller=>Callee Protocol
+ 1 6 TempCon@[95]=>ReadTemp Stack, SH=2
+ 2 9 TempCon@[97]=>Heat Stack, SH=1

This table shows the two calls from TempCon to ReadTemp and Heat, respectively. The “Step”
column shows the number of the step that models the call in the control-flow graph of
TempCon. These “call steps” are special steps that model the entire execution of the callee but
do not correspond to any machine instruction in the caller. Bound-T inserts such a call step in
the caller's flow-graph immediately after the step that models the real call instruction.

The column headed “Caller=>Callee” shows the caller (TempCon), the code location of the call
(in this example as code addresses only) and the callee (ReadTemp and Heat, respectively).

The “Protocol” column shows the calling protocol associated with the call. In this example,
both calls use the “Stack” protocol, but with different attributes: the SH attribute has the value
2 for the first call and the value 1 for the second call. The names and attributes of the calling
protocols depend on the target processor and possibly also on the target programming tools
(cross-compiler and linker).

This completes the example and description of -show model.

120

Understanding Bound-T Outputs Bound-T User Manual

Time per node (-show times)

The option -show times adds to the detailed output a table showing the execution time of each
node (that is, a basic block) in the control-flow graph. The total time per node is broken down
into the “local” time, consumed by instructions in the current subprogram, and the time
consumed by other subprograms called from this node (callees).

Here is an example of the detailed -show times output for the root subprogram TempCon:

1 TempCon

Execution time of each node, in cycles:

Node Total = Local + Callees
1 2 2 0

2 1 1 0

3 1 1 0

4 1 1 0

5 12 0 12

6 2 2 0

7 25 0 25

8 1 1 0

The table shows 8 nodes and their execution time in cycles. For example, node 1 uses 2 cycles
itself (that is, the instructions in TempCon that belong to node 1 take 2 cycles to execute) and
does not call other subprograms. Node 7 contains no instructions from TempCon (or these
instructions take no time to execute) but calls some other subprogram that take 25 cycles to
execute.

In fact, since Bound-T currently makes each call into its own node that contains no instructions
from the caller, the times in the columns “Local” and “Callees” are never both positive. The
“Callees” time is zero for ordinary nodes and the “Local” time is zero for nodes that contain a
call.

The time per node is known only from execution-time analysis. If you combine the options
-no_time and -show_times, the output will be “Execution times of nodes not known”.

Stack usage per call (-show spaces)

The option -show spaces adds to the detailed output information about the stack usage at
various points within the control-flow graph of each subprogram.

At present, this information is limited to the take-off height for each call. As defined in
section 3.11, the take-off height for a call is the local stack height in the caller, immediately
before control is transferred to the callee. However, if the call instruction pushes a return
address on the stack, this is usually considered a part of the callee's stack usage so it does not
contribute to the take-off height.

The take-off height is reported in target-specific units, explained in the relevant Application
Note. If the target program uses several stacks, the output contains a separate table of take-off
heights is for each stack.

Bound-T User Manual Understanding Bound-T Outputs 121

Here is an example of the detailed -show spaces output for the root subprogram TempCon:

1 TempCon

Take-off stack-heights at calls for P-stack:

Call Caller=>Callee Height
1 TempCon@[95]=>ReadTemp 2
2 TempCon@[97]=>Heat 1, leads to maximum stack usage.

The table list the two calls from TempCon to ReadTemp and Heat, respectively. The “Height”
column shows the take-off height of the “P-stack” for the call. The comment after the take-off
height for call 2 indicates that this call is on the worst-case stack-usage path for TempCon.
Although the take-of height of this call is less than for call 1, the callee (Heat) uses so much
stack that call 2 was chosen for the worst-case stack path.

Some or all of this information is known only through specific stack usage analysis, that is, if
you include the option -stack or -stack_path.

At the moment there is no way to make Bound-T display the total stack usage for each call. The
-stack_path option displays this only for the calls on the worst-case stack-usage path.

Final stack height (-show stacks)

The option -show stacks adds to the detailed output a table that shows the final local stack
height on return from each subprogram, for each stack in the target program. Since the local
stack height is by definition zero on entry to a subprogram the final height also shows the net
effect that the subprogram has on the stack height, that is, if there are more pushes than pops
(positive final height) or more pops than pushes (negative final height).

Bound-T analyses the subprograms for final local stack height even if stack usage analysis is
not requested (with the options -stack or -stack path) because the local stack height must be
known for tracking references to data in the stack.

Here is an example of the detailed -show stacks output for the root subprogram TempCon:

1 TempCon
Final stack height on return from subprogram:

Stack Final height
P-stack -1

The table shows that the final local height of the stack “P-stack”, on return from TempCon, is -1,
which means that the TempCon subprogram pops one element more than it pushes. Perhaps
this popped element is the return address.

Input and output cells (-show cells)

The option -show cells adds to the detailed output information about how each subprogram
uses “storage cells” in its computation. Here a storage cell means any memory location or
register in the target processor that can hold an arithmetic value and that Bound-T models in
its analysis. The information is output as three lists of cells:

+ Input cells. These are the cells that the subrogram reads (uses) before it writes a new value
in the cell. Such cells may be input parameters or global variables on which the subprogram
depends.

122

Understanding Bound-T Outputs Bound-T User Manual

+ Basis cells. These are all the cells included in the Presburger-arithmetic model of the
subprogram's computation.

+ Output cells. These are the cells that the subprogram can write new values to. However,
only statically identified cells are listed; if the subprogram writes via dynamic pointers, it
can modify any storage cell that the pointer can reference.

There is a fourth list that shows the initial bounds (value ranges) that are known for some cells
at the start of the subprogram. Such a bound can be derived from the calling context, from an
assertion or from the calling protocol.

All cells in the output are named from the point of view of the current subprogram. This means
that the output may include cells that are private (local) to the subprogram, such as local
variables in the subprogram's call-frame in the stack.

Here is an example of the detailed -show cells output for the subprogram ReadTemp that is
called from the root subprogram Calibrate:

2 . Calibrate@[105]=>ReadTemp

Input cells:
k

Basis cells for arithmetic analysis:
k
r

Initial cell bounds on entry:
k=10
SH=1
ZSH=0

Output cells:
r

The list of input cells shows that ReadTemp uses the initial value of the cell k in some way that
is important to the analysis (for example, as a loop bound). The list of basis cells shows that
also the cell r is used in such a way, but the fact that r is not an input cell means that ReadTemp
always assigns a value to r before using r, so the initial value of r is not relevant. The
Presburger arithmetic model tracks the basis cells k and r.

The list of initial cell bounds shows that the call-context in Calibrate (or some applicable
assertion) constrains the input cell k to the value 10, which means that the analysis for
Calibrate — ReadTemp has all the values that can be useful for the automatic loop-bound
analysis.

The initial bounds on the cells SH and ZSH are not useful in this case, as they are not input
cells for ReadTemp. (In this example, these bounds are derived from the calling protocol; the
cells in question show the local stack height of the two stacks.)

The list of output cells shows that r is the only (statically identified) cell to which ReadTemp
assigns a value. However, this does not always mean that the caller can see a change in the
cell's value; it may be that the cell is private to ReadTemp and not visible to the caller, or
ReadTemp may save the original value of the cell and then restore it before returning to the
caller.

Bound-T User Manual Understanding Bound-T Outputs 123

7.6

DOT Drawings

This section explains the function of the -dot and -dot_dir options and the form of the resulting
drawings.

The -dot option and the dot tool

The options -dot, -dot_dir and -draw make Bound-T draw call-graphs and control-flow graphs
of the subprograms it analyses. The drawings are created as text files in a syntax suitable for
the dot tool, part of the GraphViz package available from http://www.graphviz.org/. The dot
tool can lay out the drawings in Postscript or other graphic formats for display by a suitable
viewer tool.

For example, a Bound-T command of the form
boundt -dot graph.dot ...

creates the file graph.dot, which contains text in the dot syntax to define the logical
structure and labelling of the drawings created by Bound-T. To lay out the drawings as a
PostScript file, for example graph . ps, you may then use the following command:

dot -Tps <graph.dot >graph.ps

The -dot_dir option and the names of drawing files

The -dot option creates a single file that contains all drawings from one Bound-T run. If you
then use the dot tool to create a PostScript file, each drawing will go on its own page in the
PostScript file. However, dot can also generate graphical formats that do not have a concept of
"page" and then it may happen that only the first drawing is visible. If you want to use such
non-paged graphical formats it is better to create a directory (folder) to hold the drawing files
and use the Bound-T option -dot dir instead of the option -dot. The -dot dir option creates a
separate file for each drawing, named as follows:

The call-graph of a root subprogram is put in a file called cg R_nnn.dot, where R is the link-
name of the root subprogram, edited to replace most non-alphanumeric characters with
underscores ' ', and nnn is a sequential number to distinguish root subprograms that have
the same name after this editing.

« If the call-graph of some root subrogram is recursive, Bound-T draws the joint call-graph of
all roots and puts it in a file called jcg all roots 001.dot.

« The flow-graph of a subprogram is put in a file called fg S nnn.dot, where S is the link-
name of the subprogram, edited as above, and nnn is a sequential number to distinguish
subprograms that have the same name after this editing and also to distinguish drawings
that show different flow-graphs (execution bounds) for the same subprogram.

The sequential numbers nnn start from 1 and increment by 1 for each drawing file; the same
number sequence is shared by all types of drawings and all subprograms. For example, if we
analyse the root subprogram main?func that calls the two subprograms start$sense and
start$actuate, with the -dot_dir option and -draw options that ask for one flow-graph drawing of
each subprogram, the following drawing files are created:

cg_main_func_001.dot for the call-graph of main?func
fg main_func_002.dot for the flow-graph of main?func

fg start_sense_003.dot for the flow-graph of start$sense

124

Understanding Bound-T Outputs Bound-T User Manual

« fg start_actuate_004.dot for the flow-graph of start$actuate.

Call graphs

Figure 6 below is an example of a non-recursive call-graph drawing. The rectangles represent
subprograms and the arrows represent feasible calls from one subprogram to another. This call-
graph shows the root subprogram main calling subprograms Count25, Foo7, Foo and Extract,
some of which in turn call Count and Ones.

Each rectangle is labelled with the subprogram name (in this example the compiler adds an
underscore ' ' before the names), the number of times the subprogram is called, the number of
call paths, the execution time in the subprogram itself and the execution time of its callees.
The number of calls and the execution times refer to the execution that defines the worst-case
execution-time bound for the root subprogram.

In this example call-graph most subprograms have context-independent execution bounds
(same WCET bound for all calls). The exception is the subprogram Count which has some
context-dependent bounds. This can be seen from the annotation for the execution time of
Count: “time 1469 = 10 * 94 .. 158” which means that the execution time bounds for one call
of Count range from 94 cycles to 158 cycles, depending on the call path, such that the total
bound for the 10 executions of Count is 1469 cycles.

Call-graph drawings can become quite cluttered and hard to read when some subprograms are
called from very many places. For example, programs that do lots of trigonometry can have
numerous calls to the sin and cos functions. You can use “hide” assertions to omit chosen
subprograms from the call-graph drawing; see section 8.5.

When a subprogram calls several other subprograms the left-to-right order of the arcs that
represent these calls in the call-graph drawing is arbitrary. The order in the drawing says
nothing about the order of the calls in the source code nor about their order of execution.

_main
one call from one path
time 4948
seff B0, callees 4886

onecall from one path ¢ one call from one path one call from one path one call from one path

time 234 time 168 time 128 time 4356
Count2s _Foo? _Foo _Solve
one cal from one path one cal from one path one cal from one path ons call from one path
fime 234 time 168 time 128 time 4356
self 74, callees 94 seff 18, callees 110 seff 356, callees 4000

one call from one path | one call from one path 8 calls from one path 8 calls from one path
time 94 time 110 time 1264 =8 * 158 time 2736 =8 * 342
_Count _Ones
10 calls from 3 paths 8 calls from one path
time 1468 =10" 94 .. 158 time 2736=8" 342

Call graph of _main
time 4946
Bound-T 2b1 for Renesas H8/300

Figure 6: Example non-recursive call graph

Bound-T User Manual Understanding Bound-T Outputs 125

Recursive call graphs

If the call-graph of some root subprogram is recursive, Bound-T draws the joint call-graph of
all root subprograms in a special form. Figure 7 below is an example of a recursive call-graph
drawing. The rectangles represent subprograms and the arrows represent calls from one
subprogram to another. This call-graph shows the root subprogram fnoo calling subprograms
emak and glop. There are two recursive cycles, one between fnoo and glop and another that
contains all three subprograms.

Each rectangle is labelled with the subprogram name. Each arrow is labelled with the number
of call sites (note, not the number of dynamically executed calls). In the example, fnoo
contains one call of glop but two calls of emak. There is no information on execution time
bounds, number of executions and so on because Bound-T cannot analyse recursive programs.

Joint call graph of all roots
Bound-T 2b2X for Toy

Figure 7: Example recursive call graph

Flow graphs

Figure 8 below is an example of a control-flow graph drawing that shows a subprogram called
Count. This is the same subprogram Count that appeared in the call-graph example above. The
rectangles are the basic blocks (nodes) of the code in Count, that is, sequences of instructions
that do not branch and are not entered in the middle. The arrows, or graph edges, represent
the flow of control between basic blocks.

The entry node is the rectangle at the top, the node that is entered by an arrow that does not
start from another node but from a text label. The label shows the name of the subprogram
and an abbreviation of the call-paths from the root subprogram to this subprogram.

A node that is not the start of any edge is a return node; the subprogram returns to its caller
after executing a return node. In this example there is one return node (the bottom one), but
in general there can be zero, one or several.

Flow-graph drawings include both feasible and infeasible nodes and edges. However, they stop
at calls of subprograms that are known or asserted not to return to the caller or are asserted as
“not used”.

126

Understanding Bound-T Outputs Bound-T User Manual

The textual labels in the nodes and on the edges show the execution bounds for the
subprogram. There are two forms depending on the -draw option that was used:

— show the total or summary of all execution bounds for this subprogram: -draw total
- show a single set of execution bounds for this subprogram: all other -draw options.

The example shows a summary flow-graph with -draw total. Specific items under the -draw
option can add or remove information; the example shows the default information.

The option -draw line (which is included in the defaults) labels each node with the
corresponding source-line numbers (when known). In this example some source-line numbers
are known for the entry node (lines 41 and 42 in the file routines.c), the body of the loop
(lines 42 and 44 in the same file) and the return node (line 46 in the same file).

_main=> ...3 paths
_Count

l‘l 0 calls

routines.c:41
routines.c:42
count 1; 10
time 6 60

110

count 1; 10
time 8; 80

/1;10

loop #1
routines.c:44
routines.c:42 3.7 63 0
count 4 .. 8 73

time 16; 1168
\1 10
count 1; 10
time 8; 80
\; 10

routines.c:46
count 1; 10
time & 80

Summary flow-graph of _Count

totals (after ';') for 10 calls from 3 paths
time 1468 = 10 * 94 .. 158

Bound-T 2b1 for Renesas H8/300

Figure 8: Example control-flow graph

The option -draw count (which is included in the defaults) labels each node and edge with its
execution count which is the number of times this node or edge is executed in the worst-case
execution path as determined by Bound-T. Moreover, edges on the worst-case path are drawn
with a thick line and the other edges with a thin line (and labelled with zero executions).

For a -draw total drawing the execution counts are given as two numbers separated by a
semicolon. The first number is the execution count per execution of this subprogram. The
second number is the total execution count over all executions of this subprogram included in

Bound-T User Manual Understanding Bound-T Outputs 127

the worst-case execution path of the root subprogram. In this example, the entry node is
labelled with “count 1; 10” which means that the entry node is executed once for every call of
this Count subprogram and is executed a total of 10 times within the worst-case execution of
the root subprogram main (evidently because Count is called 10 times).

On the other hand, the node that forms the body of the loop is labelled with “count 4 .. 8; 73”
which means that it is executed between 4 and 8 times for every call of Count (depending on
the call path; this subprogram has context-dependent bounds) and a total of 73 times in the
worst-case execution of main.

The option -draw time (which is included in the defaults) labels each node with its execution
time, in target-specific units, usually processor cycles or clock cycles. For a -draw total drawing
the execution times are given as two numbers separated by a semicolon. The first number is
the worst-case time for one execution of this node. The second number is the total execution
time consumed by this node over all executions of this subprogram included in the worst-case
execution path of the root subprogram. In this example, the loop node is labelled with
“time 16; 1168” which means that it takes 16 cycles to execute once, while 1168 cycles is the
total execution time spent in this node, within the worst-case execution of main. This agrees
with the total execution count of 73 because 1168 = 73 X 16.

Flow graphs with calls

Figure 9 below shows another flow-graph drawing, this time of the (very simple) subprogram
Foo.This subprogram calls subprogram Count. The middle node in the diagram represents this
call, as shown in the first line of the node label. The last line in the call-node label shows the
execution time of the callee, in this case 110 cycles for this call of Count.

_main(@43-=>_Foo
Foo

lcne call

moutines.c:50
mutines.c:51
count 1
fime 10

call_Ceunt
count 1
time 110

calees 110

1

L

moufines .c:53
count 1
time &

Summary flow-graph of _Foo

totals (after *;') for one call from one path
time 128 = self 18+ callees 110

Bound-T 2b5X for Renesas H8/300

Figure 9: Example control-flow graph with call

128 Understanding Bound-T Outputs Bound-T User Manual

8.1

8.2

ASSERTION LANGUAGE SYNTAX AND MEANING

Introduction

The command-line option -assert filename makes Bound-T read the assertions from the text file
by the name filename. Chapter 5 explained why and how to use the assertion language with
examples. The present chapter defines the precise syntax and meaning of the assertion
language. A formal grammar notation defines the syntax. Informal prose explains the meaning
of each grammar symbol and production.

Assertion Syntax Basics

Syntax notation as usual

A conventional context-free syntax notation is used, with nonterminal symbols in Plain Style
and Capitalised; literal keywords in bold style; and user-defined identifiers in italic style.
However, when nonterminal symbols are quoted in the running text we use ltalic Capitalised
Style.

Alternatives are separated by '|'. Repetition of one or more symbols for one or more times is
denoted by enclosing the symbol(s) between curly brackets '{' and '}'. Optional symbols are
enclosed between square brackets '[' and ']'.

The symbol character stands for any printable character enclosed in single quotes
(apostrophes). Example: 'x'.

The symbol null stands for the empty string.

