Bound-T time and stack analyzer

Application Note

MCS®-51 (8051) Family

Issue 4

TR-AN-8051-001 2010-06-10 Tidorum Ltd.

Tidorum Ltd
www.tidorum.fi
Tiirasaarentie 32
FI-00200 Helsinki
Finland

The first issue of this document was written at Space Systems Finland Ltd by Ville Sipinen.

The document is currently maintained by Niklas Holsti at Tidorum Ltd.

Copyright © 2005-2010 Tidorum Ltd.

This document can be copied and distributed freely, in any format or medium, provided that it is kept

entire, with no deletions, insertions or changes, and that this copyright notice is included, prominently
displayed, and made applicable to all copies.

Document reference: TR-AN-8051-001

Document issue: Issue 4

Document issue date: 2010-06-10

Bound-T version: 4a6

Last change included: BT-CH-0219

Web location: http://www.bound-t.com/app_notes/an-8051.pdf
Trademarks:

Bound-T is a trademark of Tidorum Ltd.
MCS®-51 is a registered trademark of Intel Corp.

Credits:
This document was created with the OpenOffice.org software, http://www.openoffice.org/.

ii Bound-T for 8051

http://www.bound-t.com/app_notes/an-8051.pdf
http://www.openoffice.org/

Preface

The information in this document is believed to be complete and accurate when the document
is issued. However, Tidorum Ltd. reserves the right to make future changes in the technical
specifications of the product Bound-T described here. For the most recent issue of this
document please refer to the web address http://www.bound-t.com/app_notes/an-8051.pdf.

If you have comments or questions on this document or the product, they are welcome via
electronic mail to the address info@tidorum.fi, or via telephone, telefax, or ordinary mail to the
address given below.

Please note that our office is located in the time-zone GMT + 2 hours (+3 hours in the
summer) and office hours are 9:00 -16:00 local time.

Cordially,
Tidorum Ltd.
Telephone: +358 (0) 40 563 9186

Fax: +358 (0) 42 563 9186
Web: http://www.tidorum.fi/
http://www.bound-t.com/
Mail: info@tidorum.fi (please include the word "Bound-T" in the Subject line)
Post: Tiirasaarentie 32
F1-00200 HELSINKI
Finland
Credits

The Bound-T tool was first developed by Space Systems Finland Ltd (http.//www.ssf.fi) with
support from the European Space Agency (ESA/ESTEC). Free software has played an
important role; we are grateful to Ada Core Technology for the Gnat compiler, to William Pugh
and his group at the University of Maryland for the Omega system, to Michel Berkelaar for the
lp-solve program, to Mats Weber and EPFL-DI-LGL for Ada component libraries, and to Ted
Dennison for the OpenToken package. Call-graphs and flow-graphs from Bound-T are
displayed with the dot tool from AT&T Bell Laboratories (http://www.graphviz.org/).

Bound-T for 8051 iii

http://www.graphviz.org/
http://www.ssf.fi/
mailto:info@tidorum.fi
http://www.bound-t.com/
http://www.tidorum.fi/
mailto:info@tidorum.fi
mailto:info@tidorum.fi
http://www.bound-t.com/app_notes/8051.pdf

Contents

1 INTRODUCTION 7
1.1 PUIPOSE @NA SCOPE..cuuuiiitieiii e eei et e e e e et e e e e e e e e e et e e e e e e e een e ens 7
B O 1V Y1 PP 7
1.3 RO O ENCES. o it 8
1.4 TypographiC CONVENTIONS.iiiiiiiii e e e e aes 10
1.5 Abbreviations and aCrONYMS.o e 10
2 USING BOUND-T FOR 8051 12
2.1 INPUE FOImMAtS . et e 12
2.2 Command arguments and OpPLiONS........coviiiiiiii 12
2.3 DU PUES e 19
2.4 EXAMIPI O 21
3 WRITING ASSERTIONS 23
3oL INErOAUCHION. et 23
3.2 Identifying subprograms by address. ..., 23
3.3 Code-address OffSEES. ... 24
3.4 Identifying variables by address........ccoviiiiiiiii 24
3.5 Time and SPace UNItS....ciiiiiiiiiii e e ees 27
3.6 INSEMUCEION MOl . i e 27
T A o o] o 1= o W= PP 28
4 THE 8051 AND TIMING ANALYSIS 29
o A [o1 oY [¥ Lot o o PSPPI 29
4.2 The 8051 processor arChite@CtUre..........uvviveiiiiie e 29
4.3 Static execution-time analysis of 8051 Programs........c.ccoeevviveiiiieiniiienenennns 31
5 SUPPORTED 8051 FEATURES 32
o R O V7= T o V1= 1 PPN 32
5.2 Main @SSUMPTIONS.....uiiiiiieii e e e e e ens 33
5.3 Instructions and computationsS........ccooiiiiii i 33
5.4 Some consequences of the limited arithmetic model............c.ociiiii 35
5.5 Time accuracy and approXimations.......ccoeiiiiiiiiii e 36
6 SUBPROGRAM CALLS AND PARAMETERS 37
6.1 Subprogram calls in the 8051.........oiiiiiiiiii 37
6.2 Parameter PASSING. ...t 38
7 COMPILER SUPPORT 40
7.1 Important compiler features. ... 40
8 V- 2 S O o oY o 0 o 11 1= 41
7.3 Keil € COMPIIOE e 44
7.4 SDCC - Small Device C CompPiler. ..o 49
7.5 Other COMPIIErS. ..o e e 51
8 WARNINGS AND ERRORS FOR THE 8051 52
T A VLYY g oV g o 0 1= TT Y= Lo [PP 52
S T =l o o] gl 0 0 L=TS1 7= Lo [T 54

iv Bound-T for 8051

Index of Tables

Table 1: Supported 8051 devices and families.........ccoeevumiiiiiiiiiiiiiiiieieieee e 13
Table 2: Device-specific Options for CIP-5T1........cciiiiiiiiiiiiiiiiiiiiiieeeeeeeiiieeee e et eeeeeeeeeeeeeeeeeeees 14
Table 3: Device-specific options for NRF24ET........cccooiiiiiiiiiiiiiiiiieeeeiiieeeee e 14
Table 4: Supported CroSS-COMPILETS........uutiiiiiiiiiiiiiiieee ettt e e e e ettt et e e e eeeeeeeeeeeeeeaeaeeanaes 15
Table 5: Options for the SDCC COMPILET.........cccieiiieeeecccccrer e ee e e e e e e e e rat e e e e eeeraanan s 15
Table 6: Supported target program file fOrmats..........cceeruiieiiriiiiiiiiiieeeeee e 17
Table 7: Instruction MOdElliNg OPTIONS.cceeeeiieiiiiiiiiiiiiiieiereeereeeeeeeeeeeeeeeeeeeeeeeeeeeerernnnaeeeeeerennnnaeens 17
Table 8: 8051-SPECifiC -TTACE TLEIMS. . uuviiiiiiiiieieeeieiieeeeeeeeeeeeeeeeeeeeeeeeerrerrarreeeeeereeeaeaaaaaeaeaeaeeaaaaeens 19
Table 9: 8051-SPECIfiC ~“WATTL TLEIMIS. c...uvtieeeeieeiiiiiieee ettt e ettt e e e ettt e e e e e e eeeeeeeeeeeeeeeneanennees 19
Table 10: EXECULION TilNe@ UMITS...ciieiiuuriiieeeeieiiiiiteeee e ettt e e e e ettt e e e e et teeeeeeeeeeeeeeeeeeeeeeeensesennnes 20
Table 11: OULPULS fOT 805 L...uuuiiiiiiiiiiiiiiiiiiteeeeee ettt e e e e ettt e et e e eeeeeeeeeeeeeeeesessssssnssnnns 20
Table 12: Memory space symbols and address Tanges.............uuuuuveerriiiiiiiiiiiieeeeeeeeeeeeeeneeeeneeennsnaneens 25
Table 13: INSTIUCHION TOLES......uuiiiiiiiiiiiiieiieteteeee et ettt e et e e e et e et e et et e eeeeeeeeeeeeeeeessnnnnnnnns 27
Table 14: Assertable properties for the 8051.....cccc.uiiiiiiiiiiiiiiieeiee e 28
Table 15: Generic limitations of BOUNA-T..........cccoiiiiiiiiiiieiiiiiiieee ettt eeeeeeeeeeeeeeeeeees 33
Table 16: Instructions modelled INCOMPIELELY.......ccceeeeeeieee e 35
Table 17: TAR COMPILET OPTIOTIS.euttttiieiiiiiitetteeeeititeee e e e ettt e e e ettt e e e e e e eeiibbeeeeeseseannreeeeeeeennnns 43
Table 18: Keil C51 cOmPiler dir€CtiVeS......eeuuueriieeiiiiiiiiiieeee ettt e e ettt e e s e eee e e e e e eabeeeeeeeeeeees 47
Table 19: Keil BL51/LX51 linKer OPtionS.....cccuuriiiiiiiiiiiiiieeeeeeiiieeeeeeeeteeee e eeeeeeeeeeeeeeeeeeeeees 48
Table 20: SDCC COMPILET OPTIONS. ..ciiiiiiieiieeeeeeeciiiiiiie ittt e et e eeeeeeeeeaeaeeseeeetusnnnneeeeeeesnnnnneens 51
Table 21: WaITiNg IIESSAZES. ... uceeeeeeeeeeerrrrrirnneiaaaeeeeeeeerrrrrrrseennaaaassseseeseeersmsssnsssaeesssesessssrssssnnnnnnnns 52
TaDlE 22: EITOT INESSAZES. e eeeeuuuuiiiiiiiiiiiiiitttetttteeeeeeeeeeeeeeeeeeeeesassssssssssnnnnnnsssasssaeeeaeeeeeeeeeeeeeeeenssnnnnns 55

Bound-T for 8051 v

Document change log

Issue Section Changes

3 - Change log started.