The symbol integer stands for a string of digits O .. 9 representing an integer number in decimal
form. A sign (+, -) may precede the integer. The underscore character ' ' can be used in the
string to group digits with no effect on the numeric value. For example, 33 432 167 means
the same as 33432167. The numeric range of integers may depend on the host platform and
target system, but is at least —23' .. 23! -1,

The symbol string stands for any string of printable characters, not including the double quote
(), and itself enclosed in double quotes. Example: " foo |memo".

Symbols with scopes

The symbol symbol stands for a string which is interpreted as the identifying symbol of an
entity (a subprogram, a variable or a statement label) in the target program. Even though the
assertion syntax as such does not restrict the contents of symbol strings they must follow a pre-
defined (target-dependent) format.

If the symbol string contains occurrences of the current scope-delimiter character, these divide
the string into a sequence of scope names followed by a basic name. For example, using the
default delimiter character '|', the symbol string "API|Init" is considered to consist of the
scope "API" and the basic name "Init". The scope delimiter character is set by the delimiter
keyword as explained below.

Finally, the interpretation of symbol strings may be affected by the current default scope string
set by the within keyword as explained below.

Bound-T User Manual Assertion Language 129

The target compiler and linker may modify the symbols for subprograms and variables so that
assertions have to name them in a different way than by using the name in the source-code
file. These name-mangling rules are discussed in the Application Notes for the respective target
processors.

You can find out the symbols that are available in the target program by dumping the target
program as explained in section 5.13.

Machine addresses

The strings following the keyword address are denoted by the symbol address and identify a
target-program element in some low-level, machine-specific way, such as by its memory
address.

Each target processor to which Bound-T is ported has a specific "sub-syntax" for address
strings. The syntax may also be different for variable addresses and for code (subprogram or
label) addresses, and so we use the symbols variable-address and code-address, respectively,
for these. Some assertions may use code offsets instead of absolute code addresses, and then
we use the symbol code-offset. The syntax of code-offset is also target-dependent.

From the user's point of view, the address, variable-address, code-address or code-offset is
written as a string (ie. enclosed between double quotes). Scope delimiters and the current
default scope play no role in the handling of address strings.

Variable names as used in several places

An element that will occur in several syntactic forms is the variable name:
Variable_Name - symbol | address variable-address

The variable is identified either by its high-level symbol, which is a possibly qualified, possibly
mangled source-level identifier enclosed in double quotes, or by its low-level address, which
can be a data-memory address or a register name, also enclosed in quotes. The variable-
address part is written in a syntax that is specific to the target processor and explained in the
relevant Application Notes.

Bounds as used in several places

Another element that will occur in several syntactic forms is the definition of bounds on a
number:

Bound - integer
| = integer

| integer .. integer
| > integer

| >=integer

| < integer

| <= integer

A Bound defines an interval subset of the integers as follows. If a single integer is given,
possibly preceded by an equals symbol, the subset consists of this value only. If two integers are
given separated by two periods (..), the subset consists of the interval from the first integer to
the second integer, inclusive. If a relational symbol followed by an integer is given, the subset
consists of those values that stand in the given relation to the given integer; in this case the
subset is bounded only at one end.

130

Assertion Language Bound-T User Manual

In some contexts, the subset can contain only non-negative values. For example, a bound on
the number of executions of a call or the number of repetitions of a loop contains an implicit
lower bound of zero even if the Bound explicitly states only an upper bound.

Singular and plural keywords and other alternatives

Some keywords can be written in singular or plural form, interchangeably, to make the
assertion syntax closer to normal grammar. To avoid clutter in the grammar, the grammar rules
use only one form, but the assertion text can use either form. Moreover, a few keyword pairs
have obsolete single-word equivalents with embedded underscores. Here are the equivalent
keywords:

First form Equivalent second form
call calls

contain contains

cycle cycles

define defines

is are

loop loops

repeat repeats

time times

use uses

Keyword pair Obsolete but equivalent keyword
call to call_to

end call end_call

end loop end_loop

isin is_in

loop that loop_that

no arithmetic

no_arithmetic

Using these alternative forms, we can use the singular forms when proper:
loop that calls "Foo" repeats 1 time; end loop;

We can instead use the plural forms when they are more suitable:
all loops that call "Foo" repeat 10 times; end loops;

However, Bound-T does not check that the equivalent forms are used consistently within each
assertion, so you can also say, ungrammatically:

all loop that calls "Foo" repeats 10 time; end loops;
The meaning of various assertions has already been explained by examples in Chapter 5. Here

we will give a full syntax. We proceed in a top-down order, first explaining the overall structure
of the assertion file and then the details.

Bound-T User Manual Assertion Language 131

Overall assertion structure

The start symbol is Assertions, representing the whole assertion file. The assertion file is a non-
empty list of four types of elements: scope delimiter definitions, scope definitions, global
bounds and subprogram blocks:

Assertions — { Scope_Delimiter | Scope | Global_Bound | Sub_Block }

The order of the elements is arbitrary except that the scope-delimiter definition and scope
definition have an effect only on the following elements, up to the next such definition.

Comments

The assertion file may contain comments wherever whitespace can appear. A comment begins
with two consecutive hyphens (--) and extends to the end of the line.

8.3 Scopes
The assertion language lets you set the scope delimiter character and the default scope. The
role of these items in the interpretation of scope-qualified symbols was explained in
sections 5.12 and 8.2.
Scope delimiter definitions
Scope_Delimiter - delimiter character
Sets the delimiter character to be used for parsing any symbol strings in the following
assertions. The default delimiter is the vertical bar or solidus '|'. It is necessary to change the
delimiter only if this character occurs within a scope-name or an identifier.
Scope definitions
Scope - within string
Sets the default scope string to be prefixed to any symbol strings in the following assertions,
unless the symbol string itself starts with the delimiter character.
For example, if the module API contains a subprogram Init and the delimiter character is the
default ' |' so that the full name of this subprogram is "API | Init", after the Scope definition
within "API"
the subprogram can be named either as "Init" or as "|API|Init"; both are equivalent to
"API|Init". However, the string "API|Init" would be interpreted as "API|API|Init"
which would probably not be the name of any subprogram.
132 Assertion Language Bound-T User Manual

8.4

8.5

Global Bounds

Any assertions that occur outside subprogram blocks (outside any Sub Block construct) are
global bounds and are considered valid throughout the target program under analysis. There
are four types of global bounds, namely variable bounds, property bounds, loop blocks and call
blocks:

Global_Bound - Variable_Bound ;
| Property_Bound ;
| Loop_Block ;
| Call_Bock ;

The order of the global assertions is arbitrary. The syntax and meaning of each type of global
bound are explained later.

All these types of bounds can also be asserted within a subprogram block and thus applied only
to that subprogram. When the bound is written as a global one (not within a subprogram
block), it is applied in the analysis of each subprogram, just as if it were written within a
subprogram block for that subprogram.

For global loop blocks and call blocks the Population specified for the block (see section 8.6) is
counted within each analysed subprogram, not added up over all subprograms. For example, if
the Population of a loop block is 2, then this loop block should match exactly two loops in each
subprogram that is analysed.

Subprograms

Subprogram blocks and subprogram names

A subprogram block collects assertion statements that shall be applied only to the analysis of
the named subprogram.

Sub_Block - subprogram Sub_Name [({ Parameter })]
[{ Statement }]
[end [subprogram] [Sub_Name] ;]

Sub_Name - symbol | address code-address

The optional Parameter part contains the assertions in the subprogram entry context. The
optional Statement part contains the assertions in the subprogram body context.

The end part that closes the subprogram block is optional but can be used to show that any
following variable bounds, loop blocks etc. are global bounds and not specific to this
subprogram. If the end part contains a Sub_Name, this must be exactly the same as the
Sub_Name at the start of the block.

Subprogram parameter assertions

In a subprogram entry context, only assertions on variable values are allowed:
Parameter - Variable Bound ;

These variable bounds apply at a single point in the program: immediately before the first
instruction in the subprogram. The bounded variables can be formal parameters or global
variables or registers.

Bound-T User Manual Assertion Language 133

Subprogram body assertions and options

Several types of assertions can be stated in a subprogram body context, in any order, and the
order is not significant:

Statement - Sub_Option ;
| Loop_Block ;
| Call_Block ;
| Clause

This rule has no semicolon after the Clause alternative, because as will be seen later each
Clause contains its own terminating semicolon.

A Sub_Option can require or forbid the arithmetic analysis of the subprogram, can declare the
subprogram as "non-returning", and can specify “integrated” analysis of the subprogram:

Sub_Option — arithmetic
| return

[integrate

| unused

[used

[hide

| not Sub_Option

The arithmetic option can locally override the command-line option for arithmetic analysis
(-arithmetic or -no_arithmetic, see section 6) and the automatic decision that checks if
arithmetic analysis is needed for a particular subprogram.

Non-returning subprograms are typically those that raise exceptions or terminate the program
in some other way, for example the exit function in C. When Bound-T finds a call to a
subprogram that is marked no return, Bound-T will consider that the call terminates the
caller’s execution. This can simplify and improve the analysis of the caller.

The integrate option means that any call to this subprogram will be analyzed as if the code of
the subprogram were an integral part of the calling subprogram. In other words, the flow-
graph of the callee subprogram will become a part of the flow-graph of the caller, as if the
compiler had inlined the callee. This option is useful for subprograms that do not follow the
normal calling protocols. For example, some compilers use special “helper” routines to set up
the stack frame on entry to an application subprogram (prelude code) and to tear down the
stack frame before return from the aplication subprogram (postlude code). Such routines often
violate the normal calling protocols and must be analyzed as integral parts of their callers.

The unused option means that this subprogram should be excluded from the analysis. This has
two consequences: firstly, the subprogram itself is not analysed; secondly, any call to this
subprogram is considered to be infeasible. This option can be written either as unused or as
not used. It is an error to say just used, or not unused; subprograms are “used” by default.

The hide option excludes this subprogram from the call-graph drawings. It has no effect on the
analysis; the subprogram is still analysed and included in the analysis of other subprograms
that call it. Some programs have subprograms that are called from many places (for example,
floating-point library subprograms such as sin and cos) which makes the call-graph very
cluttered; using hide for such subprograms makes the call-graph clearer for the other
subprograms. Note that any callees of a hidden subprogram are not automatically hidden, too;
they may need their own hide options.

The no keyword negates the option setting. It can be repeated, so no no return is the same as
return. This may be useful in assertion files constructed by scripts or preprocessors. However,
the integrate property cannot be negated (disabled); it can only be asserted (enabled).

134

Assertion Language Bound-T User Manual

8.6

Loops

Loop blocks and populations

A loop block describes a set of loops and applies assertion clauses to all of these loops:
Loop_Block - Population Loop_Description { Clause } end loop

If the Loop_Block occurs within a Sub_Block, the loop block and its assertion clauses apply to
the selected loops in this subprogram only. If the Loop_Block occurs as a Global Bound, it
applies to the selected loops in any analysed subprogram.

Population - [all] [Bound]

The Population part defines how many loops we expect to match the loop-description, in each
subprogram to which this Loop Block applies. An empty Population is the same as "1", that is
we expect exactly one matching loop. If the keyword all appears without the Bound part, any
number (zero or more) of loops can match. If the Bound part is included (with or without all)
it defines the allowed range for the number of matching loops.

If the number of matching loops in the subprogram under analysis violates the Population
range, Bound-T emits an error message.

Loop descriptions and loop properties

Given some initial set (universe) of loops, subsets of loops are described by conjunctions of
zero or more loop properties:

Loop_Description - loop [that Loop_Properties]

Loop_Properties - Loop_Property [and Loop_Properties]

If the loop description contains no properties (no that part), any loop matches the description.
If some properties are listed, a loop matches the description if and only if all the listed
properties are true for this loop.

One of the important properties of a loop is whether it is nested in outer loops or contains
inner loops or contains calls of some kind. For this we define:

Other_Loop - loop
| (Loop_Description)
Other_Call - Some_Call

| (Call_Description)
Count - [Bound]

The constructs Some_Call and Call_Description are defined in section 8.7 below. The Count
defines how many inner loops or calls of a certain kind are required. An empty Count means
“at least 1” so it is the same as a Count of “>=1".

The loop properties are then defined as follows:

Loop_Property - contains Count Other_Loop
| is [not] in Other_Loop
| contains Count Other_Call
| calls Sub_Name
| uses Variable_Name
| defines Variable_Name
| is [not] labelled Label_Name

Bound-T User Manual Assertion Language 135

Label_Name - symbol

executes code-address
executes offset code-offset
not Loop_Property

Table 16 below defines exactly the meaning of each type of loop property.

Table 16: Meaning of loop properties

Property

Loop L has this property if and only if:

contains Count Other_Loop

Within the set of all inner loops directly contained in L, the given
Count of loops matching the Loop_Description.

is in Other_Loop

L is directly contained in an outer loop that matches the Other Loop
description.

is not in Other_Loop

Either L is not contained in any outer loop, or the loop that directly
contains L does not match the Other_Loop description.

contains Count Other_Call

L (or some inner loop) contains the given Count of calls matching
Other_Call.

calls Sub_Name

Same as “contains >= 1 calls to Sub_Name”.

uses Variable_Name

L (or some inner loop) contains an instruction that reads (uses) the
value of the variable identified by Variable Name.

defines Variable_Name

L (or some inner loop) contains an instruction that writes (assigns a
value) to the variable identified by Variable_Name.

is labelled Label_Name

L (or some inner loop) contains the instruction that has the code
address assigned to Label Name.

is not labelled Label_Name

Neither L nor any of its inner loops contains the instruction that has
the code address assigned to Label _Name.

executes code-address

L (or some inner loop) contains the instruction that has the given
code address.

executes offset code-offset

L (or some inner loop) contains the instruction at the given offset
from the start (entry point) of the subprogram that contains the
loop. This form can be used only when the containing subprogram
is given, that is, within a Sub_Block.

not Loop_Property

The negation (logical complement) of the Loop_Property.

The ability to write the not keyword after the is keyword is only syntactic sugar. The form "is
not ..." means exactly the same as "not is ...".

Note that the properties that state something about what the loop contains are usually satisfied
also when the desired item is actually in some inner loop, nested to any depth. For example, if
an inner loop contains a call to Foo then also any outer loop has the property calls "Foo". If it is
necessary to select only loops that directly contain the desired item, an additional "not contains
(loop ...)" property must be written, for example as in:

loop that
calls "Foo"
and not contains (loop that calls "Foo")

However, this loop-description will not match a loop which directly contains a call to Foo and
also contains an inner loop that calls Foo, so it may be too limiting.

136

Assertion Language Bound-T User Manual

8.7

Calls

Call blocks and populations

A call block describes a set of subprogram calls and applies assertion clauses to all of these
calls:

Call_Block - Population Call_Description {Clause} end call

If the Call_Block occurs within a Sub_Block, the call block and its assertion clauses apply to the
selected calls in this subprogram only. If the Call_Block occurs as a Global_Bound, it applies to
the selected calls in any analysed subprogram.

Population — [all] [Bound]

The Population part has the same syntax and meaning as for a loop-block population: it defines
how many calls we expect to match the call-description, in each subprogram to which this
Call_Block applies. An empty Population is the same as "all 1", that is we expect exactly one
matching call. If the keyword all appears without the Bound part, any number (zero or more)
of calls can match. If the Bound part is included (with or without all) it defines the allowed
range for the number of matching calls.

If the number of matching calls in the subprogram under analysis violates the Population range,
Bound-T emits an error message.

Call descriptions and call properties

Calls are identified by their properties. The most important property is the callee subprogram,
when this is statically known, that is, when the call instruction statically specifies the address
of the callee. For calls where the callee is specified dynamically (computed address, function
pointer) the call cannot be identified by its callee(s). However, the property of being a dynamic
call can be used as identification.

Call descriptions thus have two forms, for static and dynamic calls respectively. In both cases
the same kind of additional call-properties can be specified:

Call_Description - Some_Call [that Call_Properties]

Some_Call - Static_Call | Dynamic_Call
Static_Call - call [to] Sub_Name
Dynamic_Call - dynamic call

Call_Properties - Call_Property [and Call_Properties]

The callee subprogram is either statically known (the Sub_Name of a Static Call) or is
computed in some dynamic way, for example by use of a function-pointer variable
(Dynamic_Call).

If the call description contains no properties (no that part), any call to the subprogram
identified by the Sub Name (for a Static Call) or any dynamic call (for a Dynamic_Call)
matches the description. If some properties are listed, a match in addition requires that all the
listed properties are true for this call.

Call_Property - is[not]in Other_Loop
| uses Variable_Name
| defines Variable_Name
| not Call_Property

Bound-T User Manual Assertion Language 137

Table 17 below defines the meaning of each type of call property.

Table 17: Meaning of call properties

Property Call C to Sub_Name has this property if and only if:
is in Other_Loop C is contained in a loop that matches the Other_Loop description.
Note that this loop is not necessarily the innermost loop that
contains C.
is not in Other_Loop C is not contained in any loop, or no loop that contains C matches

the Other_Loop Description. Note that the test applies also to outer
loops, not just to the innermost loop that contains C.

uses Variable_Name Not implemented. Has no effect.
defines Variable_Name Not implemented. Has no effect.
not Call_Property The negation (logical complement) of the Call_Property.

The ability to write the not keyword after the is keyword is only syntactic sugar. The form “is
not ...” means exactly the same as “not is ...”.

8.8 Clauses and Facts

Fact clauses

The actual facts that are claimed to hold in some context (globally or locally in a subprogram,
loop or call) are collected into the following production:

Clause - Execution_Time_Bound ;
| Repetition_Bound ;
| Variable_Bound ;
| Property_Bound ;
| Variable_Invariance ;
| Callee_Bound ;

Note, however, that some fact clauses are not allowed in some contexts as discussed further
below.

Allowed combinations of fact and context
An assertion states a specific fact in a specific context, as explained in chapter 5. The '+' entries

in the following table show which combinations of fact and context are allowed. The meaning
of each combination is explained in the subsection dedicated to the fact.

Table 18: Fact and context combinations

Subprogram Subprogram Static Dynamic
Asserted fact Global entry body Loop call call
Variable bound + + + + + +
Property bound + + + + (no effect) + (no effect)
Variable invariance + + + +
Repetition bound + + +

138 Assertion Language Bound-T User Manual

Subprogram Subprogram Static Dynamic

Asserted fact Global entry body Loop call call
Execution time bound + + +
Callee bound +

8.9

Unsupported combinations of fact and context

Several combinations in the above table are marked as not allowed (blank grey). Here is some
rationale for this.