3 1.3 Updated URLs to manuals. Added ref. 17 (OMF2 format), 24 (CC2510 device),
25 (nRF24E1 device), and 26 (nRF24LE1 device).

3 1.5 Added some acronyms.

3 2.1 Added OMF2 as accepted input format.

3 2.2 Added new devices CC2510, nRF24E1, nRF24LE1, and OMF2 support.
Added device-specific option tables.
Added tables of 8051-specific items for the -trace and -warn options.

3 3.1 Added address offsets, instruction roles, and property names to the list of target-
specific assertion-syntax elements.

3 3.3 Added section on code-address offsets.

3 3.4 Updated description of how DPTR is computed from DPL and DPH.

3 3.6 Added section on instruction roles.

3 3.7 Noted that the "returns" property can be overridden by assertions on instruction
roles.

3 5 Updated and focused on features not fully modelled.

3 6.1 Updated to consider instruction role assertions.

3 7.1 Added a note on meaning of "supports a compiler".

3 7.3 Updated to show OMF2 support.

3 7.5 Added section on "other compilers".

3 8.1,8.2 Updated for evolution in warning and error messages.

4 - Minor updates for version 4a6 of Bound-T/8051.

page ii Updated version information. Added "last change" information.
5.3 Added a note on approximations that may result from from generic limitations.
vi Bound-T for 8051

1.1

1.2

INTRODUCTION

Purpose and scope

Bound-T is a tool for computing bounds on the worst-case execution time and stack usage of
real-time programs; see references [1, 2]. There are different versions of Bound-T for different
target processors. This Application Note supplements the Bound-T User Guide and Reference
Manual with information specific to the target processor architecture usually known as the
“8051“ although it was introduced with the name MCS-51 [6]. We explain how Bound-T
models the architecture of the 8051 processor and how to use Bound-T to analyse programs for
this processor.

Some information in Chapters 6 and 7 of this Application Note applies only when the target-
program executable is generated with specific compilers. These chapters discuss the properties
of the IAR Systems C/C++ compiler [9, 10], the Keil C compiler [11, 12], and the SDCC C
compiler [13, 14] and how Bound-T can or cannot analyse code that those compilers generate.
Other compilers may be addressed in separate Application Notes.

The 8051 architecture is remarkable for its longevity and for the large and still growing
number of implementations (chips, devices), variants and extensions from several sources.
Some variants extend the “core” instruction set or the register set. Some variants accelerate
execution by using fewer clock cycles per instruction. There is also a large spectrum of devices
with different amounts of on-chip memory and different sets of on-chip peripherals. However,
those device features are not relevant to execution time analysis.

Bound-T supports a number of 8051 chips but not all of them. Some chip parameters can also
be defined by the user, through options and assertions.

Overview

How it's done

In a nutshell, here is how Bound-T bounds the worst-case execution time (WCET) of a
subprogram: Starting from the executable, binary form of the program, Bound-T decodes the
machine instructions and constructs the control-flow graph with its branches, calls and loops.
Bound-T (partially) interprets the loop arithmetic to find the “loop-counter” variables that
control the loops, such as n in “for (n = 1; n < 20; n++) { ... }".

Bound-T analyses the initial values and steps of the loop-counter variables together with the
loop termination condition to compute an upper bound on the number of times each loop is
repeated. Combining the loop-repetition bounds with the execution times of the subprogram's
instructions gives an upper bound on the worst-case execution time of the whole subprogram.
If the subprogram calls other subprograms, Bound-T constructs the call-graph and bounds the
worst-case execution time of the called subprograms in the same way.

Necessary earlier knowledge

To make full use of the information in this Application Note you should already be familiar
with the register set and instruction set of this processor, as presented in reference [6]. You
should also be familiar with the general principles and usage of Bound-T, as described in the
Bound-T User Guide [1]. The user manual also contains a glossary of terms, many of which
will be used in this Application Note. The Bound-T Reference Manual [2] is also useful
background information.

Bound-T for 8051 Introduction 7

1.3

Contents

After this introductory chapter the remainder of this Application Note consists of a user guide
part and a reference part. The user guide part consists of chapters 2 and 3:

Chapter 2 shows how to use Bound-T for the 8051. It lists and explains the command
arguments and options that are wholly specific to the 8051 or that have a specific
interpretation for this processor. It also explains the Bound-T outputs specific to the 8051.

Chapter 3 addresses the user-defined assertions on target program behaviour and explains
the possibilities and limitations in the context of the 8051 and the development tools we
consider here: IAR, Keil and SDCC.

The rest of the Application Note forms the reference part:

Chapter 4 describes the main features of the 8051 architecture and how Bound-T models
them in general.

Chapter 5 defines in detail the set of 8051 instructions and registers that is supported by
Bound-T.

Chapter 6 explains how Bound-T models and analyses subprogram calls and parameters,
focussing on the procedure calling standard (calling protocols, parameter-passing methods).

Chapter 7 discusses the cross-compilers that Bound-T supports for the 8051: the IAR, Keil,
and SDCC compilers. The chapter explains which language and compiler features are
currently supported and which are not.

Chapter 8 lists all 8051-specific warnings and error messages that Bound-T can issue and
explains the possible reasons for each.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Bound-T User Guide.
Tidorum Ltd, Doc. ref. TR-UG-001.
http://www.bound-t.com/manuals/user-guide.pdf.

Bound-T Reference Manual.
Tidorum Ltd, Doc. ref. TR-RM-001.
http://www.bound-t.com/manuals/ref-manual. pdf.

Bound-T Assertion Language Manual.
Tidorum Ltd, Doc. ref. TR-UM-003.
http://www.bound-t.com/manuals/assertion-lang.pdf.

find-marks User Manual.
Tidorum Ltd, Doc. ref. TR-UM-004.
http://www.bound-t.com/manuals/find-marks-manual. pdf.

Using Bound-T in HRT Mode.
Tidorum Ltd., Doc. ref. TR-UM-002.
http://www.bound-t.com/manuals/hrt-manual. pdf.

8-bit Embedded Controller Handbook
Intel © 1990.

The C51 Primer.
Phaedrus Systems, Chris Hills (ed.), Edition 3.6, 17 January 2006.
http://www.phaedsys.demon.co.uk/chris/papers/QuEST4 _1.pdf.

C8051F120/1/2/3/4/5/6/7, C8051F130/1/2/3: Mixed Signal ISP Flash MCU Family.
Silicon Laboratories, Rev 1.3 8/04.

Introduction Bound-T for 8051

http://www.phaedsys.demon.co.uk/chris/papers/QuEST4_1.pdf
http://www.bound-t.com/manuals/hrt-manual.pdf
http://www.bound-t.com/manuals/hrt-manual.pdf
http://www.bound-t.com/manuals/hrt-manual.pdf
http://www.bound-t.com/manuals/find-marks-manual.pdf
http://www.bound-t.com/manuals/find-marks-manual.pdf
http://www.bound-t.com/manuals/find-marks-manual.pdf
http://www.bound-t.com/manuals/assertion-lang.pdf
http://www.bound-t.com/manuals/assertion-lang.pdf
http://www.bound-t.com/manuals/assertion-lang.pdf
http://www.bound-t.com/manuals/ref-manual.pdf
http://www.bound-t.com/manuals/ref-manual.pdf
http://www.bound-t.com/manuals/ref-manual.pdf
http://www.bound-t.com/manuals/user-guide.pdf
http://www.bound-t.com/manuals/user-guide.pdf
http://www.bound-t.com/manuals/user-guide.pdf

[9] IAR Systems. http://www.iar.com/.

[10] 8051 IAR C/C++ Compiler Reference Guide for the MCS-51 Microcontroller Family.
IAR Systems, part number C8051-3, third edition (July 2005).

[11] Keil — an ARM company. http://www.keil.com/.

[12] Keil Cx51 User's Guide.
CHM file in C51 version 8.09.

[13] Small Device C Compiler (SDCC). http://sdcc.sourceforge.net/.

[14] SDCC Compiler User Guide.
SDCC 2.7.0, 2007-05-29, Revision 4818.

[15] External Product Specification for the MCS-51 Object Module Format.
Intel Corporation, V5.0, Sept 05, 1982.

[16] Additions to the 8051 Object Module Format (OMF-51).
Keil Elektronik GmbH, 05/07/2000.

[17] External Product Specification for the Object Module Format: 251/MX51 Specification
(OMF2 Format).
Keil Software, Rev 2.21, 30-Jun-2006.

[18] AOMF with Keil C51 extensions as input to Bound-T.
Tidorum Ltd, Doc. ref. TR-TN-AOMF-001.
http://www.bound-t.com/tech_notes/tn-aomf.pdf.

[19] Intel® Hex as input to Bound-T.
Tidorum Ltd, Doc. ref. TR-TN-IHEX-001.
http://www.bound-t.com/tech_notes/tn-ihex.pdf.

[20] CDB File Format.
Lenny Story, SDCC Development Team, 2003-03-21.

[21] ASxxxx Assemblers and ASLINK Relocating Linker.
Alan R. Baldwin, Kent State University, Version 2.0, August 1998.

[22] CDB from SDCC as input to Bound-T.
Tidorum Ltd, Doc. ref. TR-TN-CDB-001.
http://www.bound-t.com/tech_notes/tn-cdb.pdf.