Global assertions can be given only for variable and property values. A global assertion of
variable invariance, repetition count or execution time would have no meaning because there
is nothing to which the assertion could apply.

Property assertions are not allowed in a subprogram entry context because this context does
not contain any instructions that could be affected by the properties. Further, property
assertions have no effect in a call context, but this may well change in future versions of
Bound-T.

It is not possible to specify a repetition count for a particular subprogram. While such an
assertion on the total number of times the subprogram is executed would be quite reasonable
and could be useful, the current design of Bound-T cannot support it (because Bound-T finds te
worst-case path within each subprogram separately, not within the program as a whole).
Instead, the user can assert a separate limit on the repetition count for each call of this
subprogram, in the context of this call.

It is not possible to assert the execution time of a loop. There is no technical obstacle that
would prevent this but the benefit seems small while the implementation effort would be non-
trivial.

Finally, the set of possible callees (Callee_Bound) is obviously relevant only to dynamic calls
and cannot be asserted in any other context.

Execution Time Bounds

Bounds on the execution time of a subprogram or a call are written as follows:
Execution_Time Bound - time Bound Time_Unit
Time_Unit - cycles

The Execution Time_Bound clause can be used in a subprogram context as a Clause in a
Sub_Block, or in a call context as a Clause in a Call_Block. The following table explains the
meaning of asserting the execution time in each context where such an assertion is allowed.

Table 19: Meaning of execution time assertion

Context Assertion applies to

Subprogram The execution time of any one call of this subprogram except when another
execution time is asserted for a specific call.

Call The execution time for any execution of this call.

Bound-T User Manual Assertion Language 139

To elaborate:

« In a subprogram context, the assertion defines the WCET of the subprogram in processor
cycles. Bound-T will not analyze the subprogram but will instead create a synthetic "stub"
control-flow graph (typically containing one or two nodes) that "consumes" the given
amount of execution time. Every call of this subprogram will be assigned this WCET unless
another WCET is asserted specifically for some calls.

+ In a call context, the assertion defines the WCET for these particular calls. Bound-T will still
analyze the callee subprogram (unless a WCET is asserted in the context of this
subprogram) and try to find WCET bounds to be used for all calls of this subprogram that
do not have an asserted WCET.

Thus, if you want to omit a subprogram from the analysis, it is not enough to assert a WCET
for every call of the subprogram; you must assert a WCET for the whole subprogram, and then
you can assert other WCET values for specific calls if you wish.

8.10 Repetition Bounds
Bounds on the number of repetitions of a loop or the number of executions of a call are written
as follows:
Repetition_Bound - repeats Bound times
The Repetition_Bound clause can be used in a loop context as a Clause in a Loop_Block, or in a
call context as a Clause in a Call Block (in the latter case we sometimes call it "execution
count" bounds). The following table explains the meaning of asserting the repetition (or
execution) count in each context where such an assertion is allowed.
Table 20: Meaning of repetition count assertion
Context Assertion applies to
Loop The number of times the loop-body can be executed for each activation of the
loop.
Call The number of times the call can be executed for each activation of the containing
subprogram (the caller).
The rest of this subsection explains the meaning more precisely, especially for loops.
Repetition bounds for calls
When a repetition bound applies to a call, it constrains the worst-case execution path of the
containing subprogram so that the number of executions of the call instruction is bounded by
the Bound. Note that both the lower and upper bounds of Bound are used.
Note that increasing the execution count of a call can decrease the overall execution time, since
forcing the execution to pass more often through this call may allow it to pass less often
through other statements that would use more execution time. As an example, consider the
following Ada pseudo-code:
for N in 1 .. 50 loop
if Simple (N) then
Quick (N);
else
140 Assertion Language Bound-T User Manual

<long computation>;
end if;
end loop;

If the WCET bound of the long computation in the else-branch is larger than that of procedure
Quick, and in the absence of any assertions, Bound-T will assume as the worst case that the
else-branch is taken on each iteration, so 50 times. If you assert that Quick is called at least 10
times, Bound-T is forced to assume that the else-branch is taken only 40 times, thus reducing
the overall WCET bound because 10 calls of Quick are faster than 10 executions of the else-
branch.

Repetition bounds for loops

To define the precise meaning of a Repetition_Bound for a loop we must first define some terms
related to loops in flow-graphs.

In Bound-T the nodes in the flow-graph are the “basic blocks” of the machine instructions in
the subprogram. A basic block is a maximal sequence of instructions such that the flow of
execution enters this sequence only at the first instruction and leaves only at the last
instruction. Thus, all instructions in the sequence have one successor (except for the last
instruction which may have several or none) and one predecessor (except for the first
instruction which may have several or none). The edges in the flow-graph of course represent
the flow of execution between the basic blocks.

Loops correspond to cyclic paths in the flow-graph. Bound-T currently requires that the
structure of the flow-graph be reducible, which means that two loops are either completely
separate (share no nodes or edges) or one is completely nested within the other.

Reducibility also means that each loop has a distinguished node called the loop head with the
property that the loop can be entered only through the loop head. On the source-code level,
the loop head is analogous to the “for” or “while” syntax that introduces the loop; reducibility
forbids jumps from outside the loop into the loop body, “around” the loop head.

Figure 10 below illustrates a loop in a flow-graph, including the loop head and the following
other terms:

— The loop body is the set of all nodes that lie on some cyclic path from the loop-head back to
the loop head. The loop body thus includes the loop head itself.

— A start edge is any edge from outside the loop body into the loop body. A start edge must
lead to the loop head because that is the only point of entry to the loop.

— A neck edge is any edge from the loop head to a node in the loop body. It can lead to some
other node in the loop body or directly back to the loop head itself.

— A repeat edge is any edge from the loop body to the loop head. Repeat edges are also
known as “back edges”. An edge from the loop head to itself is both a repeat edge and a
neck edge.

- An exit edge is any edge from the loop body to a node outside the loop body.

A loop is called an exit-at-end loop if, for any exit edge, all the edges with the same source
node are either exit edges or repeat edges (in the same loop). The example loop in the figure
above is not an exit-at-end loop because the exit edge from node 3 to node 6 violates this
condition; the edge from node 3 to node 5 has the same source node (3) but is neither an exit
edge nor a repeat edge. If either of these edges were removed the loop would become an exit-
at-end loop.

Bound-T User Manual Assertion Language 141

Seszal

loop body

> repeat
edges

loop head

neck -
edges ~~~~~~~)

Figure 10: A loop in a flow-graph

The loop head is node 2; the loop body consists of nodes 2, 3, 4,
and 5; the repeat edges are those from node 4 to node 2 and
from node 5 to node 2; and the exit edges are those from node 3
to node 6 and from node 5 to node 7.

In the source code, an exit-at-end loop is often a “bottom-test” loop. However, compilers can
turn top-test loops into exit-at-end loops by coding the first instance of the loop termination
test as a special case that is not within the loop body.

We say that a loop is a (syntactically) eternal loop if it has no exit edges or if all exit edges are
known to be infeasible. We consider such loops to also be exit-at-end loops.

We can now define the meaning of a repetition bound for a loop:

— When a repetition bound with the number R as the upper Bound applies to a loop that is
not an exit-at-end loop it constrains the worst-case execution path of the containing
subprogram as follows. If the start edges are executed a total of A times, then the neck
edges are executed in total at most R x A times. Note that the loop-head can be executed
up to (R + 1) x A times, because each of the R x A executions of the loop-body may jump
back to the loop-head along a repeat edge.

— When a repetition bound with the number R as the upper Bound applies to an exit-at-end
loop it constrains the worst-case execution path as follows. If the start edges are executed a
total of A times, then the repeat edges are executed in total at most (R —1) x A times.

Note that only the upper bound of of the repetition Bound is used in either case.

Although not mentioned in the definition above, the practical effect of a repetition bound also
depends on whether there are exit edges from the loop head. While-loops and other “top-test”
loops often have exit edges from the loop head.

The following figure shows an example of the most general form of a loop with exit edges both
from the loop head and from the loop body. The nodes and edges in the flow-graph are
labelled with execution counts assuming an assertion that the loop repeats R = 6 times and

142

Assertion Language Bound-T User Manual

one start of the loop, A = 1. (For a larger number of starts the execution counts are multiplied
proportionately.) The execution counts 4 and 2 for the alternative internal paths (the neck
edges in this case) are examples; any two numbers that add up to 6 are possible in the absence
of other assertions or knowledge. The worst-case path (again in the absence of other
constraints) executes the repeat edge 6 times and the loop-head 7 times.

loop body

Figure 11: A general kind of loop asserted to repeat 6 times

A loop that is not an exit-at-end loop and has no exit edges from the loop head can be called a
“middle-exit” loop. Figure 12 below shows a middle-exit loop after asserting that the loop
repeats R = 6 times and assuming that the loop is started once, A = 1. As above, the execution
counts 4 and 2 for the alternative internal paths are examples. Note that the node in the loop
body from which the repeat edge originates executes only 5 times. In real code, this node
might hold most of the code in the loop; it is then questionable if the assertion has the
intended effect, or if asserting 7 repetitions would be more suitable, giving 6 executions of this
node.

loop body

Figure 12: A middle-exit loop asserted to repeat 6 times

Figure 13 below shows an exit-at-end loop after asserting that the loop repeats R = 6 times
and assuming that the loop is started once, A = 1. Note that the node from which the repeat
edge originates now executes 6 times, equal to the asserted number of repetitions.

Bound-T User Manual Assertion Language 143

loop

Figure 13: An exit-at-end loop asserted to repeat 6 times

Which repetition bound is right?

As the examples above show, the “right” value for a loop-repetition bound depends on the form
of the flow-graph, in particular on where the “important” parts of the loop lie with respect to
the loop-head and exit edges. Unfortunately there is no sure way to deduce the form of the
machine-code flow-graph from the source code of the loop. For small target processors the
evaluation of a simple condition may need several instructions and conditional jumps;
consider, for example, the comparison of two 16-bit integers on an 8-bit processor. This means
that a while-loop with such a condition probably will not have an exit edge from the loop head
because the loop head node contains only the first part of the instruction sequence that
evaluates the condition.

You should therefore ask Bound-T to draw the flow-graphs of subprograms with asserted loop
repetition bounds and check that the execution counts agree with your intention. If they
disagree, you should either adjust the repetition bound or use other kinds of assertions, for
example on the execution count of calls.

Asserting zero repetitions

Asserting a zero number of repetitions may have an unexpected effect for loops that have no
exit edge from the loop-head node. This happens in many exit-at-end loops and all
syntactically eternal loops. Consider the following Ada pseudo-code:

loop
if some condition then
do something;
end if;
exit when done enough;
end loop;

144

Assertion Language Bound-T User Manual

8.11

The compiler very likely codes this as a loop-head that evaluates “some condition” and with
the only exit edge at the end of the loop after evaluating “done enough”. For such a loop, the
loop body is executed at least once, if the execution reaches this loop at all. If you assert zero
repetitions for this loop, Bound-T considers the whole loop unreachable which might not be
what you wanted.

Combining loop and call repetitions

When a call is in a loop, a bound on the number of executions of the call may implicitly bound
the number of loop repetitions. However, Bound-T also requires an explicit bound on each loop
in the subprogram before it tries to compute the WCET of the subprogram. The explicit loop-
bounds can be computed automatically or asserted. The worst-case path computation will then
consider the conjunction of the implicit bounds (number of calls executed) and the explicit
bounds (number of loop repetitions). The WCET value will reflect the strictest bounds.

For example, assume that the target subprogram Foo has a loop that calls two subprograms Lift
and Drop and is of the following form:

while <complex condition> loop
if Need To_Lift then
Lift;
else
Drop;
end if;
end loop;

Assume further that Bound-T cannot bound the loop iteration automatically (because the loop-
condition is complex) and that we assert the number of executions of the two calls as follows:

subprogram "Foo"
call to "Lift" repeats 10 times; end call;
call to "Drop" repeats 15 times; end call;
end "Foo";

Since every loop iteration calls either Lift or Drop, these assertions imply that the loop can be
executed at most (or in fact exactly) 25 times. However, Bound-T does not detect this
implication and refuses to compute a WCET unless an explicit loop-bound is asserted, for
example by adding to the above subprogram block the Clause

loop repeats <= 40 times; end loop;

Under these assertions, Bound-T computes a worst-case path that executes the loop 25 times so
that Lift is called 10 times and Drop is called 15 times, which also satisfies the explicit loop-
assertion of no more than 40 repetitions.

Variable Bounds

Bounds on the value of a variable are written as follows:
Variable_Bound - variable Variable Name Bound

The Variable_Bound clause states the possible range of the values of a variable and can be
applied to any kind of context. However, the meaning is different for call contexts and
subprogram-parameter contexts than for other contexts. The following table explains the
meaning in each context where such an assertion is allowed.

Bound-T User Manual Assertion Language 145

Table 21: Meaning of variable value assertion

Context Assertion holds:

Globally During the entire analysed execution at every reached point.

Subprogram entry For any execution of this subprogram, but only at the entry point, before
executing the first instruction of the subprogram.

Subprogram body For any execution of this subprogram and at all points in the

subprogram.
Loop For any execution of this loop and at all points in the loop.
Call For any execution of this call, immediately before entering the callee.

The rest of this section discusses each context in more detail.

Variable bounds for subprogram bodies, loops or globally

When variable value bounds are asserted for any context other than a call or subprogram entry,
they apply throughout the whole context. This makes the assertion powerful but also means
that you can easily create contradictions if you specify too narrow a range in the Bound. For
example, assume that the context is a subprogram that contains two assignments to the
variable V:

procedure Foo is
begin
vV := 3;
some statements, not changing V;
V :=V + 1;
further statements;
end Foo;

If you now assert for that V is 3 for this subprogram:

subprogram "Foo"
variable "v" 3;
end "Foo";

then Bound-T may find that the further statements after the second assignment to V are
unreachable because there V would have the value 4, which is forbidden by the assertion. This
will often result in warning message. You should instead assert that V is in the range 3 .. 4 or
put the assertion in the subprogram entry context as shown below.

Variable bounds on subprogram entry

When variable value bounds are asserted in a subprogram entry context (within parentheses
following the first Sub_Name in a Sub_Block) they apply at one specific point in the program:
immediately before the execution of the first instruction in the subprogram (the entry point of
the subprogram).

The following asserts that the variable V has the value 3 on entry to the subprogram Foo:

subprogram "Foo" (variable "V" 3)
end "Foo";

146

Assertion Language Bound-T User Manual

8.12

Since the assertion applies only on entry to the subprogram, the subprogram can change V in
any way without contradicting this assertion. However, if Foo is called again, the assertion
must again hold (V must equal 3) on the new entry to Foo.

Variable bounds for calls

When variable value bounds are asserted for a call, they apply to the variables as visible in the
caller, immediately before the execution flows from the caller to the entry point of the callee.

When the named variables occur in the call's actual parameter expressions, the parameter-
passing mechanism of the call translates the asserted bounds on the caller's variables into
bounds on the callee's (formal) parameters.

Taking into account the parameter-passing mechanism is especially important for target
processors that rename registers during a call instruction. One example is the SPARC
architecture with its "register windows". In the SPARC version of Bound-T, the variable value
fact

variable address "o3" 123;

refers to output register 3. However, the register-window mechanism means that the physical
register that the caller refers to as "03" is visible in the callee as "i3" (input register 3), while
"03" in the callee refers to a different physical register. Thus, if the above assertion on "03" is
given in a call context, it has the same effect as the corresponding assertion on "i3" in the
callee's entry context.

Please refer also to section 5.8 where you will find a warning on the use of "foreign" local
variables in assertions.

Some compilers are sloppy with the mapping of variable names to registers, in particular at
calls. They may use a register to pass a parameter to the callee although the symbol-table in
the target program allocates this register to a variable that has nothing to do with this
parameter. Bound-T cannot detect such symbol-table flaws which means that assertions on this
variable may not have the correct effect. Check the Application Note for your target and
compiler for advice.

When a Variable_Bound applies to a global variable (a statically addressed memory location) it
is not affected by the parameter-passing mechanism and the asserted bounds apply to the same
global variable for the callee.

Whether they concern parameters or global variables, the variable bounds asserted for a call
are applied only to the entry point of the callee, not throughout the callee's code.

Variable value bounds for a call are currently used only for the call-path-specific analysis of the
callee at this call. The variable bounds are not used in the subsequent analysis of the caller,
although it would be reasonable, and future versions of Bound-T will probably do it.

Variable Invariance

The invariance (unchanged value) of a variable is asserted as follows:
Variable_Invariance - invariant Variable_Name

A Variable Invariance clause asserts that the named variable retains its value over any
execution of the context to which the clause applies. This kind of assertion is not often used,
but in some cases it can help Bound-T complete its arithmetic analysis and find loop-bounds
automatically, as section 5.9 explained.

Bound-T User Manual Assertion Language 147

The following table explains the meaning of asserting the invariance of a variable in each
context where such an assertion is allowed.

Table 22: Meaning of variable invariance assertion

Context Assertion holds:

Loop For any repetition of this loop and means that the variable has the same value
whenever execution enters the loop head. The loop body may change the
variable but must restore its value before going back to the loop head.
However, the value may change on the last execution of the loop body, when
the loop terminates.

Call For any execution of this call and means that the execution of the call and the
callee do not modify the variable, that is, the value on return from the call is
the same as the value before the call. However, the variable can be modified
within the callee as long as its original value is restored on return.

Subprogram For any loop and call in the subprogram. The subprogram itself may change the
body variable's value.

One consequence of asserting the invariance of a variable in a loop is that the variable cannot
be a counter for the loop.

An invariance assertion in a context does not mean that the variable always has the same value
when execution reaches the context. For example, if a variable is asserted as invariant for a call,
the variable may have the value 5 on the first execution of the call and the value 207 on the
second execution of the call. The invariance means only that the variable still has the value 5
after the first execution of the call and still has the value 207 after the second execution of the
call.

Likewise, a variable that is asserted as invariant in a loop may have a different value each time
execution reaches the loop from outside the loop, that is, each time the loop starts. For
example, assume that the variable has the value 11 when the loop is first started and that the
loop repeats five times before terminating. The loop head is thus executed six times. The
invariance means that the variable still has the value 11 on each of these six entries to the loop
head. When the loop terminates the variable may have a different value. If the program starts
the loop again, the variable may have yet another different, for example 31; if the loop now
repeats twice so that the loop head is executed three times the invariance means that the
variable has the value 31 on each of these three entries to the loop head. Again, the value may
change when the loop terminates.