[23] Analysing Switch-Case Tables by Partial Evaluation.
Niklas Holsti, 7th International Workshop on Worst-Case Execution Time Analysis
(WCET'2007), Pisa, Italy, July 3, 2007.
http://www.tidorum.fi/bound-t/reports/wcet2007/simcase.pdf
or http://www.irit.fr/wcet2007/wcet07 proceedings.pdf.

[24] CC2510F8: 2.4 GHz Radio Transceiver, 8051 MCU and 8 kB Flash memory.
http://focus.ti.com/docs/prod/folders/print/cc2510f8.html

[25] nRF24E1 Transceiver / MCU / ADC — Nordic Semiconductor nRF24E1 — System on Chip
with 8051 MCU.
http://www.nordicsemi.com/index.cfm?obj=product&act=display&pro=79

[26] nRF24LE1l - Ultra low power wireless System-on-Chip solution
http://www.nordicsemi.com/index.cfm?obj=product&act =display&pro=95

Bound-T for 8051 Introduction 9

http://www.nordicsemi.com/index.cfm?obj=product&act=display&pro=95
http://www.nordicsemi.com/index.cfm?obj=product&act=display&pro=79
http://focus.ti.com/docs/prod/folders/print/cc2510f8.html
http://www.irit.fr/wcet2007/wcet07_proceedings.pdf
http://www.tidorum.fi/bound-t/reports/wcet2007/simcase.pdf
http://www.bound-t.com/tech_notes/tn-cdb.pdf
http://www.bound-t.com/tech_notes/an-aomf.pdf
http://www.bound-t.com/tech_notes/tn-ihex.pdf
http://www.bound-t.com/tech_notes/an-aomf.pdf
http://www.bound-t.com/tech_notes/tn-aomf.pdf
http://sdcc.sourceforge.net/
http://www.keil.com/
http://www.iar.com/

1.4 Typographic conventions
We use the following fonts and styles to show the role of pieces of the text:
register The name of an 8051 register embedded in prose.
instruction An 8051 instruction.
-option A command-line option for Bound-T or other tools.
In some tables the style -option is used for clarity.
symbol A mathematical symbol or variable.
text Text quoted from a text / source file or command.
identifier An identifier from a program.
1.5 Abbreviations and acronyms
See also reference [1] for abbreviations specific to Bound-T and reference [6] for the
mnemonic operation codes and register names of the 8051.
A The main accumulator register.
AC The auxiliary carry flag (in the PSW).
ACC A synonym for the A register.
AOMF Absolute Object Module Format. See references [15], [16], and [18].
AOMEF2 Absolute subset of OMF2. See OMF2.
B The secondary accumulator register; the B register.
BCD Binary Coded Decimal.
(o] Carry Flag (in the PSW)
CDB C DeBug (?) format [20] used with SDCC [13].
DPTR The Data Pointer Register, a 16-bit register in the Intel-8051, used to address
data in the external memory or in the code memory.
EC++ Embedded C++.
IDE Interactive Development Environment.
IHex Intel Hex (format) [15].
Ko Kilo-octet = 1024 octets = 210 octets.
LSB Least Significant Byte.
Mo Mega-octet = 220 octets.
MSB Most Significant Byte.
OMF2 Object Module Format 2. See reference [17].
oV Overflow flag (in the PSW).
PSW Program Status Word.
RSO The first register-bank selector bit in the PSW.
RS1 The second register-bank selector bit in the PSW.
SDCC Small Device C Compiler [13].
SP The Stack Pointer register.
10 Introduction Bound-T for 8051

SFR Special Function Register.

TBA To Be Added.

TBC To Be Confirmed.

TBD To Be Determined.

UBROF Universal Binary Relocatable Format, defined by IAR Systems [9].
WCET Worst-Case Execution Time.

Bound-T for 8051 Introduction

2

USING BOUND-T FOR 8051

2.1 Input formats

Bound-T for the 8051 can read three executable program file formats:

+ The Absolute Object Module Format (AOMF) as originally defined by Intel [15], with
extensions for the Keil compiler [16]. See [18] for details on Bound-T support for AOMF.

« The absolute subset of the OMF2 format as defined by Keil [17] for the C51/CX51 compiler
and the 1LX51 linker.

« The Universal Binary Relocatable Object Format (UBROF) as defined by IAR Systems [9]
and used by the IAR compiler [10]. This is a proprietary closed format.

+ The Intel Hex format, a textual representation of memory images emitted by the SDCC
compiler [21, section 2.7]. See [19] for details on Bound-T support for for Intel Hex. The
symbolic debugging information can be read from a separate file in the CDB format [20].

Bound-T can usually detect the format automatically from the contents of the file itself. The

format can also be set by a command-line option (-form).

Bound-T for the 8051 can also read three types of additional input files for Bound-T:

+ assertion files (option -assert) as defined in [3],

+ mark definition files (option -mark) as defined in [4], and

- symbol files (option -symbols) as defined in [2].

Patch files (option -patch [2]) are not yet supported for the 8051 target.

2.2 Command arguments and options

Command line form

The generic Bound-T command format, options, and arguments as explained in the Reference

Manual [2] apply without modification to the 8051 version of Bound-T. The command line

usually has the form
boundt_ 8051 options program-file root-subprogram-names

For example, to analyse the execution time on the ordinary 8051 processor of the main sub-

program in the AOMF executable program file prog.omf under the option -rxx, the command

line is
boundt 8051 -device=8051 -rxx prog.omf main

Naming root subprpograms

Root subprograms can be named by the link identifier, if present in the program symbol-table,

or by the entry address in hexadecimal form with a trailing letter “H” and optionally prefixed

with “C:”. Thus, if the entry address of the main subprogram is 4A0 (hex), the above
command can also be given as
boundt 8051 -device=8051 -rxx prog.omf 4AOH
12 Using Bound-T Bound-T for 8051

Some hexadecimal addresses may match link identifiers. For example, the program may
contain a subprogram with the link identifier A4H. To force Bound-T to use the root
subprogram starting at address A4H, instead of the subprogram named A4H, prefix the address
with a zero or the string “C:”, writing it 0A4H or C:A4H or indeed C:0A4H (assuming that no
subprogram has a link identifier of that form). For example:

boundt_8051 -device=8051 -rxx prog.omf C:A4H

Options in general

All the generic Bound-T options apply (but the -patch option has no effect). There are
additional 8051-specific options as explained below. The generic option -hejp makes Bound-T
list all its options, including the target-specific options.

Note that a target-specific option must be written as one string with no embedded blanks, so
the option-name and its parameter, if any, are contiguous and separated only by the equal sign
(=) but not by white space. For example, the form “-reg bank=1" is correct but “-reg_bank =
17 is not.

For HRT analysis please refer to the separate Bound-T manual discussing the HRT mode [5].
There are no specific considerations or options for HRT analysis on the 8051.

The explanation of the 8051-specific options is grouped below as follows:
- Target device selection options and device-specific options.

« Compiler selection options and compiler-specific options.

 Input format selection options.

+ Instruction modelling options.

« 8051-specific items for the generic -trace option.

+ 8051-specific items for the generic -warn option.

Target device selection options

There are many variants of the 8051 processor. You must tell Bound-T which kind of “8051”
processor the target program is meant for, unless the default of a “standard” 8051 is valid.

Use the option -device=name to select the target processor by its name. This option can also be
written -device name or even just -name if there is no confusion with other options.

Table 1 below lists the 8051 devices (models, chips, derivatives) that can be selected with the -
device option. If this option is not used Bound-T assumes a “standard” 8051. Note that each of
these “device names” typically corresponds to a whole family of 8051 devices that are
equivalent for Bound-T because they have the same instruction set and instruction timing and
differ only in the amount of memory or the set of on-chip peripherals.

Please do not hesitate to ask Tidorum about support for the particular 8051 device that you
would like to use.

Table 1: Supported 8051 devices and families

Option

Device Properties and their support in Bound-T

-device=8051 “Standard” MCS51/8051 core See ref. [6].

Execution time unit: machine cycle (12 clock cycles).

Bound-T for 8051 Using Bound-T 13

Option Device Properties and their support in Bound-T

-device=cc2510 Texas Instruments CC2510 See ref. [24].
Instruction cache (flash cache) is assumed to always hit.
Access to other memory spaces (internal data, SFR,
code) through the non-standard "unified" XDATA
mapping is not modelled.
Execution time unit: clock cycle.

-device=cip-51 Cygnal CIP-51 series core See ref. [8].
Dynamic changes in program memory bank are not
supported. The analysed part of the program is assumed
to be contained in the lower 32 Ko bank and in one of
the upper 32 Ko banks.
SFR paging is not supported.
A branch-cache miss is assumed for all branches.
Execution time unit: clock cycle.

-device=nrf24e1 Nordic Semiconductor nRF24E1 See ref. [25].
Dual DPTRs not modelled. External data access time
(movx instruction) is assumed to be 3 cycles but can be
changed by command-line option. Dynamic changes
through the CKCON SFR are not modelled.
Execution time unit: machine cycle (4 clock cycles).

-device=nrf24le1 Nordic Semiconductor nRF24LE1 See ref. [26].
Dual DPTRs not modelled.
Write to flash not modelled.
Execution time unit: clock cycle.

After selecting a device with the -device option, you can set some device-specific options as
described in the tables below for the CIP-51 and nRF24E1 devices. There are no device-specific
options for the other devices. Note that the device-specific options, if any, must come after the
-device option on the command line.

Table 2: Device-specific options for CIP-51

Option Meaning and default value

-no_branch_cache Function The device has no branch cache, or branch cache misses should be
ignored in the execution-time analysis.

Default Each taken branch and return is assumed to cause a branch-cache
miss, which causes a 4-cycle delay.