Asserting invariance in a subprogram (body) context is equivalent to asserting invariance in all
loops and calls in the subprogram. Note that it does not mean that the variable is invariant
over a call of this subprogram.

8.13 Property Bounds
Bounds on the value of a target-specific "property" are written as follows:
Property_Bound - property Property_Name Bound
Property_Name - string
A Property Bound clause asserts that some target-specific property of the target processor or of
the target program under analysis has a given value or a given range of values throughout the
context to which the clause applies. Since the properties are completely target-specific, please
refer to the relevant target Application Notes for a list of the available properties and their
meaning.
148 Assertion Language Bound-T User Manual

A typical use for such properties is to define the number of memory wait-states that should be
assumed for specific types of memory accesses in this specific context. For example, boot code
that executes from a narrow PROM may need a much larger number of program-memory wait-
states than application code that executes from fast RAM memory with a wide instruction bus.

The following table defines the meaning of assertions on property values, in each context
where such an assertion is allowed.

Table 23: Meaning of property value assertion

Context Assertion holds:

Globally During the entire analysed execution at every reached point, unless
overridden by an assertion on this property in another context.

Subprogram body For any execution of this subprogram and at all points in the subprogram,
unless overriden by an assertion on this property in a loop or call within this

subprogram.

Loop For any execution of this loop and at all points in the loop, unless
overridden by an assertion on this property in an inner loop or a call within
this loop.

Call This context is allowed by the assertion language but the assertion currently

has no effect.

Note that an assertion on a property value in an inner context overrides any assertions on this
property in outer contexts (only the innermost assertion holds). This is in contrast to assertions
on variable values where such nested assertions are combined (all applicable assertions hold).

8.14 Callee Bounds
When a call instruction uses a dynamically computed callee address, Bound-T is often unable
to find the possible callee subprograms by analysis. In such cases you can list the possible
callees as a Callee_Bound fact in the context of the dynamic call:

Callee_Bound - calls Sub_Name { or Sub_Name }

The dynamic call is then analysed as if it were a case statement with one branch for each listed
callee (Sub_Name) contain a call of this callee.

8.15 Combining Assertions
The assertion language lets you assert several facts that apply to the same aspect of the
program's behaviour. For example, you can write several bounds on the value of the same
variable in the same context, or in different contexts that intersect, such as an assertion on
variable V in subprogram Foo, combined with an assertion on V in a loop nested in Foo. The
table below explains how Bound-T combines or conjoins such assertions.

Table 24: Effect of multiple assertions on the same item
Asserted fact Effect in same context Effect in nested context

Variable value range The effective range is the intersection = The effective range is the intersection of

of all the asserted ranges. all the asserted ranges.

Property value range The effective range is the intersection = The range for the inner context is used.

of all the asserted ranges.

Bound-T User Manual Assertion Language 149

Asserted fact Effect in same context Effect in nested context

Variable invariance Multiple assertions have the same The assertion for the inner context

effect as a single assertion. holds.

Loop repetition count The effective bound on repetitions is Not applicable. The number of

the minimum of the asserted values. repetitions of the outer loop has no
meaning for the inner loop.

Call execution count The effective range is intersection of all Not applicable. One call cannot be

the asserted ranges. nested within another, in the opinion of
Bound-T.
Subprogram The effective WCET bound is the Not applicable. The context of a
execution time smallest asserted time. subprogram is always the global context.

Callees of a dynamic The effective set of callees is the union Not applicable. One call cannot be

call of the asserted sets of callees. nested within another, in the opinion of
Bound-T.
Contradictory repetition counds
Multiple assertions that affect the same or nested program elements can lead to contradictions.
For example, assume that subprogram Initialize contains a loop that on each iteration executes
a call of the subprogram Allocate_Block, and that the following assertions are stated:
all loops that call "Allocate Block"
repeat <= 10 times;
end loops;
subprogram "Initialize"
all calls to "Allocate Block"
repeat 20 times;
end calls;
end "Initialize";
The second assertion requires the call to Allocate Block to occur 20 times and so requires 20
repetitions of the loop, but the first assertion only allows 10 repetitions. When such a
contradiction occurs, the WCET computation will fail with an error message saying "infeasible
execution constraints".
Contradictory value bounds
When several assertions constrain the value of the same variable in some context, Bound-T
uses all the constraints. If the constraints are contradictory, the context in question may appear
infeasible (unreachable). The same can happen if the assertions conflict with value bounds that
Bound-T has found through analysis.
Two kinds of contradictions between assertions may arise:
« directly conflicting assertions on the same variable in the same context, and
+ indirect conflict between assertions on two or more variables that contradict a relationship
between these variables that Bound-T has deduced from its analysis.
The next two subsections discuss these further.
150 Assertion Language Bound-T User Manual

Direct conflict between assertions on the same variable

Bound-T can usually detect and report a direct conflict when it collects all the assertions for
the analysis of a subprogram in a certain context. For example, if there is a global assertion
that variable V is in the range 1 .. 5, and for subprogram Foo an entry assertion that V has the
value 7, Bound-T will detect this direct conflict and warn about "conflicting assertions on
entry"' to Foo. Moreover, Bound-T will also list all the assertions that it collected for this
analysis, grouping them as follows:

Global assertions:

1<=DMO0<=5

Subprogram entry assertions:
DMO0=7

Subprogram body assertions:
None.

Call assertions and computed bounds:
None.

Target-dependent implicit bounds:
SH=1
ZSH=0

As you can see, the global assertion and the subprogram-entry assertion conflict. Here "DMO0" is
the machine-level name for the source-code variable V.

The group "Call assertions and computed bounds" includes the bounds on input parameters
and global variables that Bound-T has computed from the calling context.

Indirect conflict between assertions and deduced relationships

An indirect conflict can occur, for example, when one assertion constrains the variable X to
values less or equal to 20 and another constrains the variable Y to the range 18 .. 25. These
assertions as such are compatible, but if they apply to a context that includes an instruction
that assigns X the value Y + 3, a conflict arises because the new value of X would be in the
range 21 .. 28, which contradicts the assertion on X.

Such relationships between the values of variables are the main result of Bound-T's arithmetic
analysis. The analysis deduces relationships from arithmetic assignments (instructions that
compute a value and store it in a variable) and from the logical conditions of conditional
branches. For example, if the above assertions on X and Y apply to a part of the program that is
entered only through a conditional branch with the condition X =Y + 3, any arithmetic
analysis in this part of the program (for example, finding bounds on a loop here) will discover
the conflict.

When an indirect conflict between assertions and deduced variable relationships occcurs
Bound-T is usually unable to decide if the reason is in the assertions or in the logic of the target
program itself. Bound-T classifies the relevant program part as unreachable (and warns about
it, if the option -warn reach is in effect).

Note that Bound-T does not search for such conflicts systematically; it discovers them only if
the relevant program part needs some analysis, for example loop analysis. Thus, an analysis
with contradictory assertions can succeed without discovery of the conflicts, but the conflicts
may be revealed in a later re-analysis with a changed target program if there is now a loop, for
example, that is covered by the conflicting assertions and relationships.

Bound-T User Manual Assertion Language 151

8.16

Error Messages from the Assertion Parser

When the assertion parser in Bound-T finds an error in the assertion file it issues an Error
message in the basic output format explained in section 7.2. The following table lists all these
error messages in alphabetical order, ignoring punctuation characters and letter case. For each
message, the table explains the problem in more detail. For some error messages, the table
may suggest possible reasons for the error and specific solutions. Otherwise, the general reason
is an error in the assertion file and the general solution is to correct the assertion file and re-
run Bound-T.

Error messages from sources other than the assertion parser are listed in section 9.2. Some of
them may also be due to errors in the assertions. In those cases the assertions are syntactically
and semantically correct, so the assertion parser accepts them, but later stages of the analysis
find some conflict between different assertions or between the assertions and the target
program under analysis. For example, the number of loops that actually match a
Loop_Description may be different from the expected Population for this loop description.

The assertion parser can also issue warning messages. These are few enough to be listed
together with the other Bound-T warnings in section 9.1.

Table 25: Assertion error messages

Error Message Meaning and Remedy

Ambiguous label name: N Problem The assertion tries to identify a label, subprogram, or
variable by the name N but the name matches more

or . .
than one label, subprogram, or variable (respectively)

Ambiguous subprogram name: N in the program and so is ambiguous.

or Reasons The program contains more than one label,

Ambiguous variable name: N

subprogram, or variable (respectively) with the name N
but in different scopes. The name in the assertion does
not specify the scope (well enough).

Solution ~ Add scope levels to the name to make it unambiguous.

"S" expected, at "T" Problem At the end of a subprogram block, for a subprogram

identified by S, the subprogram identifier is repeated in
the form T which does not match S. See also the error
message that begins “Mismatch...”.

"A" is not a valid cell address Problem An assertion contains the string A that is meant to

denote a variable (storage cell) address, but is rejected
by the assertion parser.

Reasons The string A is not written according to the rules for
variable addresses that Bound-T uses for this target
processor.

Solution Refer to the Application Note for this target and correct
the string.

"A" is not a valid code address, at "T". Problem An assertion contains the string A that is meant to

denote a code address, but is rejected by the assertion
parser. The next token is T.

Reasons The string A is not written according to the rules for
code addresses that Bound-T uses for this target
processor.

Solution Refer to the Application Note for this target and correct
the string.

152

Assertion Language Bound-T User Manual

Error Message

Meaning and Remedy

Assertion expected, at "T".

Problem

The current token T cannot be the start of an assertion,
as would be expected here. See the nonterminal
Assertions in section 8.2.

The assertion parser silently skips the following text
until it finds the start of the next assertion.

Assertion file contained errors.

Problem

Some errors were noted in the assertion file (and
reported by the corresponding other error messages in
this table). The analysis stops (after reading the rest of
the assertion files, if any).

Assertion file could not be read.

Problem

The assertion file could not be opened because the user
does not have read access to the file. The analysis stops
(after reading the rest of the assertion files, if any).

Assertion file was not found.

Problem

The assertion file could not be opened because it seems
not to exist. The analysis stops (after reading the rest of
the assertion files, if any).

A “that” part is not allowed for this
call.

Problem

Solution

This Other_Call structure is not enclosed in parentheses
and therefore it cannot include a list of call properties
introduced with the that keyword. See section 8.7.

Add parentheses around the Other_Call, thus allowing a
full Call_Description.

A “that” part is not allowed for this
loop.

Problem

Solution

This Other_Loop structure is not enclosed in parentheses
and therefore it cannot include a list of loop properties
introduced with the that keyword. See section 8.6.

Add parentheses around the Other_Loop, thus allowing
a full Loop_Description.

Bound expected, at "T"

Problem

The assertion file should have a bound here, instead of
the token T. See the nonterminal Bound in section 8.2.

"call" after "end" expected, at "T"

Problem

The keyword call should here follow the keyword end.
See the nonterminal Call Block in section 8.7.

Call properties expected, at "T"

Problem

The assertion file should have a call property here,
instead of the token T. See the nonterminal
Call_Property in section 8.7.

Calls do not have the "defines"
property.

Problem

The assertion file tries to use the defines keyword to
identify a call. This property is not yet supported for
calls.

Calls do not have the "uses" property.

Problem

The assertion file tries to use the uses keyword to
name a identify. This property is not yet supported for
calls.

Cannot assert callees for a static call.

Problem

The assertion file tries to assert the possible callees for
a static call, which is nonsense. In other words, there is
a Callee_Bound in a Call_Block for a static call.

Clause expected, at "T"

Problem

The assertion file should have an assertion clause here,
instead of the token T. See the nonterminal Clause in
section 8.8.

Clause or "end call" expected, at "T"

Problem

The assertion file should have an assertion clause here,
or the end call keywords, instead of the token T. See
the nonterminals Clause in section 8.8 and Call_Block in
section 8.7.

Bound-T User Manual

Assertion Language 153

Error Message

Meaning and Remedy

Clause or "end loop" expected, at "T" Problem The assertion file should have an assertion clause here,
or the end loop keywords, instead of the token T. See
the nonterminals Clause in section 8.8 and Loop Block
in section 8.6.

Closing parenthesis after call Problem A call description that is enclosed in parentheses should

expected, at "T" be followed by a ‘)", instead of the token T.

See the nonterminal Other_Call in section 8.6.

Closing parenthesis after loop Problem A loop description that is enclosed in parentheses

expected, at "T" should be followed by a ‘)’, instead of the token T.
See the nonterminal Other_Loop in section 8.6.

Closing parenthesis after parameters Problem The assertions on subprogram parameters should be

expected, at "T" followed by a ‘)’, instead of the token T.

See the nonterminal Sub_Block in section 8.5.

Context provides no base for code Problem A loop description uses the property “executes offset

offset code-offset” but the subprogram that contains the loop is
not specified so there is no base address for the offset.
In other words, the description is in a Loop Block that is
a Global _Bound.

"cycles" expected, at "T" Problem This execution-time assertion should have the keyword
cycles, instead of the token T, after the asserted
execution time. It should be "time N cycles".

Dynamic call cannot have “call to” Problem The assertion describes a call that is dynamic but is

or also a call to a named callee, which is an impossible

Dynamic call cannot have “call_to”. combination.

“end call” expected, at "T" Problem The present Call_Block should end with end call,
instead of the token T.

“end loop” expected, at "T" Problem The present Loop Block should end with end loop,
instead of the token T.

Execution time bounds for a loop are Problem The assertion file tries to assert the time for a loop.

not allowed. This assertion is not supported for loops, only for sub-
programs and calls.

Execution time bounds for the Problem The assertion file tries to assert the time as a global

program are not allowed. fact. This assertion is not supported in the global
context, only for subprograms and calls.

Integer value expected, at "T" Problem The assertion file should have an integer literal here,
instead of the token T.

Integrated analysis cannot be negated. Problem The assertion tries to negate (disable) integrated
analysis of a subprogram; this is not possible. See
section 8.5.

Label not found: L Problem The assertion file names a label L but the target
program's symbol table does not have a statement label
named L in this scope.

Reasons The name L may be mistyped; if the default scope is
used perhaps another scope should be named explicitly;
or the target compiler may have mangled the names.

Solution Check for typos. Check the target program's symbol

table using eg. -trace symbols or by dumping the file.

154 Assertion Language

Bound-T User Manual

Error Message

Meaning and Remedy

"loop" after "end" expected, at "T" Problem The keyword loop should here follow the keyword
end. See the nonterminal Loop_Block in section 8.6.

Loop description expected, at "T" Problem A loop description is expected here, instead of the
token T. See the nonterminal Loop Description in
section 8.6.

Loop or call expected, at "T" Problem A loop-block or call-block is expected here, instead of
the token T. See the nonterminals Loop_Block in
section 8.6 and Call_Block in section 8.7.

Loop property expected, at "T" Problem The assertion file should here have a loop property,
instead of the token T. See the nonterminals
Loop_Property and Loop_Properties in section 8.6.

Mismatched subprogram identifier "S" Problem The subprogram identifier Sub_Name after the final

after "end" end of a Sub_Block does not match the identifier given
at the start of the block. This message is followed by an
error message that shows the expected identifier.

"not", "in" or "labelled" expected, at Problem The assertion file should here have one of the keywords

"T" not, in, or labelled, instead of the token T. See the
nonterminal Loop Property in section 8.7 and the
nonterminal Call_Property in section 8.7.

Quoted character expected , at "T" Problem The assertion file should have a character in single
quotes here (‘c’), instead of the token T.

Quoted string expected , at "T" Problem The assertion file should have a string in double quotes
here ("string"), instead of the token T.

Repetition bounds on subprograms Problem The assertion file contains an assertion on execution

not implemented count (repeats N times) for a subprogram. This
assertion is not allowed for subprograms, only for loops
and calls.

Semicolon after callees expected, Problem The list of callee subprograms in a Callee_Bound

at"T" (section 8.14) should be followed by a semicolon,
instead of the token T.

Semicolon after "end call" expected, = Problem The keywords end call should be followed by a

at"T" semicolon, instead of the token T.

Semicolon after "end loop" expected, Problem The keywords end loop should be followed by a

at"T" semicolon, instead of the token T.

Semicolon after "end subprogram" Problem A subprogram block lacks the terminating semicolon.

expected, at "T". Instead, the next token is T.

Semicolon after subprogram option Problem A subprogram option lacks the terminating semicolon.

expected, at "T" Instead, the next token is T.

Semicolon expected after clause, Problem An assertion clause lacks the terminating semicolon.

at"T" Instead, the next token is T.

Semicolon expected after global Problem An assertion (on the values of a variable or a property)

bound, at "T" in the global context lacks the terminating semicolon.
Instead, the next token is T.

Subprogram address is invalid Problem An assertion tries to identy a subprogram by giving its

(entry) address, but the address string is not in the
proper form for this target processor. The invalid
address string is shown in output field 4.

Bound-T User Manual

Assertion Language 155

Error Message

Meaning and Remedy

Solution

Refer to the Application Note for your target processor
and write the entry address in the proper form.

Subprogram name "N " expected,
at "T "

Problem

The subprogram name given at the end of a
subprogram block does not match the name N given at
the start of the block. Instead, the token at the end is T.

Subprogram name expected, at "T"

Problem

The assertion file should have a subprogram name (or
address) here, in double quotes, instead of the token T.

Subprogram not found: N

Problem

Reasons

Solution

The subprogram named N for this subprogram block
(after the subprogram keyword) was not found in the
target program.

Typing mistake in the name, or some name mangling by
the compiler and linker.

Correct the assertion file to use the subprogram name
as it exists in the target program executable (the link-
name). To find the possibly mangled name, use -trace
symbols or dump the target program file.

Text at or after column C not
understood: "T"

Problem

The text at or after column C on the current line in the
assertion file is not a valid lexical "token" of the
assertion language. The string T contains (part of) this
text.

The integer literal "n" is not a valid
number

Problem

The digit string n is not a valid number for some
reason. Perhaps it has too many digits for the integer
type that Bound-T uses for asserted numbers.

The “unused” property cannot be
negated

Problem

A Sub_Option structure (section 8.5) uses the keywords
used or unused and perhaps also the keyword hot in
a combination that says that the subprogram in
question is “not unused”. This is considered an error
because it is the default condition for any subprogram.

"times" expected, at "T"

Problem

This execution-count assertion should have the
keyword times, instead of the token T, after the
asserted execution time. It should be repeats N times.

Unrecognized property name: P

Problem

Solution

The assertion file names a target-specific "property" P
but there is no such property for this target processor.

Check the target-specific Application Note for the
names of the properties for this processor.