Table 3: Device-specific options for nRF24E1

Option Meaning and default value

-movx=C Function Each movx instruction is assumed to take C machine cycles. The
value C should equal or exceed two plus the value that the program
configures in the CKCON register, bits 2-0.

Default The default is -movx=3, matching the reset value of CKCON bits 2-0.

14 Using Bound-T Bound-T for 8051

Compiler selection options

There are several cross-compilers that can generate 8051 programs from source code in C or
assembly language. For C compilers Bound-T may need to know which compiler has generated
the program under analysis because different compilers use different conventions for
parameter passing and register saving and restoring. Moreover, some compilers have peculiar
library functions or code-generation styles that require special analysis.

Use the option -compiler=name to tell Bound-T which cross-compiler generated the target
program. This option can also be written just as -name if there is no confusion with other
options. Table 4 below lists the supported cross-compilers that can be selected with the
-compiler option. If this option is not used Bound-T guesses the compiler based on the format
of the target program as shown in the last column of the table.

Table 4: Supported cross-compilers

Option Compiler Assumed if program format is
-compiler=iar IAR Systems [9] UBROF

-compiler=Kkeil Keil [11] AOMF or AOMF2
-compiler=sdcc SDCC [13] Intel Hex

After selecting the compiler the compiler-specific options become available as explained below.
Note that compiler-specific options cannot be used if Bound-T itself (by default) selects the
compiler based on the program-file format. Compiler-specific options, if any, must come after
the -compiler option on the command line.

Options for the IAR compiler

At present there are no options specific to the IAR compiler.

Options for the Keil compiler

At present there are no options specific to the Keil compiler.

Options for the SDCC compiler

Table 5 below explains the command-line options that are specific to the SDCC compiler.
These options can only be set after the SDCC compiler is chosen with the option
-compiler=sdcc or -sdcc.

Table 5: Options for the SDCC compiler

Option Meaning and default value

-aslines Function Includes source-line/code-address connections generated from
assembly-language files, in addition to connections generated from C
files.

Bound-T for 8051 Using Bound-T 15

Option Meaning and default value

This option may be useful when parts of the target program are
written in assembly language. It lets Bound-T show the source-line
numbers in the assembly-language source files for subprograms,
loops and other program parts. However, the assembly-level line-
number information may be confusing and unnecessary for programs
written in C.

Default The default is -no_aslines.

-no_aslines Function Omits source-line/code-address connections generated from
assembly-language files. Connections generated from C files are still
included.

Default This is the default.
-cdb=filename Function Names the CDB file that contains the SDCC debugging information

for this target program.

Default By default Bound-T looks for a CDB file that has the same name as
the target program file but the suffix ".cdb".

-defxu8 Function When a CDB symbol is defined by a Linker record but has no
compiler record that would give its type and size, assume that the
symbol represents an unsigned 8-bit octet in external data memory.

The problem of missing compiler-generated CDB records occurs, for
example, for C variables that are declared with the “_pdata”
modifier to place them in the paged part of the external memory.

See also the option -warn cdb_def.

Default This assumption is the default. However, if this assumption is false
for some such CDB symbol then you should not use this symbol in
assertions because the assertion may not work correctly.

-no_defxu8 Function Ignore any CDB symbol that is defined by a Linker record but has no
compiler record that would give its type and size.
Default This is not the default. See -defxu8.
-warn [no_]Jcdb_def Function Enables or disables the warning message that reports that a CDB

symbol has been given an assumed type, size and location because
the symbol has no compiler record.

Default This warning is disabled by default.

Input format selection options

Bound-T can read 8051 target programs in several file formats. By default Bound-T tries to
deduce the format from the contents of the file itself, but if this fails you can use option
-form=name to tell Bound-T to assume the named file format.

Table 6 below lists the target-program file formats that can be selected with the -form option.
The table also shows which cross-compiler Bound-T assumes for this format unless the
-compiler option overrides this assumption.

16 Using Bound-T Bound-T for 8051

Table 6: Supported target program file formats

Option Format Assumed See
compiler also

-form=aomf Absolute Object Module Format [15] with Keil extensions [16] Keil [18]

-form=aomf2 Absolute OMF2 format [17] Keil

-form=omf2

-form=ihex Intel Hex [21, section 2.7] perhaps with a CDB file [20] SDCC [19, 22]

-form=ubrof IAR Universal Binary Relocatable Format IAR

Instruction modelling options

Bound-T analyses the target program by reading the instructions from the executable file,
decoding the binary form of each instruction into its logical representation in the 8051
instruction set, and then modelling the computation that the instruction performs. The
modelling part is controlled and guided by command-line options for several reasons,
including the following:

« The model of a given 8051 instruction often depends on global settings, such as the choice
of register bank, that could only be computed by a detailed analysis of the whole program,
if at all. Such whole-program analysis is impractical for Bound-T. Therefore command-line
options are provided to specify such global settings.

« Some instructions are complex to model in general, but may be much simpler to model if it
is known that the target program uses them in a restricted or specific way. One example is
the ret instruction which sets the Program Counter (PC) to a 16-bit value popped off the
stack. Normally the ret instruction is used to return from the current subprogram (the
popped value is the return address) and as such is simple to model. However, sometimes ret
is used as a dynamic jump, by pushing the computed destination address onto the stack and
executing ret to set the PC to the computed address. This is much harder to model. Thus,
there is a command-line option that tells Bound-T which model to use for ret.

Table 7 below lists and explains the options that control instruction modelling.

Table 7: Instruction modelling options

Option Meaning and default value

-[no_]bit_mix Function Enables or disables the interaction of operations on bits (bit-addressed
boolean data) with operations on the “host” octets that contain those bits.
Disabling this interaction is strongly discouraged as it may lead to wrong
analysis results (an instruction that changes a bit is not modelled as
changing the host octet, and vice versa).

Default The default is -bit_mix.

-[no_]bit_range Function Enables or disables the explicit constraining of all 1-bit cells to the range
0 .. 1 in the arithmetic model of bit (boolean) instructions. When the
explicit constraints are disabled the value of 1-bit cells can only be
deduced from the expressions assigned to the cells.

Default The default is -bit_range.

Bound-T for 8051 Using Bound-T 17

Option Meaning and default value

-page=address Function
Default
-reg_bank=b Function
Default
-returns=dynamic Function
Default
-returns=static Function
Default
-rXX Function
Default
-No_rxx Function
Default

-[no_]sfr_counters Function

Default

Sets the base address (in hex) of “paged data” in external data memory.
The high 8 bits of the address define the high 8 bits of the external data-
memory address for movx instructions that use an 8-bit register (r0 or r1)
to define the low 8 bits of the address.

The given base address must be a multiple of 256, that is, the last two hex
digits must be “00”. Write the address using just the hex digits (no “H”
suffix and no “X:” prefix).

-page=0

Sets the number b of the register bank to be assumed, where b is a
number from O to 3. Bound-T assumes that the RS0-RS1 bits in the PSW are
set to this bank.

Bank zero, as in -reg_bank=0.

Tells Bound-T to model the return-from-subroutine instruction ret as a
dynamic transfer of control to the address popped from the stack. After
analysis the result can be a dynamic jump to this address or it can be a
normal return form the subprogram that contains the ret instruction.

You can override this command-line option for a subprogram by asserting
the “returns” property for that subprogram. See section 3.7.

The default is -returns=static, see below.

Tells Bound-T to model the return-from-subroutine instruction ret always
as a normal return form the subprogram that contains the ret instruction.
In other words, we assume that the address on the top of the stack when
ret is executed is always the return address for the current subprogram.

You can override this command-line option for a subprogram by asserting
the “returns” property for that subprogram. See section 3.7.

This is the default.

When Bound-T displays a disassembled instruction, a reference to the
register-bank area of the internal data memory is shown as

“r<bank> <register>" instead of a simple direct address. For example,
the address 28 = hex 1C is disassembled as "r34" = bank 3, register 4.

The default is -no_rxx, which see.

When Bound-T displays a disassembled instruction, a reference to the
register-bank area of the internal data memory is shown as a simple direct
address, not as “r<bank> <register>".

This is the default.

Enables or disables the analysis of Special Function Registers (SFRs) as
possible loop counters. If enabled Bound-T assumes that the target
program may use any SFR as a loop counter (a loop induction variable
important for loop termination). If disabled Bound-T assumes that only
the SFRs A (ACC), B, DPL, DPH, and the DPTR may be used as loop
counters.

The default is -no_sfr_counters.

18 Using Bound-T

Bound-T for 8051

Option

Meaning and default value

-spch=amount Function =~ Makes Bound-T assume that the execution of a callee subprogram changes

the SP register by the given amount, for all callee subprograms and all
calls. If the callee pops as much as it pushes and returns normally it
decreases SP by 2 octets, corresponding to -spch=-2 (minus two).

If the SP stack is used only for return addresses and for saving and
restoring registers (as is common) this option can facilitate the analysis.

Default The default is to analyse the callee to find the amount of change in SP,
which can be different for each callee. In contrast, -spch asserts that all
calls and callees change SP by the given amount.

2.3

8051-specific -trace options

Table 8 below lists the 8051-specific "items" that can be used in the generic -trace item option to
ask Bound-T for more informational outputs.

Table 8: 8051-specific -trace items

-trace item Traced information
aomf_sym Symbols defined in AOMF or AOMF?2 files.
load Program-file records (AOMF, AOMF2, UBROF, Intel-Hex) as they are read.

8051-specific -warn options

Table 9 below lists the 8051-specific "items" that can be used in the generic -warn [no_Jitem
option to ask Bound-T for more or less warning outputs.

Table 9: 8051-specific -warn items

-warn item Warnings emitted for

bit_ref An instruction that stores to an internal data location, using an indirect
(dynamically computed) address, which Bound-T resolves to the address of an
octet in the bit-addressable memory area. This is worth a warning because the
model of such instructions does not include the effect on the individual bits
within the host octet.

Outputs

Basic output format

Most Bound-T outputs, including warning and error messages, follow a common, basic format
that contains the source-file name and source-line number that are related to the message. This
format is explained in the Bound-T Reference Manual [2].

Bound-T for 8051 Using Bound-T 19

However, some compilers may not provide all the debugging information, depending on the
optimization and debugging options. With such target programs, the Bound-T output will also
be reduced, for example source-line numbers may be missing.

Units of measurement

The execution speed in terms of clock cycles per instruction varies a lot for different 8051
devices. Therefore we use one of two different time units depending on the chosen 8051
device. These units are explained in the following table. A specific output line with the
keyword “Time_Unit” shows which unit is used.

Table 10: Execution time units

Unit Definition Typical devices

Machine cycle For the 8051 devices that use this unit a machine = “Standard” 8051 devices.
cycle is the minimum execution time of an
instruction and is equal to 12 clock cycles. The
execution time of any instruction is a multiple of
the machine cycle, thus a multiple of 12 clock
cycles.

Clock tick One clock cycle using the definition of “processor ~ “Accelerated” 8051 devices.
clock” for the chosen 8051 device. The execution
time of any instruction is a multiple of the clock
cycle.

Stack usage bounds are always given in octets for all 8051 devices.

Outputs specific to the 8051

Bound-T for the 8051 emits additional output lines as explained in Table 11 below.

As explained in the Reference Manual [2], in each output line a keyword in field 1 identifies
the kind of output, fields 2 through 5 identify the program element, and the later fields contain
the output information. The table below is ordered alphabetically by the keyword column.

Table 11: Outputs for 8051

Keyword (field 1) Explanation of fields 6 -

Compiler compiler-name

Reports the name of the cross-compiler that was specified with the
-compiler option or was assumed from the format of the program file.

Device device-name

Reports the name of the 8051 device that was specified with the -device
option. The device determines the instruction set (extensions) and the
unit of execution time.

Time_Unit unit

Reports the unit of execution time (WCET). See Table 10.

20

Using Bound-T Bound-T for 8051

2.4

Example

Here we show a small but complete example of an 8051 program and how Bound-T can find
bounds on its execution time and stack usage.

The program

The example program is written in C. The program assumes that the processor has an analog-
to-digital converter (digital voltmeter, ADC) that works as follows:

+ The SFR bit at address E8H is O while a conversion is going on (ADC “busy”), and changes
to 1 when it is completed and the digital value is available for reading.

« When bit E8H is 1 the digital value can be read from the SFR at address E3H. When this
SFR is read the ADC starts a new conversion automatically and bit ESH becomes 0 until the
new conversion is ready.

The example program contains a function ave_adc that computes the average of a number of
ADC readings. The main function calls ave_adc twice, first computing the average of 5
readings and then the average of 10 (more) readings; the two averages are then compared.
Here is the source code, provided with line numbers in the left margin:

1 typedef unsigned char uchar;

2 volatile __sfr __at (0xE3) adc;
3 volatile _ _bit __at (0xE8) conv;
4

5 wuchar ave_adc (uchar count)

6 {

7 unsigned int sum = 0;

8 uchar k;

9 for (k = 0; k < count; k++)
10 {

11 while (conv == 0);

12 sum += adc;

13 }

14 return (uchar) (sum / count);
15 3}

16

17

18 int main (void)

19 {

20 return ave_adc (5) == ave_adc (10);
21 }

Analysis for execution time

The program contains one unbounded loop: the while-loop that polls the “conversion ready”
bit conv within the for-loop in ave_adc. This polling loop must be bounded with an assertion
using the maximum number of repetitions computed manually from knowledge of the
conversion time. Assume that this computation has been done and that the result is that at
most 21 polls are needed. The corresponding assertion is:

subprogram "ave_adc"
loop in loop repeats 21 times; end loop;
end "ave_adc";

Bound-T for 8051 Using Bound-T 21

Assume that the program is compiled and linked into the executable file prog.exe and that the
above assertion is written in the file poll.txt. The Bound-T command to find an upper bound on
the execution time of the main function is then:

boundt 8051 -assert poll.txt prog.exe main

The output is the following, when the program is compiled with the SDCC compiler
(version 2.7.0) for the “small” memory model:

Bound-T 3d2 for 8051

Device:prog.exe::::8051
Time Unit:prog.exe::::Machine cycles.
Compiler:prog.exe::::SDCC

Loop_Bound:prog.exe:main.c:ave_adc:21-:15
Loop_Bound:prog.exe:main.c:main@20-=>ave_adc:9-12:5
Loop_Bound:prog.exe:main.c:main@20-=>ave_adc:21-:15
Loop Bound:prog.exe:main.c:main@20-=>ave adc:9-12:10
Loop_Bound:prog.exe:main.c:main@20-=>ave_adc:21-:15
Wcet Call:prog.exe:main.c:main€@20-=>ave adc:5-15:737
Wcet_Call:prog.exe:main.c:main@20-=>ave_adc:5-15:1032
Wcet:prog.exe:main.c:main:18-21:1799

The final line shows that one execution of main, including all the functions it calls, needs at
most 1799 machine cycles.

Analysis for stack usage

The Bound-T command to find an upper bound on the stack usage of the main function is:

boundt 8051 -no_time -stack prog.exe main

The output, again when the program is compiled with SDCC 2.7.0, is:

Device:prog.exe::::8051
Time Unit:prog.exe::::Machine cycles.
Compiler:prog.exe::::SDCC
Stack:prog.exe:main.c:ave_adc:5-15:sp:0
Stack:prog.exe:main.c:main:18-21:sp:3

8

o e O

The final line shows that the main function and all the functions it calls need at most 3 octets
of stack space in total. Note that this does not include the return address for main itself.
Whether main has a return address depends on the start-up code which is not included in this
analysis example.

22

Using Bound-T Bound-T for 8051

3.1

3.2

WRITING ASSERTIONS

Introduction

If you use Bound-T to analyse non-trivial programs you nearly always have to write assertions
to control and guide the analysis. The most common role of assertions is to set bounds on some
aspects of the behaviour of the target program, for example bounds on loop iterations, that
Bound-T cannot deduce automatically. Assertions must identify the relevant parts of the target
program, for example subprograms and variables. The assertion language has a generic high-
level syntax [3] in which some elements with target-specific syntax appear as the contents of
quoted strings:

+ subprogram names,

» code addresses and address offsets,

» variable names,

+ data addresses and register names,

 instruction roles, and

« names of target-specific properties of program parts.

In practice the names (identifiers) of subprograms and variables are either identical to the
names used in the source code, or some “mangled” form of the source-code identifiers where
the mangling depends on the cross-compiler and not on Bound-T. However, Bound-T defines a
target-specific way to write the addresses of code and data in assertions. Register names are
considered a kind of “data address” and are target-specific.

This chapter continues the user-guide part of this Application Note by explaining the 8051-
specific aspects of assertions, in particular how to identify subprograms and variables by their
machine addresses, how to specify the role performed by certain 8051 instructions, and which
8051-specific properties can be asserted for 8051 program parts.

Identifying subprograms by address

Bound-T for the 8051 uses the common format for 8051 code addresses. To identify a
subprogram by means of its entry address write a string that gives the entry addresses in
hexadecimal (base 16) form, using decimal numbers O - 9 and letters a, b, ¢, d, e and f (case-
insensitive), followed by H or h to indicate hexadecimal. Subprogram addresses cannot be
written in decimal (base 10) form.

13 ”

The address can optionally be prefixed with “C:” or “c:” to ensure that the address is not
confused with a symbolic identifier. For example, if the program contains a function named
“abbah” you can write “c:abbah” or “C:ABBAh” to name the subprogram at address ABBA
(hex) without risk of confusion with the function called “abbah”. Another way to indicate that
the string is an address and not an identifier is to add leading zeros, for example “Oabbah”.

The “C:” prefix or leading zeros may be useful for root subprogram addresses on the Bound-T
command-line because the address keyword is not available there, unlike the case for
subprograms named in assertions.

Bound-T for 8051 Using Bound-T 23

3.3

3.4

For example, here is an assertion that sets the execution time of the subprogram that begins at
address 4AC hex (that is, 4AC is the address of the entry point of the subprogram):

subprogram address “C:4ACH”
time 314 cycles;
end subprogram;

Code-address offsets

Some forms of assertions define code addresses by giving a code offset relative to a base
address. For Bound-T/8051 a code offset is written as a decimal number, or as a hexadecimal
number followed by the letter 'H' or 'h'. In both cases the offset is given in octet units and the
number can be preceded by a sign, '—' or '+, to indicate a negative or positive offset. If there is
no sign the offset is considered positive.

Assume, for example, that the subprogram Rerun has the entry address 4AC hexadecimal and
the subprogram Abandon has the entry address 57B hexadecimal. The subprogram with the
entry address 4D2 hexadecimal can then be identified in any of the following ways, among
many others:

+ Using the absolute address:

subprogram address "C:4D2H"

- Using a positive hexadecimal offset relative to the entry point of Rerun:

subprogram "Rerun" offset "26h"

- Using a positive decimal offset relative to the entry point of Rerun:

subprogram "Rerun" offset "38"

+ Using a negative offset (here hexadecimal) relative to the entry point of Abandon:

subprogram "Abandon" offset "-A9H"

Note that the sign, if used, is placed within the string quotes, not before the string.