Variable not found: V

Problem

Reasons

Solution

The assertion file names a variable V, but the target
program’s symbol table does not have a variable named
V (in the implicit or explicit scope).

The name V may be mistyped; if the default scope is
used perhaps another should be named explicitly; or
the target compiler may have mangled the names.

Check for typos. Check the target program’s symbol
table using eg. -trace symbols or by dumping the file.

Variable name expected, at "T"

Problem

The assertion file should here have the name (or
address) of a variable, instead of the token T.

156 Assertion Language

Bound-T User Manual

TROUBLESHOOTING

This section explains how to understand and correct problems that may arise in using Bound-T,
by listing all the warning and error messages that can be issued, what they mean, and what to
do in each case.

If you cannot find a particular message here, please refer to the Application Notes for your
target system and host platform; additional, specific messages may be listed there. Also, this
section omits the messages related to the HRT analysis mode; see section 1.4. The error
messages from the assertion parser, reporting errors in the assertion file, are listed in
section 8.16.

9.1 Bound-T Warning Messages
Warning messages use the basic output format described in section 7.2, with the key field
Warning. Fields 2 - 5 identify the context and location of the problem, and field 6 is the
warning message, which may be followed by further fields for variable data.
The following table lists all Bound-T warning messages in alphabetical order. The target-
specific Application Notes may list and explain additional target-specific warning messages.
See section 1.4 regarding additional warning messages for HRT analysis mode.
As Bound-T evolves, the set and form of these messages may change, so this list may be out of
date to some extent. However, we have tried to make the messages clear enough to be
understood even without explanation. Feel free to ask us for an explanation of any Bound-T
output that seems obscure.
Table 26: Warning messages
Warning Message Meaning and Remedy
Assertion file already specified: Reasons The same assertion filename is specified in two or more
filename -assert command-line options.
The assertion file is only read and parsed once;
repeated -assert options for the same file are skipped.
Action Correct the command-line options.
Assertion violated in step S: T:=V Reasons During the constant-propagation analysis, Bound-T has
/= A. found an instruction (in step number S) that assigns the
value V to the variable (register or memory cell) T, but
this variable is asserted to have the different value A
throughout the current subprogram. This is a
contradiction.
Bound-T continues the analysis with the value V,
overriding the assertion at this point.
Action Correct the assertion.
Callee never returns. Reasons Bound-T has discovered a call to a subprogram (the
callee) that never returns to the caller.
Action This warning is given only if the command-line option
-warn return is used. Omit this option to suppress this
warning.

Bound-T User Manual Troubleshooting 157

Warning Message

Meaning and Remedy

Cannot interpret constant as Reasons
unsigned with N bits: V

Action

During the constant-propagation analysis of a bit-wise
logical operation of width N bits, one operand has
received a constant negative value V that is too
negative to be considered an N-bit two’s complement
number. The analysis continues with the N-bit value "all
ones'.

Check how Bound-T decodes the target program at this
point (use the option -trace effect). The warning may
indicate that an instruction operand is decoded
incorrectly.

Closing scope A but current scope Reasons
isB

Action

Minor internal problem in Bound-T that is unlikely to
influence the analysis.

Please report to Tidorum Ltd.

Conflicting “arithmetic” assertions. Reasons

Action

For the current subprogram there are both assertions
that enable arithmetic analysis (arithmetic) and
assertions that disable it (not arithmetc), which creates
an ambiguity.

For this subprogram, Bound-T will apply the command-
line options that control arithmetic analysis.

Correct the assertion file(s).

Conflicting assertions on entry: Reasons
interval

Action

Combining all facts and assertions that apply on entry
to the current subprogram, but omitting the parameter
bounds derived from the calling context or asserted for
the call, the variable named in the interval has no
possible values (the interval is empty). This is a
contradiction.

The interval has the form min <= variable <= max
where min and max are constants such that min > max.

The contradiction may be beetween different assertions
on the same variable, or between an assertion on a
variable and some target-specific implicit bounds on the
variable.

Correct the assertion file(s).

Conflicting assertions or context on Reasons
entry: interval

Same as above (“conflicting assertions on entry”)
except that the conflicting facts and assertions include
the parameter bounds derived from calling context or
asserted for the call.

If this warning is given for a particular variable, but the
warning “conflicting assertions on entry” is not given
for the same variable, the conflict depends on the
context-specific parameter bounds.

Action For further explanation and possible actions see the
warning “Conflicting assertions on entry”.
Constant interpreted mod 2°N: V Reasons During the constant-propagation analysis of a bit-wise

logical operation of width N bits, one operand has
received a constant value V that is larger than the
maximum unsigned N-bit value. The analysis continues
with the value V mod 2V.

158 Troubleshooting

Bound-T User Manual

Warning Message

Meaning and Remedy

Action

In a real execution, the computation of this operand
involves overflow of some form, which implicitly
applies the mod operation. Another reason may be an
assertion that gives an N-bit register a value out of the
N-bit range.

Check the assertions. Change the program so that
overflow does not occur (but the analysis is correct
here, even for overflow).

Constant out of range for N-bit bit-
wise operation: V

Reasons

Action

During the constant-propagation analysis of a bit-wise
logical operation of width N bits, one operand has
received a value V that is negative or too large for any
bit-wise operation. The analysis continues but considers
that this operand has an unknown value.

Another reason may be an assertion that gives an N-bit
register a value out of the N-bit range.

Check the assertions. Check how Bound-T decodes the
target program at this point (use the option -trace
effect). The warning may indicate that an instruction
operand is decoded incorrectly.

Constant out of range for unsigned
N bits: V

Reasons

Action

During the constant-propagation analysis of a bit-wise
logical operation of width N bits, one operand has
received a value V that is too large (negative or
positive) to be used as an unsigned operand in any bit-
wise operation. The analysis continues but considers
that this operand has an unknown value.

Check how Bound-T decodes the target program at this
point (use the option -trace effect). The warning may
indicate that an instruction operand is decoded
incorrectly.

Constant propagation stops at
iteration limit

Reasons

Action

The constant-propagation analysis may resolve the
address used in a dynamic memory access and thus
change it to an access to a statically known memory
cell. The constant-propagation analysis is then
repeated for the extended computation model. This
warning reports that the maximum number of such
iterations was reached. Bound-T continues with other
analyses, even if another round of constant propagation
could improve the computation model.

If more iterations are desired, use the option -const iter
to increase the limit.

Constant V exceeds calculator
range, considered unknown.

Reasons

While building the arithmetic model of an instruction,
Bound-T found a constant value V with an absolute
value that is larger than the maximum set by the option
-calc_max. The constant is considered to have an
unknown value.

The value is probably an address constant or a bit-mask
and may or may not have an effect on the arithmetic
analysis of loop bounds.

Bound-T User Manual

Troubleshooting 159

Warning Message

Meaning and Remedy

Action

This warning is given only if the command-line option
-warn literal is used. To suppress the warning but still
exclude the value from the arithmetic analysis, omit
this option.

The value of the limit can be set by the command-line
option -calc_max. To include the value in the arithmetic
analysis, increase the limit using this option. However,
this increases the risk that the Omega calculator runs
into overflow, which makes the arithmetic analysis fail.

Duplicated symbol : dup-conn :

first-conn

Reasons

Action

The symbol-table in the target executable file contains
two (or more) occurrences of the same symbol
(identifier) which are not distinguished by scope or
other context. Moreover, these two occurrences connect
the same symbol to different machine-level values (eg.
different addresses) so the symbol is ambiguous.

The part first-conn describes the first occurrence of the
symbol and the part dup-conn describes the current
(second, third, ...) occurrence of the symbol.

The first-conn and dup-conn parts each consist of three
fields separated by colons: the kind of the symbol, the
symbol (identifier) itself, fully qualified by scope; and
the machine-level value connected to the symbol.

The symbol-kind is one of “Subprogram”, “Label”,
“Variable” or “Source line”.

This warning often occurs with compiler-generated
symbols for subprogram prelude and postlude code,
return point addresses, and so on. The target
compiler/linker created the file with this content, or
Bound-T did not recognize the distinguishing features
of these insignificant symbols.

This warning is emitted only if the command-line
option -warn symbol is enabled (it may be enabled by
default). The option -warn no_symbol suppresses this
warning.

The first occurrence of the symbol is accessible (to
assertions, for example), the others are not (or must be
referred to via their addresses). No action by the user
can correct this problem in general. For some target
processors command-line options may control which
symbol-tables that Bound-T scans for symbols; limiting
the selection may remove some of these warnings.

Duplicated symbol and value :

dup-conn

Reasons

The symbol-table in the target executable file contains
two (or more) occurrences of the same symbol
(identifier) which are not distinguished by scope or
other context. However, these two occurrences connect
the symbol to the same machine-level values (eg.
addresses) so this duplication does not make the
symbol ambiguous.

The part dup-conn describes the two occurrences which
are equal. See the warning “Duplicated symbol”, above,
for a description of the form of dup-conn.

160

Troubleshooting

Bound-T User Manual

Warning Message

Meaning and Remedy

Action

This warning is emitted only if the command-line
option -wamn symbol is enabled (it may be enabled by
default). The option -warn no_symbol suppresses this
warning.

No action is needed.

Dynamic call. Reasons

Action

The call instruction under analysis defines the address
of the callee by a dynamic computation; for example, a
register-indirect call. Bound-T will try various forms of
analysis to find the possible callee addresses and
include those subprograms in the call-graph of the
program under analysis.

This warning is emitted only if the command-line
option -wamn flow is enabled (it may be enabled by
default). The option -warn no_flow suppresses this
warning.

Check that Bound-T has constructed a correct call-
graph for this program. The analysis of dynamic calls
may be imprecise. You can use a dynamic call
assertion to list the possible callees.

Dynamic control flow. Reasons

Action

The instruction under analysis defines the address of
the next instruction by a dynamic computation; for
example, a register-indirect jump. Bound-T will try
various forms of analysis to find the possible addresses
and include them in the flow-graph of the subprogram
under analysis.

This warning is emitted only if the command-line
option -warn flow is enabled (it may be enabled by
default). The option -warn no_flow suppresses this
warning.

Check that Bound-T has constructed a correct flow-
graph for this subprogram. The analysis of dynamic
control flow may be imprecise.

Empty assertion file. Reasons

Action

The assertion file that was given as an option to Bound-
T turned out to be empty (of assertions; it may contain
comments and blank lines).

Correct the file or the option.

Eternal loop (no exit edges). Reasons

Action

The subprogram under analysis contains a loop that has
no exit (not even a conditional exit), so it must be
eternal.

Modify the program or assert how many iterations of
this loop should be included in the WCET. The warning
will appear even if the loop is asserted unless
suppressed with the option -warn no_eternal.

Eternal loop not included in WCET. Reasons

Action

This unbounded eternal loop was excluded from the
possible execution paths.

This warning should never appear because Bound-T
requires all eternal loops to be bounded (by assertions)
before it finds the worst-case paths.

Take this into account when using the WCET value.

Bound-T User Manual

Troubleshooting 161

Warning Message

Meaning and Remedy

Ignored multi-location invariance Reasons
assertion on V

Action

An invariance assertion applies to a variable V for
which the code uses different locations (memory cells,
registers) at different points of the current subprogram.
Bound-T does not support invariance assertions on such
variables.

There is no sure work-around, but different
optimization options for the target compiler may help.

Infeasible edge e splits node n Reasons

Action

Bound-T has examined the logical condition of the
control-flow edge (number e¢) between two consecutive
instructions in the same basic block (node number n)
and found the condition to be false in every execution
for the current context and assertions. This means that
the edge is infeasible (cannot be executed). This is
strange since there is no alternative edge, as the edge is
within a basic block.

The whole node that contains the infeasible edge
becomes infeasible, too, and is excluded from the
WCET.

Check the conditions in this region of the code and
verify that the node is indeed infeasible.

Loop body executes once (asserted Reasons
to repeat zero times)

Action

This loop consists of a single basic block: the loop head
block. The assertion that the loop repeats zero times
normally means that the loop head can execute once
and the rest of the loop zero times. Here the loop
consists of the head alone, so all of the loop executes
once.

Check that the zero-repeats assertion is correct for this
loop. If the intent was to say that the loop does not
execute at all, find some way to assert that.

Negative safety stack height Reasons
(stack = S) changed to zero.

Action

The stack-usage analysis has found a negative value S
for the maximum height of the named stack within this
subprogram, but will instead use and report a zero
stack height. The message also indicates the safety of
the value S. See section 3.11.

This should never happen. Please inform Tidorum Ltd.

Negative safety stack usage Reasons
(stack = S) changed to zero.

Action

The stack-usage analysis has found a negative value S
for the overall usage of the named stack for this
subprogram, but will instead use and report a zero
stack usage. The message also indicates the safety of the
value S. See section 3.11.

This should never happen. Please inform Tidorum Ltd.

No valid assertions found in this file. Reasons

Action

The assertion file that was given as an -assert option to
Bound-T turned out to be empty (of valid assertions; it
may contain comments and blank lines and malformed
assertions).

Correct the file or the option.

Non-returning subprogram Reasons

This subprogram seems to have no feasible (reachable)
return points in this context; it cannot return to its
caller. One possibility is that the subprogram ends in an
eternal loop.

162 Troubleshooting

Bound-T User Manual

Warning Message

Meaning and Remedy

Action

Check the assertions, if any, to verify that no return is
expected.

No relevant arithmetic to be
analysed.

Reasons

Action

The current subprogram contains some dynamic and as
yet unbounded parts, such as loops or calls to
subprograms that seem to need context-specific loop
bounds, but the computations in the current
subprogram seem irrelevant to these unbounded parts
as they do not assign values to any variables on which
the unbounded parts depend.

Therefore Bound-T omits the arithmetic analysis of the
current subprogram (in this context) as useless.

None. If the current subprogram is not a root
subprogram, and if the maximum parameter-depth
(option -max_par_depth) is not exceeded, Bound-T will
automatically try to find relevant computational
context from higher levels in the call-tree.

Null bounds on callee
which is immediately followed by

Null bounds on callee within these
bounds

Reasons

Action

While analysing a subprogram that calls other
subprograms Bound-T unexpectedly found no analysis
results (execution bounds) on one of the callees. Fields
3 to 5 of the first warning line identify the call. Fields 3
to 5 of the second warning line identify the caller.

This warning should normally never appear because
Bound-T normally analyses callees before their callers.
Please inform Tidorum.

Other address connection not used.

Reasons

Action

An assertion uses a numeric address to name a
subprogram or statement-label, but this address is
connected to more than one symbolic (source-code)
name (multiply defined). This message shows a
connection that Bound-T did not use.

This is generally harmless since the analysis uses the
address rather than the symbolic name. The symbolic
name appears only in the outputs.

Change the assertion to use the desired symbolic name.

Other identifier connection not
used.

Reasons

Action

An assertion uses a symbolic (source-code) name for a
subprogram or statement-label, but this name is
connected to more than one machine-code location
(multiply defined). This message shows a connection
that Bound-T did not use.

Add scope context to the name in the assertion, to
make the name unambiguous. See section 5.12.

stack : Stack usage bound is unsafe
(too small)

Reasons

Action

The stack usage analysis could not find a true upper
bound on the usage of the named stack in the current
subprogram and current context, but it has produced
an unsafe "lower bound" on the upper bound.

Inspect the subprogram code to understand why
Bound-T cannot bound the stack usage; then modify
the code or add assertions to support the analysis. See
section 3.11.

Bound-T User Manual

Troubleshooting 163

Warning Message

Meaning and Remedy

Resolved callee never returns.

Reasons

Action

While analysing a dynamic call, Bound-T has
discovered one possible callee that never returns to the
caller.

This warning is given only if the command-line option
-warn return is used. Omit this option to suppress this
warning.

Return point is dynamically
computed.

Reasons

Action

The return point (return address) of this call is
computed dynamically, not set statically. Bound-T will
try to analyse the computation to find the return point.

If Bound-T is unable to find the return point, as shown
by an error message about unresolved dynamic flow,
change the program to use a static return address or a
simpler computation of the return point.

If Bound-T is able to find the return point, check that
the return point is correct (for example, is not affected
by unresolved dynamic data references).

This warning is given only if the command-line option
-warn computed_return is chosen. Omit this option to
suppress the warning.

Shallow scope for line-number N:
scope

Reasons

Action

The debugging information in the executable file
connects source-line number N to a certain machine
address but the scope given for this line-number is
incomplete. The scope is expected to contain two levels,
the source-code file and the subprogram that contain
this line, but fewer levels are given for line N.

This warning is currently disabled. If it occurs, please
inform Tidorum.

Subprogram not found in program

Reasons

Action

In the assertion file, the subprogram named for this
subprogram block (after the subprogram keyword)
was not found in the target program. The name may be
mistyped, or the name may have been “mangled” by
the compiler and linker.

Correct the assertion file to use the subprogram name
as it exists in the target program executable (the link-
name). To find the possibly mangled name, use -trace
symbols or dump the target program file.

Tail call to callee that never returns.

Reasons

Action

This call appears to be a tail call, that is, it creates a
state in which the callee will return to the same place
to which this subprogram would return. However, the
callee seems not to return at all.

Probably no action is needed. When the compiler
optimised the call to a tail call it was probably not
aware that the callee does not return at all.

This address connection used.

Reasons

An assertion uses a numeric address to name a
subprogram or statement-label, but this address is
connected to more than one symbolic (source-code)
name (multiply defined). This message shows the
connection that Bound-T uses.

164 Troubleshooting

Bound-T User Manual

Warning Message

Meaning and Remedy

Action

This is generally harmless since the analysis uses the
address rather than the symbolic name. The symbolic
name appears only in the outputs.

Change the assertion to use the desired symbolic name.

This identifier connection used. Reasons

Action

An assertion uses a symbolic (source-code) name for a
subprogram or statement-label, but this name is
connected to more than one machine-code location
(multiply defined). This message shows the connection
that Bound-T uses.

Add scope context to the name in the assertion, to
make the name unambiguous. See section 5.12.

Time is not bounded for A=>B Reasons

Action

While annotating the control-flow graph of the
subprogram A with execution times, Bound-T found
that no WCET is available for the call from A to the
subprogram B.

This should never happen. Please inform Tidorum Ltd.

Unbounded residual pool for value Reasons
list

Action

While Bound-T was listing (enumerating) the possible
values of an address expression (usually the addresses
of the branches of a switch/case control structure), it
was unable to find the remaining values in the list.

Check that Bound-T has located all the branches of the
switch/case structure at this point. If not, try to assert
the possible values of the switch/case index.

Undefined bounds accessed for call- Reasons
bounds.

Action

While building the execution bounds for a subprogram
from those of its callees, Bound-T noticed that no
execution bounds exist for the subprogram itself.

This should never happen. Please inform Tidorum Ltd.

Unreachable call. Reasons

Action

This call seems infeasible (unreachable) because the
arithmetic analysis of the parameter values for the
calling protocol or the callee signals a contradiction
(impossible constraints). Thus, Bound-T excludes the
path(s) with this call from the WCET.

The contradiction can be intrinsic in the target program
(for example, an "if false then" statement), or it can be
due to the calling context (for example, an "if B then"
statement where the parameter B is false in the current
context), or it can be due to an assertion (for example,
an "if N > 5 then" statement together with the assertion
N < 2).

See the discussion of "contradictory value bounds" in
section 8.15.

Check the conditions under which the call is executed.
Check that the assertions are valid.

Unreachable eternal loop (asserted Reasons
to repeat zero times).

This eternal loop is asserted to be repeated zero times,
which Bound-T takes to mean that execution never
reaches this loop.

Bound-T User Manual

Troubleshooting 165

Warning Message

Meaning and Remedy

Action

Check that the zero-repeats assertion is valid, that is,
that all paths to this loop really should be excluded
from the worst-case analysis. Otherwise, change the
assertion to state that the loop repeats once, or as many
times as you like.

Unreachable exit-at-end loop Reasons
(asserted to repeat zero times).

Action

This loop is asserted to be repeated zero times, but it is
only exited at the end of the loop body. Thus, if the
loop is reached at all, the loop body must be exected
once. Bound-T resolves this conflict by considering the
whole loop unreachable.

Check that the zero-repeats assertion is valid, that is,
that all paths to this loop really should be excluded
from the worst-case analysis. Otherwise, change the
assertion to state that the loop repeats once, or as many
times as you like.

Unreachable flow to instruction at A Reasons

Action

Bound-T has examined the logical condition of the
control-flow edge from the current instruction to the
instruction at address A and found the condition to be
false in every execution for the current context and
assertions. This means that the edge is infeasible
(cannot be executed).

The most common reason is a for-loop where the
number of repetitions depends on a parameter of the
current subprogram and the compiler generates a
separate check and branch for the case where the loop
should not be repeated at all. This branch is thus
infeasible when the subprogram is called with
parameters that do cause loop repetitions.

This warning is given only if the option -wamn reach is
on, which is the default.

Check that this result is correct.

Unreachable instruction. Reasons

Action

This instruction (flow-graph step) seems infeasible
(unreachable) because the arithmetic analysis of the
data values reaching this instruction signals a
contradiction (impossible constraints). Thus, Bound-T
excludes the path(s) with this instruction from the
WCET.

See the warning “Unreachable call” for further
discussion of possible reasons and corrective actions.

Unreachable loop. Reasons

Action

This loop seems infeasible (unreachable) because the
arithmetic analysis of the loop counters signals a
contradiction (impossible constraints). Thus, Bound-T
excludes the path(s) with this loop from the WCET.

This warning is given only if the option -wamn reach is
on, which is the default.

Check that this result is correct.

166 Troubleshooting

Bound-T User Manual

Warning Message

Meaning and Remedy

Unreachable loop (asserted to Reasons
repeat zero times).

Action

This loop is a "bottom-test" loop where the loop body
must be executed before reaching the loop termination
test. This conflicts with the assertion that the loop
repeats zero times. Bound-T resolves this conflict by
considering the whole loop unreachable.

Check that the zero-repeats assertion is valid, that is,
that the loop body really should be excluded from the
worst-case analysis. Otherwise, change the assertion to
state that the loop repeats once.

Unreachable loop body (asserted to Reasons
repeat zero times).

Action

This loop contains a loop head and some other basic

blocks that form the (rest of) the loop body. Thus, the
assertion that the loop repeats zero times implies that
these other blocks are unreachable (never executed).

This warning is given only if the option -wamn reach is
on, which is the default.

Check that the zero-repeats assertion is valid and that
this effect is intended.

Unrepeatable loop. Reasons

Action

This loop seems to be unrepeatable because the
arithmetic analysis of the data on the repeat edges
signals a contradiction (impossible constraints). Thus,
Bound-T considers the repeat edges infeasible, which
effectively means a loop-bound of zero repetitions.

Still, the loop body, or parts of it, may be executed once
for every time the loop is reached.

This warning is given only if the option -warn reach is
on, which is the default.

Check that this result is correct.

Unresolved dynamic memory read. Reasons
or

Unresolved dynamic memory write.

or

Unresolved dynamic memory read
in condition.

The actual memory address or addresses in a dynamic
(indexed, pointer-based) memory-reading or memory-
writing instruction could not be determined. If the
instruction in question alters a variable that is involved
in loop-counting, the loop-bounds derived by Bound-T
may be wrong.

The most common such instructions are reading or
writing array elements or reading or writing a call-by-
reference parameter.

This warning is emitted only if the command-line
option -warn access is used.

Action Inspect the target program to verify that the instruction
in question does not affect loop-counting.
To suppress these warnings when they are irrelevant,
omit the option -warn access.
Unsigned operand too large, Reasons During the constant-propagation analysis of a bit-wise

considered unknown: V

logical operation, one operand has received a value V
that is out of range for the target processor. The
analysis continues but considers that this operand has
an unknown value.

Bound-T User Manual

Troubleshooting 167

Warning Message Meaning and Remedy

Action Check how Bound-T decodes the target program at this
point (use the option -trace effect). The warning may
indicate that an instruction operand is decoded
incorrectly.

9.2 Bound-T Error Messages
Error messages use the basic output format described in section 7.2, with the key field Error.
Fields 2 - 5 identify the context and location of the problem, and field 6 is the error message,
which may be followed by further fields for variable data.
The following table lists all Bound-T error messages in alphabetical order except for:
- error messages from the assertion parser; please see section 8.16;
- target-specific errors; please refer to the Application Note for the target;
- errors specific to HRT analysis; please see section 1.4.
For each error message, the table explains the problem in more detail, makes a guess at the
possible or likely reasons for the problem, and proposes some solutions. Of course, changing
the target program is nearly always a possible solution, but this is not listed in the table unless
it is the only solution.
As Bound-T evolves, the set and form of these messages may change, so this list may be out of
date to some extent. However, we have tried to make the messages clear enough to be
understood even without explanation. Feel free to ask us for an explanation of any Bound-T
output that seems obscure.
Table 27: Error messages
Error Message Meaning and Remedy
Argument is not a duration: A Problem A non-numeric command-line argument A was given to
Bound-T where a numeric one was expected. The
argument is expected to set a duration so it may
include a decimal point and a decimal part.
Reasons Mistake on the command line.
Solution Restart with correct form of arguments. See section 6.4.
Argument is not a number: A Problem A non-numeric command-line argument A was given to
Bound-T where a numeric one was expected. The
argument is expected to be an integer number without
a decimal part.
Reasons Mistake on the command line.
Solution Restart with correct form of arguments. See section 6.4.
At most N parameters allowed: P Problem The current patch file contains a line that has more
than the maximum of N patch parameters, so the
parameter P is ignored.
Reasons Perhaps the line is mistyped, with some extra blanks
that split up parameters.
Solution Correct the patch file.
168 Troubleshooting Bound-T User Manual

Error Message

Meaning and Remedy

At most N patch files allowed: name

Problem

Solution

The command-line contains more than the maximum of
N -patch options. The patch file with this name is thus
ignored.

Combine the contents of some patch files to bring the
total number of patch files to at most N.

Bit-wise result too large: V: E

Problem

Reasons

Solution

The result V of applying constant propagation to the
expression E, which includes a bit-wise Boolean
operator, exceeds the range of arithmetic values in this
target processor.

Error in Bound-T.

This should not happen. Please report it to Tidorum
Ltd.

Call matches too few entities

Problem

Reasons

Solution

The assertion file contains an assertion on a call where
the call description matches a smaller number of actual
calls than expected.

The matching calls (if any) are shown by appended
error lines of the form "match n: caller@locus= >callee".

The call description is too specific, or the target
subprogram contains fewer such calls than expected.
Perhaps the compiler has in-lined a call.

Improve call description in assertion file.

Call matches too many entities

Problem

Reasons

Solution

The assertion file contains an assertion on a call where
the call description matches a greater number of actual
calls than expected.

The matching calls are shown by appended error lines
of the form "match n: caller@locus= >callee".

The call description is too general, or the target
subprogram contains more such calls than expected.
Perhaps the compiler has duplicated some code for
optimization reasons.

Improve call description in assertion file.

Callee stack-usage for stack not
safely bounded.

Problem

Reasons

Solution

The search for the worst-case stack path found a call to
a subprogram with an unsafe (lower) bound on its
usage of the named stack.

The subprogram uses the stack in a complex way that
Bound-T cannot analyse exactly.

Inspect the subprogram code to understand why
Bound-T cannot bound the stack usage; then modify the
code or add assertions to support the analysis. See
section 3.11.

Callee stack-usage for stack
unknown, using unsafe lower
bound.

Problem

The search for the worst-case stack path found a call to
a subprogram with an unknown usage for the named
stack. The stack usage analysis will instead use the
initial value (on entry) of the stack height as an unsafe
lower bound on the stack usage in this subprogram.

Bound-T User Manual

Troubleshooting 169

Error Message

Meaning and Remedy

Reasons

Solution

The subprogram uses the stack in a complex way that
Bound-T cannot analyse at all. A special case where this
error arises is when the subprogram is exluded from the
analysis because an execution time is asserted for it.

Inspect the subprogram code to understand why
Bound-T cannot bound the stack usage; then modify the
code or add assertions to support the analysis. See
section 3.11.

Cannot create DOT file named

“name”.

Problem

Reasons

Solution

Bound-T could not create a file called name to hold the
DOT drawings requested by a command-line option
-dot name or -dot_dir dirname.

Perhaps the folder or directory is write-protected, or a
write-protected file by this name already exists, or the
specified name is not a legal file-name on this host
system.

Change the name or modify file/folder permissions.

Cannot decode subprogram; using

null stub.

Problem

Reasons

Solution

The (target-specific) instruction-decoder module failed
to decode the first instruction in the subprogram,
leaving the control-flow graph empty.

The decoder module should have emitted an error
message that explains the reason. Perhaps the code for
this subprogram is not present in the executable file.

Depends on the target-specific reason for the error.

Cannot integrate dynamic call to S.

Calling by reference.

Problem

Reasons

Solution

While resolving a dynamic call or obeying an assertion
that lists the possible callees of a dynamic call, Bound-T
found that one possible callee is the subprogram S
which, however, is defined as a subprogram to be
“integrated” with its callees and not analysed on its
own. Integrated analysis is not possible for a dynamic
call so this call of S will be analysed as a normal, non-
integrated or “reference” call.

Subprograms marked for integrated analysis usually
violate normal calling conventions which means that
the analysis of S through this call is likely to fail.

A mistake in the assertion files (perhaps S should not
be integrated, or should not be listed as a possible
callee) or an error in Bound-T's analysis of the possible
callees.

Correct the assertions, or if Bound-T's analysis is in
error, work around it by asserting the true list of callees
for this call.

Computation model did not

converge in n iterations and may be

unsafe

Problem

Reasons

After n iterations of various analyses and consequent
updates of the arithmetic computation model of this
subprogram, the model is still not stable; more
iterations might be needed.

The subprogram probably contains many dynamic data
references (pointers and pointers to pointers, or
indexed array references) that are simple enough for
Bound-T to resolve, but nested in such a way that
successive analyses are required to resolve them all.

170

Troubleshooting

Bound-T User Manual

Error Message

Meaning and Remedy

Solution

Try to increase the iteration limit using the command-
line option -model_iter number-.

Could not be fully bounded.

Problem

Reasons

Solution

This root subprogram could not be fully bounded,
because Bound-T could not bound some dynami
behaviour in it or in its callees. Dynamic behaviour
includes loops (for WCET analysis) and dynamic stack
usage (for sstack analysis).

The loop(s) or stack usage are too complex to be
automatically bounded, and were not bounded by
assertions.

Inspect the rest of the output to find out which dynamic
behaviours are unbounded. Bound them with assertions
or modify the program to make them boundable
automatically.

Could not open the patch file
“name”.

Problem

Reasons

Solution

Bound-T could not open the patch file with the given
name as specified by the command-line option
-patch name.

The file name may be wrong (file does not exist) or the
user may not have read access to the file.

Correct the file name on the command-line, or correct
the permissions of the file.

Dynamic flow needs arithmetic
analysis.

Problem

Reasons

Solution

This subprogram contains dynamic jumps for which
arithmetic analysis is required, but arithmetic analysis
is disabled.

Bound-T will not be able to bound the execution of this
subprogram with these options and assertions.

The command-line contains the option -no_arithmetic
which disables arithmetic analysis generally, or the
assertion file uses the option no arithmetic to disable it
specifically for this subprogram.

Recode the subprogram to avoid dynamic jumps, or
change the command-line options or the assertion
options to allow arithmetic analysis of this subprogram.

Dynamism bounding did not
converge in N iterations

Problem

Reasons

Solution

The flow-graph still contains unresolved dynamic
branches, and the iterative resolution process has used
the maximum allowed number N of iterations of data-
flow analysis alternated with resolving dynamic
accesses and extending the flow-graph.

The subprograms under analysis may contain sequences
of dynamic branches such that resolving the first branch
leads to the discovery of a next branch, and so on.

Increase the maximum number of iterations with the
option -dynamic_limit.

Full time bounding needs
arithmetic analysis.

Problem

This subprogram contains some features (loops or calls
to subprograms with loops) for which the execution
time can be bounded only by arithmetic analysis, but
arithmetic analysis is disabled.

Bound-T will not be able to bound the execution time of
this subprogram with these options and assertions.

Bound-T User Manual

Troubleshooting 171

Error Message

Meaning and Remedy

Reasons

Solution

The command-line contains the option -no_arithmetic
which disables arithmetic analysis generally, or the
assertion file uses the option no arithmetic to disable it
specifically for this subprogram.

Add assertions to bound the loops, or change the
command-line options or the assertion options to allow
arithmetic analysis of this subprogram. It may also be
necessary to enable arithmetic analysis for some of the
callees.

Infeasible execution constraints

Problem

Reasons

Solution

Bound-T cannot find any execution path in this
subprogram that obeys all the computed and asserted
constraints. Therefore no WCET bound is found.

The assertions may be contradictory, in particular
assertions on the number of loop repetitions or call
executions can conflict.

Check the assertions that apply to this subprogram,
including relevant global assertions.

Irreducibility prevents arithmetic
analysis

Problem

Reasons

Solution

The subprogram cannot be analysed arithmetically
because the control-flow graph is not “reducible”, that
is, it cannot be divided into properly nested loops.

See the error message “Irreducible flow-graph”.

Ditto.

Irreducible flow-graph

Problem

Reasons

Solution

The control-flow graph of the subprogram under
analysis is not "reducible", that is, it cannot be divided
into properly nested loops where each loop has a single
point of entry (the loop head). The loops intersect one
another in some way, or there are jumps into loops that
by-pass the loop head. Bound-T can only analyse
execution time and arithmetic for reducible flow-
graphs.

Stack usage analysis is possible even for an irreducible
subprogram, providing that arithmetic analysis is not
needed. In this case, this error should be considered a
warning only.

The subprogram is coded in this way, either by the
programmer directly or by the optimising code
generator in the compiler. The usual reason is that
there is a jump into the body of a loop from outside the
loop.

Change the subprogram’s source code if the problem is
there, or change the compiler options (reduce
optimization level). If the subprogram calls other
routines that do not return (for example, routines for
handling fatal errors) it may help to assert these
routines as no return.

Local stack height for stack at call is Problem

not bounded.

The arithmetic analysis found no upper bound on the
space allocated locally by the current subprogram in
this stack at the point of this call. Thus, even if the
stack-usage of the callee is known, the total stack usage
cannot be computed for this call.

172 Troubleshooting

Bound-T User Manual

Error Message

Meaning and Remedy

Reasons

Solution

The amount of space allocated on the stack (the change
in the stack pointer) is computd in some way that
Bound-T cannot analyse.

Change the target program to use an analysable
amount of stack space.

Local stack height for stack is not
bounded.

Problem

Reasons

Solution

The current instruction modifies the pointer of this
stack, allocating or releasing stack space locally for the
current subprogram, but the arithmetic analysis found
no upper bound on the allocated space.

The amount of space allocated on the stack (the change
in the stack pointer) is computd in some way that
Bound-T cannot analyse.

Change the target program to use an analysable
amount of stack space.

Loop matches too few entities

Problem

Reasons

Solution

The assertion file contains an assertion on a loop where
the loop description matches a smaller number of
actual loops than expected.

The matching loops (if any) are shown by appended
error lines of the form "match n: locus".

The loop description is too specific, or the target
subprogram contains fewer such loops than expected.
Perhaps the compiler has in-lined (unrolled) some loop.

Improve loop description in assertion file.

Loop matches too many entities

Problem

Reasons

Solution

The assertion file contains an assertion on a loop where
the loop description matches a greater number of actual
loops than expected.

The matching loops are shown by appended error lines
of the form "match n: locus".

The loop description is too general, or the target
subprogram contains more such loops than expected.
Perhaps the compiler has created some loops for its
own purposes such as copying data in an assignment
statement.

Improve loop description in assertion file.

Match n: caller@locus= >callee

Problem

This message follows an error message of the type "call
matches too few/many entities" and shows the locus
(code address and/or source-line number) in the target
program of one of the calls matches the call description
in the assertion file. The matches are numbered; this is
match number n.

See the error messages "call matches too few/many
entities" for the possible reasons and solutions.

Match n: locus

Problem

This message follows an error message of the type "loop
matches too few/many entities" and shows the locus
(code addresses and/or source-line numbers) in the
target program of one of the loops that matches the
loop description in the assertion file. The matches are
numbered; this is match number n.

Bound-T User Manual

Troubleshooting 173

Error Message

Meaning and Remedy

Reasons
Solution

See the error messages "loop matches too few/many
entities" for the possible reasons and solutions.

Maximum analysis time exceeded.

Problem

Reasons

Solution

The analysis has taken longer than the limit specified
with the option -max_anatime so the analysis is aborted.

The requested analysis needs more computation than is
possible in the allowed analysis duration. The most
common time-consumer is the arithmetic analysis for
loop-bounds.

Increase the allowed duration or reduce the analysis
tasks, for example by using assertions instead of
arithmetic analysis for loop-bounds.