Identifying variables by address

Spaces and sizes

The 8051 has a complex set of address spaces which leads to a fairly rich syntax of data
addresses. We consider the Special Function Register (SFR) area as a data address space,
although its “memory locations”, the SFRs, may not have normal memory semantics (reading
an SFR may not return the last value written to that SFR, and reading or writing an SFR may
have side effects such as the activation of peripheral input-output devices).

The smallest datum that can be addressed is a single bit; the largest is generally an octet (8
bits), although some special instructions like ret access 16-bit words. Compilers can of course
define multi-octet variables such as 16-bit or 32-bit int or long variables in the C language. At
present assertions in Bound-T/8051 are limited to octet variables in any octet-addressable
memory space and bit variables in the bit-addressable memory space. Multi-octet variables
cannot be used in assertions and are not used in the analysis, except for the registers DPTR and
PC.

24

Using Bound-T Bound-T for 8051

Register names and flag names

To identify a register in an assertion use the address keyword followed by a quoted string that
names the register. Register names within the quoted string are case-insensitive.

All 8051 registers are located in the 8051 internal data address space or the SFR space and
thus have a physical address in the range 0 .. 255 that can be used to read or write the register.
Bound-T translates all register names to the corresponding internal data memory address. All
8051 flags (bit registers) are located in the bit-addressable SFR space and thus have a bit
address in the range 128 .. 255 (decimal).

The name of a general 8-bit register consists of the letter R (or r) followed by the register
number O — 7. For example, the string “r5” names register r5. Note that this syntax identifies a
register within the current register bank as chosen by the -reg bank option on the Bound-T
command line. To name an “absolute” register (without going through a register bank) use the
internal data memory address (see below).

The names of the A and B registers are “A” and “B”. Bound-T translates these names to the
corresponding Special Function Register (SFR) addresses.

The name of the carry flag C is “C”. Bound-T translates this name to the corresponding bit
address within the PSW octet in the SFR part of the bit-addressable internal memory.

The name of the DPTR is “DPTR”. Its low and high octets can be named with “DPL” and “DPH”
respectively.

Assertions are handled in the generic parts of Bound-T that do not know of the part-whole
relationship between 16-bit registers such as DPTR and their octet parts, DPL and DPH. This
means that an assertion on the value of DPTR does not imply any constraints on the values of
DPL and DPH. Moreover, assertions on the values of DPL and/or DPH do not directly imply any
constraints on the value of DPTR, but such constraints may arise indirectly at instructions that
change DPL or DPH because Bound-T's model for such instructions recomputes DPTR by
concatenating the values of DPH and DPL.

Numeric addresses

Variables located at a specific memory address are identified in assertions with the address
keyword, followed by a quoted string of the form

“M:num” for decimal address num, or
“M:numH” for hexadecimal address num.

The symbol M stands for one letter that defines the memory space as shown in Table 12 below.

Table 12: Memory space symbols and address ranges

Symbol M Memory space Part Address range (hex)
D Internal data memory directly addressed 0 .. 7Fh
indirectly addressed 80h .. FFh
Special Function Register 80h .. FFh
B Bit-addressable memory within internal data memory 0 .. 7Fh
within SFR space 80h .. FFh
External data memory Oh .. FFFFh
C Code memory Oh .. FFFFh

Bound-T for 8051 Using Bound-T 25

If the string ends with “H” the address value num is interpreted as a hexadecimal number,
otherwise as a decimal number.

Some examples:

X:1000H = external data address 4096 (decimal) = X:4096
X:15000 = external data address 15000 (decimal) = X:3A98H
D:1AH = internal data address 26 (decimal) = register r2 in bank 3.
C:0200 = code address 200 (decimal)

The address string is case-insensitive, both for the memory space symbol and for the
hexadecimal digits and the possibly trailing “H”.

Data in the stack

The 8051 architecture defines a “hardware” stack that is located in the internal data memory
(often in the indirectly addressed upper half at addresses 80h .. 8Fh). Stack data are accessed
via the SFR called SP, for Stack Pointer. The stack grows upwards — a push increases SP — and
is “filled” in the sense that SP points to the last octet in use, not to the first unused octet.
Programs can put local variables and parameters in the stack, which is useful for subprograms
that must be reentrant. The call instructions push the return address onto the stack and the
return instructions pop it.

Bound-T identifies data in the stack by an offset relative to the value of SP on entry to the
subprogram under analysis. The actual value of the SP is generally not known to the analysis.
The offset is positive for local variables and zero or negative for parameters. Offsets 0 and -1
refer to the high and low octets of the return address, respectively.

To name a stack variable in an assertion use the address keyword followed by a quoted string
that consists of the letter V followed by the positive offset in decimal form, or in hexadecimal
with a trailing letter H.

To name a stack parameter use the same form except start with the letter P instead of V.

Examples

Here are some assertions on the values of variables identified by their addresses or by register
names:

variable address "R3" 0 .. 100;
—-- The value of register R3 lies in the range 0 .. 100.

variable address "r3" 0 .. 100;
-- Same thing.

variable address "x:3fa7h" = 20;
-- The octet at external memory address hex 3FA7
-- (decimal 16295) has the value 20.

variable address “vlah” < 15;
-- The stack local variable at offset +la hex (= 26 decimal)
-- (relative to SP on entry) is less than 15.

variable address “p2” >= 32;
-- The stack parameter at offset -2 (relative to SP
-- on entry) is at least 32.

26

Using Bound-T Bound-T for 8051

Data in code memory

Assertions on the values of data cells in code memory (with addresses of the form “C:num”)
are currently ineffective, because the constant-propagation part of Bound-T replaces all
references to such cells by the constant value of the cell before the assertion is used. Moreover,
since the value of the cell is known from the program code, asserting a different value would
be a contra-factual assertion which could lead to incorrect analysis as explained in the Bound-T
Reference Manual [2].

3.5 Time and space units
Assertions on the execution time of subprograms or calls (in the form time t cycles) use the
unit of time (machine cycles or clock cycles) defined for the chosen device. See Table 1
(page 13) and Table 10 (page 20).
Assertions on stack usage (stack usage u) or final stack height (stack final /) use octet units.
3.6 Instruction roles
Some 8051 instructions can perform different or unusual roles in a program, depending on
their context and operands. Bound-T needs to know the role, in order to model the instruction
properly, and uses heuristic assumptions, sometimes supported by analysis, to choose the role
for such multi-role instructions. If the automatically chosen role is not the best one, you can
tell Bound-T which role to use by an assertion of the form
instruction ... performs a "role";
end instruction;
Table 13 below shows the role names understood by the 8051 version of Bound-T, and the
instructions to which they can be applied.
Table 13: Instruction roles
Instruction Role name Role performed
imp @A+DPTR "branch" A branch (jump) to an address computed dynamically by the sum of the

A register (accumulator) and the DPTR register. Bound-T tries to find the
possible target addresses by analysis.

"return" A return from the current subprogram to the calling subprogram. Bound-
T does not try to analyse the possible values of the return address
(A+DPTR).
"call" A call to an address (subprogram entry point) computed dynamically by

the sum of the A register (accumulator) and the DPTR register, with
return to the current subprogram. Bound-T does not try to analyse the
possible values of the target address, but the possible callees can be
asserted.

"tail call" Like "call" but the call returns to some higher-level subprogram, not
to the current subprogram.

Bound-T for 8051 Using Bound-T 27

Instruction Role name Role performed

ret "branch" Either a return from the current subprogram (if Bound-T finds that the
address popped from the stack is the return address), or a branch (jump)
to whatever address is popped from the stack (otherwise). Bound-T tries
to find the possible target addresses by analysis.

"call" A call to the address (subprogram entry point) that is popped from the
stack, with return to the current subprogram. Bound-T does not try to
analyse the possible values of the target address, but the possible callees
can be asserted.

"tail call" Like "call" but the call returns to some higher-level subprogram, not
to the current subprogram.

3.7 Properties

Assertions can give values or bounds for certain target-specific properties for specific
subprograms or loops. The set of properties, and their meaning in the analysis, is entirely
target-specific. Table 14 below describes the properties defined for the 8051 version of Bound-

T.
Table 14: Assertable properties for the 8051
Property name Meaning, values, and default value
returns Function Controls the analysis of ret instructions within specific

subprograms. Overrides the command-line option -returns for this
subprograms. Can be overridden by instruction role assertions for
the ret instructions (see Section 3.6).

Values The value must be a single number (not an interval) in the range
0 .. 2. These values have the following meanings:

0 Use the command-line -returns option for this subprogram.

1 Analyse this subprogram as under -returns=static : assume that
any ret instruction causes a return from the subprogram.

2 Analyse this subprogram as under -returns=dynamic : analyse
each ret as a dynamic transfer of control that may resolve into
a return or a jump.

Default Zero, which means to follow the command-line -returns option.

Consider, for example, the assertion:

subprogram “skip”
property “returns” = 2;
end “skip”;

This assertion sets the “returns” property for the subprogram skip to 2, which means that
Bound-T analyses each ret instruction within skip as a dynamic transfer of control, whatever
the command-line option -returns may say or have as default.

28 Using Bound-T Bound-T for 8051

4.1

4.2

THE 8051 AND TIMING ANALYSIS

Introduction

This chapter starts the reference-manual part of this Application Note by giving a compact
overview of the 8051 processor architecture. This defines terms and concepts that later
chapters use to describe how Bound-T models and analyses 8051 programs and in particular
which 8051 features are fully supported and which are not.

The 8051 processor architecture

The 8051 [6] is an 8-bit microcontroller core. Reference [7] is a good introduction to the
architecture of the processor and suitable programming methods with focus on programming
in the C language using the C51 compiler from Keil [11, 12].

The 8051 has a “Harvard” architecture with separate program and data address spaces.
Instructions can be 8, 16 or 24 bits wide. Data can also be read from the program memory. All
memory is addressed by octet. Some on-chip memory octets can also be addressed by bit. Load
and store instructions operate on 1-bit or 8-bit quantities only; to load or store multi-octet
values as many load or store instructions must be used.

Data memory is divided into internal and external memory.

Internal data memory

The internal data memory is always on the same chip as the processor core and is
architecturally limited to an 8-bit address (256 octets of data) but half of the address space is
usually overlaid so that direct and indirect accesses address different hardware components.
Some implementations provide further “paging” or “banking” of the internal data addresses.

The internal memory address space is divided into three ranges as follows:

+ The range 0 to 127 (00 to 7F hex) can be addressed directly or indirectly. The first 32
locations (0 to 31, or 00 to 1F in hex) contain the 32 general-purpose registers (4 banks of
8 registers) on which more below. Thus, the registers can also be accessed as memory
locations, directly or indirectly. The rest of this range (32 to 127, or 20 to FF in hex) can be
used to hold the stack or application data.

« The range 128 to 255 (80 to FF hex) when addressed directly gives access to a number of
Special Function Registers (SFRs). The set of SFRs depends on the implementation, but some
are standard, for example the A and B registers, the PSW, the DPTR and the SP can all be
accessed as SFRs. The 16-bit register DPTR is accessed as the two 8-bit SFRs DPL and DPH.
More on these registers below.

+ The same range, 128 to 255 (80 to FF hex) when addressed indirectly accesses a general-
purpose internal data memory, often used to hold the stack and application data. Some
implementations do not provided this extended internal memory.

Some parts of the internal data memory can be addressed and accessed by bit as well as by
octet. The Program Status Word (PSW) is within such a part which means that each PSW status
and flag bit can be accessed separately. The same holds for the A and B registers.

Bound-T for 8051 8051 Timing Analysis 29

External data memory

The external memory uses a separate 16-bit address space. The external memory is usually off-
chip but some current devices have some on-chip “external” memory to increase the total on-
chip memory beyond the address limits of the internal data memory.

All accesses to the external data memory are addressed indirectly, either with the 16-bit Data
Pointer register (DPTR) or by combining a pre-set “page” address (giving the high 8 bits of the
address) with an 8-bit page-offset taken from an 8-bit register (r0 or r1).

Program memory

The program code is located in a separate address space per the Harvard principle. Code is
addressed by octet. In the basic 8051 the code address is 16 bits allowing a maximum of 64 Ko
of code. Several implementations extend this by some form of “code banking” scheme. At
present Bound-T does not support code banking.

There is a specific instruction to load data from the program memory, using an indirect
address computed as A+PC or A+DPTR. There are no standard instructions for writing data or
code to the program memory. Some implementations of the 8051 may be able to “self-
program” in this way. Bound-T assumes that the program memory is not altered during
execution.

Arithmetic

All arithmetic integer operations on 8-bit operands are supported in hardware, including
multiplication and division. The only 16-bit operations supported in hardware are incremen-
tation of the DPTR register and addition of an 8-bit offset to the DPTR as part of the
“@A+DPTR” addressing mode. Floating point operations are not supported at all in hardware.
No standard floating point type is defined.

Some devices that implement the 8051 core have additional arithmetic units as “peripherals”
that are accessed as SFRs. The operands are loaded into specific operand SFRs and the result
can be read from specific result SFRs. Bound-T does not model such arithmetic - it is “opaque”
to the analysis.

Registers

There is a main accumulator register (A) and a secondary accumulator register (B), both with
8 bits. The instruction set uses eight general-purpose 8-bit registers, r0 through r7. However,
there are four banks of r registers, for a total of 32 general-purpose 8-bit registers. The bank in
use is selected by a 2-bit field (RS0, RS1) in the Program Status Word (PSW). Registers can be
addressed relative to the current bank (relative register number 0 .. 7) or using absolute
register addressing (absolute register number O .. 31). The registers in fact occupy the first 32
octets of the internal data address space. Thus, they can also be accessed using direct or
indirect 8-bit addresses.

Registers r0 and r1 can be used as page offsets in paged access to the external data memory.

An on-chip stack in the internal data memory contains the return addresses from subroutines
and data pushed by push instructions. Since the internal memory is at most 256 bytes, and
includes the banked registers, the stack must be less than 256 bytes. The Stack Pointer (SP)
register is consequently only 8 bits wide.

The 16-bit Program Counter PC points to the next instruction in the program memory. It can
only be accessed (implicitly) in the control-flow instructions (jump, call, return).

30

8051 Timing Analysis Bound-T for 8051

4.3

The 16-bit Data Pointer register (DPTR) acts mainly as a pointer to the external memory or to
data in the program memory. Some extensions of the 8051 architecture have two or more
DPTR registers with various means for selecting the “active” register. Two DPTR registers are
useful for copying data from one place in memory to another because one DPTR can hold the
source address while the other holds the destination address. Ate present Bound-T supports
only one DPTR.

The Program Status Word (PSW) contains the condition flags for carry (C) and overflow (OV).
There is also an auxiliary carry flag (AC) for BCD arithmetic, a parity flag (P) that shows the
parity (number of '1' bits) of the value in the accumulator register A, and other flags that are
not interpreted by Bound-T.

All of these registers are typically also accessible as Special Function Registers by direct
addressing of the upper half of the internal data address space.

Static execution-time analysis of 8051 programs

The 8051 architecture is very suitable for static analysis by Bound-T. Instruction timing in no
case depends on the data being processed. However, for some 8051 implementations the time
may depend on the memory area that is accessed. Some devices may also have “accelerator”
hardware such as various forms of caches. Bound-T generally assumes the worst case (for
example, a cache miss) for such hardware.

In devices that have additional arithmetic or functional units in the SFR area the execution
time of these additional functions may be variable; completion of a function may be indicated
by a status bit in an SFR or by an interrupt. Bound-T does not itself model the execution time
of such functions. For example, if completion is indicated by a status bit that is polled in a
waiting loop you must assert the number of repetitions of this loop.

As there are almost no instructions for 16-bit arithmetic the automatic analysis of loop
counters is currently limited to unsigned 8-bit computation (see section 5.4). Future versions
of Bound-T for the 8051 may not have this limitation.

Bound-T for 8051 8051 Timing Analysis 31

5.1

SUPPORTED 8051 FEATURES

Overview

This section specifies which 8051 instructions, registers and status flags are supported by
Bound-T. We will first describe the extent of support in general terms, with exceptions listed
later. Note that in addition to the specific limitations concerning the 8051, Bound-T also has
generic limitations as described in the Bound-T User Guide [1]. For reference, these are briefly
listed in section 5.1.

General support level

In general, when Bound-T is analysing a target program for the 8051, it can decode and
correctly time all instructions, with minor approximations.

Bound-T can construct the control-flow graphs and call-graphs for all instructions, assuming
that the program obeys one of the supported procedure calling standards listed in chapter 6.
Note that there are generic limitations on the analysis of jumps and calls that use a
dynamically computed target address or a dynamically computed return address.

When analysing loops to find the loop-counter variables, Bound-T is able to track all the 8-bit
additions and subtractions assuming unsigned variables and no overflow or underflow. Bound-
T correctly detects when this integer computation is overridden by other computations, such as
multiplications in the same registers. Note that there are generic limitations on the analysis of
pointers to variables.

Furthermore, because all registers (except the data pointer) are 8 bits wide and all arithmetic
operations are performed with 8-bit entities, the processing of a wider variable requires several
arithmetic operations to several registers or memory locations, chained via the carry flag C.
Currently Bound-T does not understand that these operations actually process a multi-octet
variable and cannot find and bound loop counters that are wider than 8-bit variables. In terms
of the C language loop counters should be of type “unsigned char”.

Loops with signed counters or 16-bit or larger counters can be bounded only by user-given
assertions. However, nominally signed 8-bit counters may be used if they stay within the range
0 .. 127 where the sign bit is zero, although the success of the analysis does depend on the
kind of code that the compiler generates for such loops.

Reminder of generic limitations

To help the reader understand which limitations are specific to the 8051 architecture, the
following compact list of the generic limitations of Bound-T is presented.

32

Supported 8051 Features Bound-T for 8051

5.2

5.3

Table 15: Generic limitations of Bound-T

Generic Limitation

Remarks for 8051 target

Understands only integer operations in
loop-counter computations.

Understands only addition, subtraction
and multiplication by constants, in loop-
counter computations.

No implications specific to the standard 8051. In
devices that have additional arithmetic units as
peripherals the results of such arithmetic are opaque.

No implications specific to the 8051.

Assumes that loop-counter computations
never suffer overflow or underflow.

Can bound only counter-based loops.

May not resolve aliasing in dynamic
memory addressing.

No implications specific to the 8051. However, note
that overflow or underflow is not unlikely in 8-bit
computation, and may even be used deliberately. Loop-
bounds analysis succeeds only for loops that repeat less
than 256 times. For loops that use the djnz instruction
the analysis is correct only if the initial value of the
counter is positive (not zero) because a zero initial
value would lead to underflow on the first execution of
the djnz.

No implications specific to the 8051.

Since the general registers in the 8051 are addressable
as internal data locations O .. 31, unresolved aliasing

may affect the analysis of the values of the registers ro
through r7. In most larger processors registers cannot be
addressed indirectly and are therefore protected from
aliasing.

May ascribe the wrong sign to an
immediate (literal) constant operand.