Maximum call-dependent analysis

depth reached.

Problem

Reasons

Solution

The context (call-path) under analysis is deeper (has
more call levels) than the maximum set by the option
-max_par_depth.

The current subprogram (the final callee in this
context) will not be analysed further. It will remain "not
fully bounded".

The subprogram’s loops have a form that Bound-T
cannot analyse (they are not counter-based or have
counters that use computations that Bound-T cannot
analyse); or the bounds for the loop counters are
passed from a still higher-level caller (the context is not
deep enough); or in a way that Bound-T cannot track
(as elements of arrays, for example).

Assert bounds on the loops or change the target
program to use more locally defined loop bounds or to
pass loop bounds in a way that Bound-T can track. It is
also possible to increase -max_par_depth but this
probably increases analysis time considerably so do it
only after checking that -max_par_depth really is the
obstacle.

No feasible execution path.

Problem

Reasons

Solution

There is no feasible (reachable) path through the
control flow-graph of this subprogram, in this context,
so no WCET bound can be computed for it.

So many parts of the flow-graph have been marked as
unreachable, due to assertions or analysis, that the
pruning process (see section 6.5) has made the entry
node unreachable.

Check the assertions to see if this result is expected. If
so, remove the subprogram (or this call of the
subprogram) from the analysis by asserting that it is
never called.

Option conflict: HRT analysis
requires time bounds

Problem

Reasons

Solution

The command-line options request HRT analysis (-hrt)
but disable time analysis (-no_time). This is
contradictory.

The only purpose of the HRT analysis is to provide
execution-time bounds for an HRT model. Thus an HRT
analysis with -no_time is useless.

Correct the command line.

174

Troubleshooting

Bound-T User Manual

Error Message

Meaning and Remedy

Patch address invalid: A Problem The current patch file has a non-comment line that
starts with the token A which is not a valid patch
address (according to the target-specific syntax).

Reasons Error in the patch file.

Solution Correct the patch file.

Patch data missing. Problem The current patch file has a line with a valid patch
address but no data (nothing after the address).

Reasons Error in the patch file.

Solution Correct the patch file.

Patch line too long (over N Problem The current patch file has a line that contains more

characters). than the maximum of N characters.

Reasons Error in the patch file.

Solution Correct the patch file by shortening the line, perhaps by
removing leading or trailing whitesparce or other
redundant whitespace.

Patch parameter invalid: P Problem The current patch file has a parameter P that is neither
the name of a subprogram or a label nor a valid code
address (in the target-specific format).

Reasons Error in the patch file, or perhaps name-mangling by
the compiler or linker.

Solution Correct the patch file.

Recursion detected Problem The subprogram is part of a recursive cycle of calls,
either directly (Sub calls Sub) or indirectly (Sub1 calls
Sub2, Sub2 calls Subl, etc.)

This error message is followed by two or more
Recursion_Cycle output lines that describe one recursion
cycle in the program (there may be more).

Reasons The target program was written in that way.

Solution Modify the target program, removing the recursion.

Work-around

Give an assertion on the WCET of some subprogram in
the cycle. This will keep Bound-T from analysing that
subprogram at all, and will thus hide the recursion.

You must then manually combine the computed WCET
values with your understanding of how the recursion
works, to get an upper bound on the execution time
that includes the recursive calls. See section 5.18.

Recursive integrated call to S at A
changed to normal (recursive) call

Problem

Reasons

This call to subprogram S, with entry address A, would
create a recursive “integration” of S (as defined in
section 8.5) and thus the analysis would not terminate.
To ensure termination Bound-T analyses the present
call of S as normal (not integrated) call. However, the
call-graph is still recursive so the analysis will fail in a
later phase.

Subprogram S is defined to be integrated but is part of
a recursive cycle of subprograms.

Bound-T User Manual

Troubleshooting 175

Error Message

Meaning and Remedy

Solution Change the target program to remove the recursion or
change the analysis approach to break the recursion, for
example as suggested in section 5.18.
Response line n: line Problem This message follows an error message of the form

Reasons and
Solution

"calculator did not give the expected echo/empty line"
and displays the (unexpected) response line from the
Omega Calculator, as well as the sequential number n
of this line.

See the error messages referred to in the Problem row.

Root subprogram cannot be
“unused”.

Problem

Reasons

Solution

An assertion defines this root subprogram as an
“unused” subprogram (see section 8.5). This is a
contradiction because it prevents the analysis of the
subprogram.

Perhaps a mistake in the assertion file, or a mistake in
the command line (naming wrong subprogram as root).

Correct the assertion file or the command line.

Root subprogram name is
ambiguous

Problem

Reasons

Solution

The name (symbol, identifier) given on the command
line matches more than one actual subprogram. The
name is thus ambiguous.

The program contains several subprograms with similar
names although in different scopes. The scope part of
the name on the command line is not complete enough
to separate between these subprograms.

Add scope levels to the name on the command line. For
example, if the program contains two modules, Err and
Pack, that contain the same subprogram Foo, write
either “Err|Foo” or “Pack|Foo” on the command line to
say which of these two functions is to be analysed.

Root subprogram not found or
address in wrong form.

Problem

Reasons

Solution

A root subprogram named on the command line was
not found in the target program, nor could the given
name string be understood as a valid code address
(entry address for the root subprogram).

Error in the name given as command argument; or an
entry address in incorrect syntax; or some name
mangling by the compiler and linker; or some other
error in command-line syntax that makes Bound-T try
to interpret this argument as the name of a root
subprogram although this was not meant.

Correct the command to use the subprogram name as
in the target program executable. See Chapter 6. If the
root subprogram was meant to be identified by its entry
address, refer to the Application Note for this target for
the correct syntax of code addresses.

Stack usage needs arithmetic
analysis.

Problem

This subprogram uses the stack in such a way that
arithmetic analysis is required to bound the stack
usage, but arithmetic analysis is disabled.

Bound-T will not be able to bound the (local) stack
usage of this subprogram with these options and
assertions.

176 Troubleshooting

Bound-T User Manual

Error Message

Meaning and Remedy

Reasons

Solution

The command-line contains the option -no_arithmetic
which disables arithmetic analysis generally, or the
assertion file uses the option no arithmetic to disable it
specifically for this subprogram.

Recode the subprogram to avoid dynamic stack usage,
or change the command-line options or the assertion
options to allow arithmetic analysis of this subprogram.

Stack usage for calls needs
arithmetic analysis.

Problem

Reasons

Solution

This subprogram contains calls for which stack usage
can only be bounded by arithmetic analysis, but
arithmetic analysis is disabled.

Bound-T will not be able to bound the (total) stack
usage of this subprogram with these options and
assertions.

The command-line contains the option -no_arithmetic
which disables arithmetic analysis generally, or the
assertion file uses the option no arithmetic to disable it
specifically for this subprogram.

Recode the subprogram (and perhaps some of its
callees) to avoid dynamic stack usage, or change the
command-line options or the assertion options to allow
arithmetic analysis of this subprogram. It may also be
necessary to enable arithmetic analysis for some of the
callees.

stack : Stack usage undefined

Problem

Reasons

Solution

The stack usage analysis could not find any bound on
the usage of the named stack in the current subprogram
and current context.

The subprogram manipulates the stack in some way
that Bound-T cannot analyse, or makes use of values
(parameters or globals) that are not bounded by the
context.

Inspect the subprogram code to understand why
Bound-T cannot bound the stack usage; then modify the
code or add assertions to support the analysis. See
section 3.11.

Target-program file-name not
specified

Problem

Solution

The Bound-T command line does not give the target
program file name; all arguments on the command line
were interpreted as options.

Check and correct the command-line syntax against
chapter 6.

This program has no stacks.

Problem

Reasons

Solution

Stack usage analysis was requested (-stack option) but
the target program does not use any stacks.

The target processor or the cross-compiler have no
stacks (that Bound-T can analyse).

Check the relevant Application Notes for specifics on
stack usage analysis for this target processor and
compiler. Perhaps stacks are used only with specific
compilation options. If there are no stacks, do not ask
Bound-T for stack analysis on this target.

Too few arguments

Problem

Too few arguments given to Bound-T at start-up.

Bound-T User Manual

Troubleshooting 177

Error Message

Meaning and Remedy

Solution Restart with correct number of arguments. See
section 6.
Unknown -arith_ref choice: choice Problem On the Bound-T command line, the choice argument
that follows the option -arith_ref is not recognised.
Reasons Mistyped command line.
Solution Correct the command line. See section 6.4.
Unknown -const_refine item: item Problem On the Bound-T command line, the item argument that
follows the option -const _refine is not recognised.
Reasons Mistyped command line.
Solution Correct the command line. See section 6.4.
Unknown -draw item: item Problem On the Bound-T command line, the item argument that
follows the option -draw is not recognised.
Reasons Mistyped command line.
Solution Correct the command line. See section 6.4.
Unknown -imp item: item Problem On the Bound-T command line, the item argument that
follows the option -imp is not recognised.
Reasons Mistyped command line.
Solution Correct the command line. See section 6.4.
Unknown -lines item: item Problem On the Bound-T command line, the item argument that
follows the option -lines is not recognised.
Reasons Mistyped command line.
Solution Correct the command line. See section 6.4.
Unknown -show item: item Problem On the Bound-T command line, the item argument that
follows the option -show is not recognised.
Reasons Mistyped command line.
Solution Correct the command line. See section 6.4.
Unknown -source item: item Problem On the Bound-T command line, the item argument that
follows the option -source is not recognised.
Reasons Mistyped command line.
Solution Correct the command line. See section 6.4.
Unknown -trace item: item Problem On the Bound-T command line, the item argument that
follows the option -trace is not recognised.
Reasons Mistyped command line.
Solution Correct the command line. See section 6.4.
Unknown -virtual item: item Problem On the Bound-T command line, the item argument that
follows the option -virtual is not recognised.
Reasons Mistyped command line.
Solution Correct the command line. See section 6.4.
Unknown -warn item: item Problem On the Bound-T command line, the item argument that
follows the option -warn is not recognised.
Reasons Mistyped command line.

178 Troubleshooting

Bound-T User Manual

Error Message

Meaning and Remedy

Solution Correct the command line. See section 6.4.
Unrecognized option: argument Problem The Bound-T command line contains an option
argument that is not recognised.
Reasons Mistyped command line.
Solution Correct the command line. See section 6.4.

Unresolved dynamic control flow Problem

Reasons

Solution

The actual memory address or addresses in a dynamic
(indexed, pointer-based) jump instruction could not be
determined. Bound-T is unabled to continue the
control-flow analysis past this instruction and will
interpret the instruction as a return from the
subprogram under analysis.

The most common cause is a switch/case statement
that is implemented using an indexed jump or an
address table for which Bound-T could not determine
the target addresses, perhaps because it needs
arithmetic analysis but that analysis was disabled.

Beware that the WCET given for this subprogram omits
all code (and calls) that could have been reached (only)
from the problematic instruction.

Modify the target program to avoid such instructions,
for example by using an if-then-elsif structure instead of
the switch/case.

Use -help for help. Problem

Reasons

Solution

A reminder that the -help option makes Bound-T display
help for the command-line syntax and options.

There were some errors in the Bound-T command line.

Correct the command line.

Value of -output_sep must be a 1- Problem
letter string

Solution

On the Bound-T command line, the argument following
the -output_sep option is invalid. It should be one letter
or special character (punctuation).

Correct the command line. See section 6.4. Remember
to "escape" or "quote" special characters that may be
significant for your command shell. For example, if you
want to change the output separator to a semicolon
under Linux, you should quote it (-output sep ;") or
escape it (-output_sep \;)

Worst-case path not found. Problem

Reasons

Solution

The search (in the Ip_solve auxiliary program) for the
longest execution path in the current subprogram, in
the current context, failed for some reason.

No common reasons for this are known.

Please contact Tidorum Ltd.

Bound-T User Manual

Troubleshooting 179

10 GLOSSARY

ABI

Arithmetic analysis

Assertion

Basic block

Branch
Call

Call path

Call site

Callee

Caller
Call step

Cell

Application Binary Interface. A definition of how subprogram calls work on a
specific target processor. Usually defines which registers (if any) are used for
passing parameters and return values, which register (if any) is used as a stack
pointer, and how the stack (if any) is laid out in memory.

The (optional) part of a Bound-T analysis that models the computations of the
target program as a set of equations and inequations expressed in Presburger
Arithmetic and then queries the model to find loop counters and bounds on the
number of loop iterations. The Omega Calculator plays an essential part.

An assertion is a statement about the target program that the user knows to be
true and that bounds some crucial aspect of the program's behaviour, for
example the maximum number of a times a certain loop is repeated. An
assertion has two parts, the asserted fact and the context in which the fact
holds. See chapter 5.

The normal meaning is a maximal sequence of consecutive instructions in a
program such that there are no jumps into the sequence or within the
sequence, except possibly in the last instruction. In Bound-T, the meaning is a
maximal sequence of flow-connected steps (see this term) in a control-flow
graph such that the sequence is entered only at the first step and left only after
the last step. Note in particular that a step in the sequence may correspond to
an unconditional jump instruction in the target program. Bound-T also
considers each "call step" (see this term) as its own basic block. In detailed
output from Bound-T (see section 7.5) the term "node" is often used for basic
blocks.

A jump or a call.

1. Static meaning: An instruction that suspends the execution of the current, or
calling subprogram, executes another, or called subprogram, and then returns
to the calling subprogram to continue the execution of the calling subprogram.
The return point is often (but not always) the next instruction in the calling
subprogram. The calling subprogram is also knowns as the caller and the called
subprogram is also known as the callee. See also call site.

2. Dynamic meaning: The execution of a call instruction, transferring execution
control from the call instruction (possibly after some delay instructions) to the
first instruction (the entry point) of the callee.

A sequence (list) of calls (more precisely, call sites) such that, for each call in
the list, the callee is the caller in the next call (if any). A call path represents a
chain of nested subprogram calls that can define the context for the analysis of
the callee of the last call in the path.

A point in the program (an instruction) that is a call, in the static meaning that
term.

The subprogram that is called from another subprogram (the caller).
See call.

A subprogram that calls another subprogram (the callee). See call.

A special step in the control-flow graph of a caller subprogram that models the
execution of a callee. Used to model the effect of a call. See call and step.

See variable.

180

Glossary

Bound-T User Manual

Constant propagation

Context

Context-free bounds

Delay instruction

Destination

DOT

Dynamic call

Dynamic jump

Entry address

ESF

Eternal loop

Executable file

Execution count

A method of simplifying a sequence of computations by executing any
computation with known (constant) operands and propagating the known
(constant) result to any computation that uses it. See section 6.5.

1. The call path (sequence of calls) that leads to a given invocation of a
subprogram. Sometimes the analysis of a subprogram is context-dependent, for
example the loop-bounds and WCET may depend on the context.

2. The part of the target program to which an assertion applies.

Execution bounds (bounds on the execution time and/or stack usage) for a
subprogram that apply to all executions of the subprogram. Such execution
bounds are derived by analysing the subprogram in isolation, without
considering the context of a particular call or call path leading to the
subprogram. Same as universal bounds.

An instruction that statically follows a jump or call (that is, the next instruction
in address order) but is executed before the transfer of control happens. That
is, the jump or call takes effect only after the delay instruction is executed.
Delay instructions are used in some pipelined processors to avoid disrupting the
pipeline state. The alternative is to make a jump or call flush the pipeline,
discarding some fetched and perhaps partially (speculatively) executed
instructions.

The (address of) the instruction that is indicated by a branch instruction as the
next instruction to be executed.

1. A program for drawing graphs; part of the GraphViz package. See
www.graphviz.org and section 7.6.

2. The textual language for describing graphs for the DOT program. Bound-T
writes the -dot file in this language.

A call in which the destination address (the address of the called subprogram)
is not given statically in the instruction, but is computed at run-time.

A jump in which the set of potential destination addresses is not presented
statically in the instruction, but is computed at run-time.

The machine address of the first instruction in a subprogram - the first
instruction that is executed when a call instruction transfers control to the
subprogram.

Execution Skeleton File. The text file generated by HRT-mode analysis of an
HRT target program and containing the information from the TPOF
supplemented with execution skeletons containing WCET values. See chapter
1.4.

A loop that cannot possibly terminate, either because there is no branch that
can exit the loop or because all exit branches have been found to be infeasible.
See section 5.17.

A file that contains the compiled and linked form of a target program. Such a
file contains the machine-code instructions and the constant data that will be
loaded into the target processor as the initial memory state before the target
program is started. The file usually also contains symbolic debugging infor-
mation that connects source-level entities such as subprogram names and
variable names to the machine-level properties such as the entry address of the
subprogram or the memory address or register number of the variable.

The number of times some part (node or edge) of a flow-graph is executed,
usually referring to a worst-case execution path.

Bound-T User Manual Glossary 181

Fact

Full context

Function

Host platform
HRT

ILP

When discussing assertions, the condition or relation that is asserted, as
opposed to the context of the assertion.

The sequence of nested calls (call sites) that lead from the a root subprogram to
a particular execution of another subprogram is the full context of this
execution. See also suffix context and context.

A subprogram that returns a value as the meaning of the call, so that the call
can occur in an expression.

The computer on which Bound-T is run, as distinct from the target processor.

Hard Real Time; a principle for real-time program architecture, and a theory
and tool-set for analysing such programs. An HRT program consists of threads
and protected objects. See section 1.4.

Integer Linear Programming is an area of mathematical optimization in which
the unknowns are integer variables, the objective function to be maximized or
minimized is an affine expression of the variables and the variables are
constrained by affine equalities or inequalities. Bound-T wuses ILB as
implemented in the LP_Solve program, for the IPET stage of the analysis.

Implicit Path Enumeration Technique — see IPET.

Infeasible code

Infeasible path

Input (variable)

A part of a program that cannot be executed because it is conditional and the
condition is always false (in the context under analysis).

An path through a program or subprogram that cannot be executed because it
contains conditional parts and the conditions cannot all be true in the same
execution (in the context under analysis).

A parameter or a global variable such that its value on entry to a subprogram is
used in the subprogram and, in particular, has an effect on the execution time
or stack usage of the subprogram. An input is necessary if its value must be
known or bounded in order to find bounds on the execution time or stack usage
of the subprogram.

Integer Linear Programming — see ILP.

IPET

Jump

The Implicit Path Enumeration Technique uses ILP to find the worst-case (or
best-case) path in a flow-graph without explicitly trying (enumerating) all
possible paths. IPET generates an ILP problem in which the unknown variables
are the number of times each part (node or edge) of the flow-graph is executed
and the objective function is the total execution time which is the sum of the
times spent in each node or edge. The time spent in a node or edge is the
product of the number of times this node or edge is executed (an unknown)
and the constant worst-case (or best-case) time for one execution of the node
or edge. The unknown execution counts (also called execution frequencies) are
constrained by the structure of the flow-graph, by loop bounds and by other
computed or asserted conditions on the execution. Solving this ILP problem
gives one set of execution counts that leads to the worst-case (or best-case)
execution time but does not give an explicit execution path; indeed there are
usually many execution paths that give the same execution counts.

An instruction that explicitly specifies the address of the next instruction to be
executed (without implying a suspension of the current subprogram, as in a
call). There may be more than one potential successor instruction, from which
the actual successor is chosen at run-time by a boolean condition or an integer-
valued index expression.

182 Glossary

Bound-T User Manual

Local stack height

Loop body

Loop counter

Loop head

LP_Solve

Natural loop

Necessary input

Node

Non-rectangular loop

The amount of stack space that a subprogram is using for its own data, at a
given point in its execution. Usually includes any obligatory stack data such as
the return address. Usually excludes stack space used by parameters for this
subprogram; that space is instead counted in the local stack height of the caller.
Vice versa, stack space for parameter that this subprogram provides to its
callees is usually included in the local stack height measure. See section 3.11.

In a natural loop, all the other nodes except the loop head. The only way for
execution to reach a loop-body node is through the loop head. From any loop-
body node there is at least one execution path that returns to the loop head.

A variable that grows on each iteration of the loop, such that the loop
terminates when the counter reaches or exceeds some value. Of course, the
counter may as well be decreased on each iteration, and terminate the loop
when it reaches or falls below some value. The former is an up-counter and the
latter a down-counter.

In a natural loop, the unique node (basic block) that dominates (in the graph-
theoretic sense) all the other nodes in the loop, which form the loop body. Any
execution path that enters the loop does so at the loop-head.

A support program that solves Integer Linear Programming (ILP) problems.
Bound-T uses LP Solve for the IPET phase of the WCET analysis. The
executable program is called Ip_solve or Ip_solve.exe.

In a control-flow graph, a set of nodes (basic blocks) that forms a loop as
defined under loop body and loop head.

See input (variable).
1. In general, any node or vertex in a graph.

2. In a Bound-T control-flow graph, the term node means a basic block, which
see.

A loop-nest in which the number of repetitions of the inner loop is not constant
but depends on the current repetition of the outer loop. For erxample, a loop-
nest that traverses the upper (or lower) triangle of a square matrix. Non-
rectangular loops pose problems for Bound-T; see section 5.3.

Non-returning subprogram

Null context

Omega Calculator

Presburger Arithmetic

A subprogram that never returns to its caller. For example, the C _exit function.
See section 5.11.

See universal context.

A support program used for the arithmetic analysis. The Omega Calculator
evaluates expressions and solves queries using systems of equations and
inequations expressed in Presburger Arithmetic. The executable program is
called oc or oc.exe.

A form of algebra that deals with affine expressions of integer-valued variables
and thus includes the operations of addition, subtraction and multiplication by
an integer constant but excludes the multiplication of two or more variables
with each other. Expressions can be compared for equality or inequality,
relations can be combined with conjunction or disjunction, and both existential
and universal quantification are available. Problems in Presburger Arithmetic
are decidable (can be solved in a finite time) but the worst-case complexity is
multiply exponential, as far as is known. Bound-T uses Presburger Arithmetic,
as implemented in the Omega Calculator, for the arithmetic analysis of loop
bounds.

Bound-T User Manual Glossary 183

Procedure

Property

Protected object

Pruning

A subprogram which is not a function; it does not return a value as the
meaning of the call, so the call can only occur as a statement, not as an
expression.

1. A target-specific value or configuration setting that can be defined with a
property assertion. See section 5.10.

2. A feature or characteristic of a loop or a call that can be used to identify the
loop or call in an assertion. See sections 5.15 and 5.16.

A component of an HRT program that is a passive entity and acts as a
communication and synchronisation point for threads. See chapter 8.

Simplifying a control-flow graph by removing parts (nodes and edges) that are
infeasible. See section 6.5.

Rate-Monotonic Analysis

Rectangular loop

Recursion

Reducible

Resolving a jump/call

RMA
Scheduling

Stack

Stack usage

A way to analyse the schedulability of a multi-threaded program where the
threads are periodic and scheduled by priority with pre-emption. Rate-
Monotonic Analysis (RMA) assigns priorities to threads monotonically in order
of thread period so that a short-period, high-rate threads have higher priorities
than long-period, low-rate threads. With such a priority assignment the WCETs
of the threads can be plugged into mathematical formulae that show if the
thread set is schedulable (each thread can execute to completion without
overrunning its period).

A loop-nest in which the inner loop repeats for the same number of times on
each repetition of the outer loop. For example, a loop-nest that traverses all
elements of a rectangular matrix in order by rows or columns.

A cyclic chain of calls between subprograms. See section 5.18.

A control-flow graph in which any loop is entered only through a unique loop
head, and any two loops are either nested or entirely separate.

The analysis that determines the possible target addresses of a dynamic jump or
a dynamic call.

See Rate-Monotonic Analysis.

The allocation of processor resources (execution time) to the several threads in
a concurrent program. Specifically, the selection of which thread shall be
running at every moment.

An area of memory that subprograms can use for their local variables and for
parameters passed to their callees. Subprograms allocate and release stack
space in a last-in-first-out way.

The (largest) amount of stack space that a subprogram uses, when stack space
used by its callees is included. Also called total stack usage.

Static Single Assignment — see SSA.

Step

SSA

An vertex in a Bound-T control-flow graph that represents the smallest unit of
program flow. A step usually models one machine instruction in the target
program, but some complex instructions may be modelled by several steps and
some special instruction sequences may be combined into one step. Steps are
connected by (step) edges that model the flow of control from one instruction
to the next. A maximal linear sequence of steps that can be entered only at the
first step and left only from the last step is a basic block, often called a node in
output from Bound-T.

Static Single Assignment. See value-origin analysis in section 6.5.

184 Glossary

Bound-T User Manual

Subprogram

Suffix context

Take-off height

Target processor

Target program

Task
Thread

TPO file
TPOF

Triangular loop
Universal bounds
Unreachable code

Universal context

Unresolved jump/call

Value-origin analysis

Variable

A callable (closed) subroutine: a function or a procedure.

A call path (which see) that leads to a particular subprogram (the callee of the
last call on the path) is a suffix context for this subprogram and, in particular,
for any execution of this subprogram in which the full context (which see) ends
with this call path.

The caller’s local stack height at the point of a call. Usually includes all stacked
parameters for the call but excludes the return address (which is considered to
belong to the callee's stack frame). See section 3.11.

The processor that will (eventually) run the target program being analysed by
Bound-T. Bound-T, however, is run on the host platform, which is usually, but
not always, different from the target processor.

The real-time program that runs (or will run) on the target processor. The
execution time of the target program is of interest. The target program may or
may not be an HRT program. The program must be compiled and linked for
execution on the target processor and stored in an executable file before it can
be analysed by Bound-T.

See thread.

An active component of a program, executing program statements sequentially.
Some programs have a single thread of exection, but many real-time programs
are multi-threaded, i.e. several threads are executing concurrently. The number
of threads that can be (truly) executed in parallel depends on the number of
processors in the target system.

For Bound-T, the usual assumption is that there is one processor, which is
shared among the threads via thread scheduling. See section 1.4.

Threads and Protected Objects File. See TPOF.

Threads and Protected Objects File. The user-supplied text file that lists and
describes the structure of an HRT program, for HRT-mode analysis by Bound-T.
See section 1.4.

A special case of non-rectangular loop, which see.
See context-free bounds.
See infeasible code.

Synonym for null context, applied when a subprogram is analysed in isolation,
without considering the context of a particular call or call path leading to the
subprogram.

A dynamic jump or dynamic call that has not been fully resolved. Thus, Bound-T
may not know all the possible target addresses. Some parts of the target
program may be missing from the analysis and the analysis results may be
unsafe, for example the WCET bound may be less than the true WCET.

A form of data-flow analysis that determines the possible origins of the value of
a variable at a point where that variable is used. The origin is often an
instruction that stores the result of some computation in the variable. However,
an instruction that simply copies the value of another variable is not considered
to be the origin of a value (copy propagation is applied). If the variable has no
origin in the current subprogram then the variable is an input to this
subprogram. Section 6.5 explains how Bound-T uses value-origin analysis.
Value-origin analysis is similar to SSA.

A memory location or register in the target processor in which the target
program stores some value. For Bound-T, the same as a cell, which see.

Bound-T User Manual

Glossary 185

WCET

Worst-Case Execution Time of a subprogram. The maximum time required to
execute the subprogram in the target processor, when any initial execution state
(parameter values, global values) is allowed.

It is not defined if the WCET also allows any pattern of interference from
interrupts and thread scheduling. Such interference could affect the
performance of the processor cache, and increase (or decrease) the
subprogram's execution time, even when the execution time of the interfering
threads is excluded.

Worst-case execution time — see WCET.

Worst-case stack path

The call-path, starting at a root subprogram, that consumes the largest amount
of stack space when the stack usage of all path levels is included. See
section 3.11. There can be several different call-paths that consume the same
maximal amount of stack space.

186

Glossary

Bound-T User Manual

	1Introduction
	1.1What Bound-T Is
	Real-time deadlines
	Static analysis - all cases covered
	Static analysis - no hardware required
	It’s impossible, but we do it with assertions
	Approximations
	Context and place

	1.2Overview of this User Manual
	What the reader should know
	Target program, target processor
	User guide
	Reference manual

	1.3Target-Specific Application Notes
	Target processors
	Languages, compilers, kernels

	1.4Hard Real Time Programming Model
	Execution Skeletons to order
	It's optional
	It's described elsewhere

	2Installing Bound-T
	2.1Delivery Medium and Instructions
	2.2Disk Space Requirements
	2.3Processor and Memory Requirements
	2.4Host-Specific Usage Instructions
	2.5Verifying the Installation

	3Using Bound-T
	3.1Preliminaries
	3.2Running Bound-T
	3.3Easy Examples : Loops
	How did it do that?
	How does it know the execution time of the instructions?
	Syntax is only sugar
	Goto is not harmful

	3.4Larger Examples : Calls
	The root calls its children
	What if vector-length is a parameter?
	Loops within loops

	3.5Harder Examples : Assertions
	While-loops may be confusing
	Assertions make it clear
	Counters make it clear, too
	Eternal loops take a little longer

	3.6What Bound-T Can Do
	Control flow tracing
	Switches and cases
	Counter-based loops
	When Bound-T stumbles

	3.7What Bound-T Cannot Do
	Uncounted loops
	Multiplication, division etc
	Multiple-precision arithmetic
	Aliasing and pointer chasing
	Overflow in the target program
	Unsigned arithmetic
	Jumps and calls via pointers
	Exceptions and traps
	Irreducible flow graphs
	Recursion

	3.8Approximations
	Instruction-level approximations
	Loop-count approximations
	Feasible path approximations

	3.9Context-Dependent Execution Bounds
	The inputs of a subprogram
	Essential inputs
	Calls, call sites, and call paths
	Executions and contexts
	First we ignore inputs
	If that fails, we look deeper ... and deeper ...
	How it works in the example
	What does this mean?
	Examples of essential and non-essential inputs
	Non-essential inputs can matter
	Forcing context-dependent analysis

	3.10Getting Started With a Real Program
	3.11Stack Usage Analysis
	Stack analysis to avoid stack overflow
	Command line
	Results
	Stack mechanisms
	Multiple stacks and stack names
	Local stack height and total stack usage
	Take-off height and stack usage of a call
	Worst-case stack path
	Safe, unsafe or unknown stack bounds
	Context-dependent stack usage
	Assertions for stack usage missing

	4Writing Analysable Programs
	4.1Why and How
	4.2Count the Loops
	4.3Simple Steps and Limits
	4.4First Degree Formulas
	4.5Sign Your Variables
	4.6Go Native by Bits
	4.7Aliasing, Indirection, Pointers
	4.8Switch to Ifs
	4.9No Pointing at Functions

	5Writing Assertions
	5.1What Assertions Are
	The assertion file
	Target-specific issues
	Assertion pre-processing

	5.2Assertion = Context + Fact
	Facts
	Contexts

	5.3Assertions on the Repetition of Loops
	Why?
	Consider unrolling
	Looping in a subprogram
	Looping in any subprogram
	Nested loops
	Non-rectangular loops

	5.4Assertions on the Execution Count of Calls
	Why?
	Don't take that path in that subprogram
	Don't take that path in any subprogram
	Don't call every time
	No totalisation

	5.5Assertions on the Execution Time of a Subprogram
	Why?
	Time of a subprogram

	5.6Assertions on the Execution Time of a Call
	Why?
	Calling from one subprogram
	Calling from any subprogram
	Problems with manual work

	5.7Assertions on the Callees of a Dynamic Call
	Why?
	Where?
	Dynamic call from a subprogram
	Any dynamic call in a certain kind of loop

	5.8Assertions on Variable Values
	Why?
	Where?
	Globally
	In a subprogram body
	On subprogram entry
	In a loop
	For calls
	Global variables in calls
	Local variables in calls
	Do not assert foreign local variables in calls

	5.9Assertions on Variable Invariance
	Why?
	Running example
	In a call
	In any call
	In a loop
	In any loop
	In a subprogram

	5.10Assertions on Properties
	Why?
	Globally
	Inner context overrides outer context

	5.11Special Assertions on Subprograms
	Whether the subprogram returns
	Whether to use arithmetic analysis
	Whether to integrate the callee into the caller's analysis
	Whether the subprogram is used at all
	Whether to show the subprogram in the call-graph drawing

	5.12Scopes and Qualified Names
	Scopes qualify names
	Unique suffix suffices
	Default scope
	Different delimiters

	5.13Naming Subprograms
	By symbolic name
	By machine address

	5.14Naming Variables
	By symbolic name
	By machine address
	Careful with the scope

	5.15Identifying Loops
	Loop properties
	A silly example: all loops in the program
	The only loop in a subprogram
	All loops in a subprogram
	The loop that calls
	The loop that accesses
	Labelled loop
	Last chance: the loop that executes "address"
	Nested loops
	Multiple loop properties
	Getting fancy
	All N loops
	All N loops in any subprogram
	Optimisation as the enemy
	Apparent but unreal looping and nesting

	5.16Identifying Calls
	Static vs dynamic calls
	Call properties
	The only call from here to there
	The only dynamic call
	All calls from here to there
	All calls from anywhere to there
	Call in a loop
	Non-returning subprograms are never in a loop
	All N calls
	All N calls from any subprogram

	5.17Handling Eternal Loops
	What is eternity?
	Eternal tasks
	Bounding eternity
	Eternity as an alternative

	5.18Handling Recursion
	The perils of recursion
	Trivial recursions: an example
	Slicing recursive call-paths
	Slicing the example

	6The Bound-T Command Line
	6.1Basic Form
	<options>
	<target exe file>
	<root-subprogram names>

	6.2Special Forms
	6.3Options Grouped by Function
	Selecting the analysis
	Controlling the analysis
	Choice of outputs
	Control over output format
	Patching the target program
	Troubleshooting and diagnostic options

	6.4Options in Alphabetic Order
	Drawing options (-draw)
	Options for constant propagation refinements (-const_refine)
	Auxiliary program file names (-keep_files)
	Detailed output options (-show)
	Tracing options (-trace)
	Warning options (-warn)
	Virtual function call options (-virtual)

	6.5Optional Analysis Parts
	What are they?
	Bit-wise Boolean operations
	Constant propagation
	Value-origin analysis (copy propagation)
	Flow-graph pruning

	6.6Patch files
	Patching: why and how
	Generic patch file syntax
	Example

	7Understanding Bound-T Outputs
	7.1Choice of Outputs
	7.2Basic Output Format
	The fields
	Subprograms and call paths
	Code locations
	Source-code lines around a code address
	Instruction addresses
	All the output

	7.3List of Unbounded Program Parts
	Call graph framework
	Unbounded loop
	Unbounded stack
	Irreducible flow-graph
	All call paths (-show callers)

	7.4Tabular Output
	WCET break-down
	Example
	Adding up the times
	Formatting script
	Non-appearance of “integrated” subprograms

	7.5Detailed Output
	Output options
	Call graph framework
	General information (-show general)
	Time and space bounds (-show bounds)
	Loop bounds (-show loops)
	Callers (-show callers)
	Execution counts (-show counts)
	Computation model (-show model)
	Time per node (-show times)
	Stack usage per call (-show spaces)
	Final stack height (-show stacks)
	Input and output cells (-show cells)

	7.6DOT Drawings
	The -dot option and the dot tool
	The -dot_dir option and the names of drawing files
	Call graphs
	Recursive call graphs
	Flow graphs
	Flow graphs with calls

	8ASSERTION LANGUAGE SYNTAX and MEANING
	8.1Introduction
	8.2Assertion Syntax Basics
	Syntax notation as usual
	Symbols with scopes
	Machine addresses
	Variable names as used in several places
	Bounds as used in several places
	Singular and plural keywords and other alternatives
	Overall assertion structure
	Comments

	8.3Scopes
	Scope delimiter definitions
	Scope definitions

	8.4Global Bounds
	8.5Subprograms
	Subprogram blocks and subprogram names
	Subprogram parameter assertions
	Subprogram body assertions and options

	8.6Loops
	Loop blocks and populations
	Loop descriptions and loop properties

	8.7Calls
	Call blocks and populations
	Call descriptions and call properties

	8.8Clauses and Facts
	Fact clauses
	Allowed combinations of fact and context
	Unsupported combinations of fact and context

	8.9Execution Time Bounds
	8.10Repetition Bounds
	Repetition bounds for calls
	Repetition bounds for loops
	Which repetition bound is right?
	Asserting zero repetitions
	Combining loop and call repetitions

	8.11Variable Bounds
	Variable bounds for subprogram bodies, loops or globally
	Variable bounds on subprogram entry
	Variable bounds for calls

	8.12Variable Invariance
	8.13Property Bounds
	8.14Callee Bounds
	8.15Combining Assertions
	Contradictory repetition counds
	Contradictory value bounds
	Direct conflict between assertions on the same variable
	Indirect conflict between assertions and deduced relationships

	8.16Error Messages from the Assertion Parser

	9Troubleshooting
	9.1Bound-T Warning Messages
	9.2Bound-T Error Messages

	10Glossary