No implications specific to the 8051.

Main assumptions

Bound-T for the 8051 makes the following 8051-specific assumptions about the target program
under analysis:

+ The register bank is not changed within the code that is included in one analysis. The
command-line option -reg_bank=b defines the bank in use. Bound-T does not try to track
changes in the register-bank selection bits (RS0, RS1) in the PSW.

+ The base address of paged addressing is not changed within the code that is included in one
analysis. The command-line option -page=address defines the page-base address.

+ The code memory is read-only. If the program reads data from the code memory using a
movc instruction, and Bound-T can resolve the address that is read, and the executable file
under analysis loads a value into this address, this value is returned by the movc.

Instructions and computations

Bound-T for the 8051 models the main computational effect of most 8051 instructions
accurately, within the generic limitations of Bound-T and within the current 8051-specific
limitation to 8-bit computations (except for the PC and DPTR). This section describes the
computational effects that are modelled approximately or not at all. However, note that some

Bound-T for 8051 Supported 8051 Features 33

generic analyses in Bound-T may introduce generic approximations. For example, the loop-
bounds analysis based on Presburger Arithmetic assumes that loop-counter computations do
not overflow.

Registers and memory

Most registers and memory locations in the 8051 are modelled. The following are modelled in
limited ways:

« The absolute value of the SP register is generally opaque; only the changes in SP are
modelled.

« All memory locations and SFRs are currently assumed to have standard non-volatile
memory semantics, that is, reading the location returns the last-written value.

In reality some SFRs may not behave in this non-volatile way. For example, reading an SFR
that represents a bidirectional 8-bit port may yield the states of the input lines, not the value
that was last written to the SFR to set the states of the output lines. Future versions of Bound-T
will provide means to define some SFRs as “volatile” which will mean that the value read from
the SFR can differ from the last-written value.

Bit-addressed internal data memory

Each bit-addressable bit in the internal data memory is modelled as a cell. By default Bound-T
models the interaction between these bit cells and the “host” octet cells that contain the bits as
follows:

« An instruction that assigns some value to a bit cell also has the effect of assigning an opaque
value to the host octet cell. However, if the value assigned to the bit cell is known, it sets a
range constraint on the host octet cell. For example, assigning 1 to bit 6 means that the
(unsigned) value of the host octet is at least 26 = 64.

« An instruction that assigns some value to a host octet cell also has the effect of assigning
opaque values to the bit cells within this host. However, if the value assigned to the host is
known, each bit cell is assigned the corresponding bit from that value. For example, if the
host octet is assigned the value 17 then bits 0 and 4 within the host are set (assigned the
value 1) and the other bits in the host are cleared (assigned the value 0).

This interaction betwen bit cells and their host octet cells can be disabled with the command-
line option -no_bit_mix. This can reduce analysis time in some cases but can lead to wrong
analysis results if the bit/octet interaction is significant for program flow.

External data memory

Each octet in the external data memory is modelled as a cell. Since all accesses to the external
data memory are indirect, Bound-T must always try to analyse the computation of the address
(in DPTR, r0, or r1) to find out which cell is accessed. This analysis often succeeds easily (by
constant propagation) because even accesses to statically known variables in external memory
use the indirect mechanism. Thus, an access to external data via DPTR is often immediately
preceded by instructions that set DPTR to a statically known value (the address).

For paged accesses, where only the low 8 bits of the address are computed (into r0 or r1)
Bound-T assumes that the high 8 address bits have the constant value set by the -page option.

34

Supported 8051 Features Bound-T for 8051

5.4

Data from the program memory

The movc instruction reads an octet from the program memory. It is often used to access
constant data embedded in the program code. It always uses an indirect, dynamic address,
which is either A+DPTR or A+PC. Bound-T uses constant propagation and arithmetic analysis
to try to resolve the actual address. If this succeeds Bound-T fetches the octet value from the
program's memory image, making the value statically known for further constant propagation
or arithmetic analysis. This often happens in the partial evaluation of switch handlers, as
explained in chapter 7.

Computations

For most instructions that do some arithmetic computation with a non-constant result, the
following results are modelled as opaque values:

+ the individual bits within the target register;
+ the parity flag P, when the accumulator A is the target register;
- the PSW as a whole, when the instruction changes any bit in the PSW;

+ the host octet containing the target bit, for instructions that assign to a bit cell (however,
the value of the host octet can be bounded to a range).

Table 16 below lists further instruction-specific limitations of the model .

Table 16: Instructions modelled incompletely

Instruction Model deficiencies

inc DPTR The DPL and DPH registers become opaque.

mov @ro, .. If the target is a bit-addressable octet, the effect on the bit cells within that octet
mov @r1, .. is not modelled (the bits are not even made opaque).

push The instruction has no effect on any one-bit cells. In other words, we assume

that SP does not point into bit-addressable memory, or at least that the effect of
push on bit locations is unimportant.

rA, A Result is opaque in A.

ric A, rrc A Result is opaque in A and C.
daA Result is opaque in A and C.
swap A Result is opaque in A.

xchd Both operands become opaque.

Some consequences of the limited arithmetic model

Arithmetic model without underflow and overflow

Bound-T for the 8051 at present uses a simplified model of the arithmetic computation in
which overflow and underflow are ignored, for the most part. For example, the model of the A
register is an arithmetic cell (an integer variable) that notionally can have any integer value.
This model agrees with reality only when the variable value is in the range 0 .. 255. If the
program under analysis causes the A register to overflow or underflow Bound-T may give
wrong results. Consider, for example, the following instruction sequence:

Bound-T for 8051 Supported 8051 Features 35

clr A
dec A
cjne A, #255, label

The first instruction sets A to zero and the second instruction decrements it. In the real
processor the decrementation causes underflow and stores the value 255 in A, thus the third
instruction (compare A to 255 and jump if not equal) never jumps to the label. In the current
Bound-T arithmetic model, however, the decrementation stores the value -1 in the cell that
models A, thus the analysis wrongly concludes that the third instruction always jumps to the
label.

Tidorum is working on extending the Bound-T arithmetic model to include overflow and
underflow and expects to provide such a model in some future version of Bound-T for the 8051
and other processors.

The present approximate arithmetic model has several consequences that should be considered
when using Bound-T on 8051 programs. If you are writing 8051 programs that will be
analysed by Bound-T you may find it useful to select coding styles that match the present
arithmetic model.

Unsigned interpretation of literal operands

Bound-T models all literal (immediate, constant) operands in 8051 instructions as unsigned,
non-negative numbers. Instructions that use negative literal values (by two's complement) are
not modelled accurately. For example, in the real processor the instruction add A, #254
decreases the value of A by 2 (because 254 = -2 in 8-bit two's complement) and thus has the
same effect as the instruction pair clr C; subb A, #2. However, in Bound-T's model only the
latter instruction pair has this effect, while add A, #254 always seems to increase the value of A.

5.5 Time accuracy and approximations
Bound-T reports WCET values that take into account most of the timing features of the 8051.
However, certain 8051 devices and systems may have timing properties that are not modelled
or for which a pessimistic (worst-case) model is used. See Table 1 in section 2.2 (page 13).

36 Supported 8051 Features Bound-T for 8051

6.1

SUBPROGRAM CALLS AND PARAMETERS

Subprogram calls in the 8051

In this chapter, we discuss how 8051 programs use subprograms (procedures and functions)
and explain how Bound-T identifies subprograms and analyses the control-flow and data-flow
across subprogram calls and returns.

Static calls

The 8051 instruction set contains instructions specifically intended for subprogram calls: acall
and Icall. Both instructions work in the same way; they differ only by the encoding and range
of the target address — the entry address of the callee — so we will use the symbol call to refer
to them both.

When the processor executes a call it first pushes the return address on the stack (in the
internal data memory, referenced by the SP register) and then transfers control to the callee at
the address encoded in call instruction. The callee finishes by executing the ret instruction
which pops the return address from the stack into the program counter PC. so that execution
continues in the calling subprogram with the next instruction after the call instruction.

The callee address in a call is always statically encoded as part of the instruction. Thus Bound-
T always knows the callee address and can build the call-graph statically.

Dynamic calls and function pointers

The 8051 has no single instruction that calls a subprogram at a dynamically computed address.
Instruction sequences with this effect of course exist. One such sequence is to put the computed
callee address in the DPTR register and call a “helper” subprogram that contains two
instructions: clr A followed by jmp @A+DPTR.

In the C programming language dynamic calls correspond to calls that use function pointers
instead of static function names. Different C compilers may generate different sequences of
8051 instructions to implement calls through function pointers.

At present Bound-T for the 8051 does not recognise any such instruction sequences as dynamic
calls. In the example sequence, the instruction jmp @A+DPTR would be analysed as an
unresolved dynamic jump and the analysis of the caller would not include the analysis of the
callees. However, you may assert that the instruction performs the role of a call, which makes
Bound-T model the instruction as a dynamic call, as described in Section 3.6. Even so, Bound-T
is usually unable to resolve the call (find the possible callees) by itself, so you must usually also
assert the possible callees for each dynamic call.

If your program uses dynamic calls heavily, please do consult with Tidorum; perhaps Tidorum
can extend Bound-T to recognise the dynamic calls that your C compiler generates. This would
remove the need for instruction role assertions and still let you use assertions to list the
possible callees of each dynamic call. Automatic analysis to find the callees is not possible in
Bound-T in its current form.

Bound-T for 8051 Calling Standards 37

6.2

Parameter passing

Statically allocated parameters and locals

The 8051 instruction set and memory architecture make it cumbersome to access data on a
stack. This holds both for the “hardware” stack (accessed via the SP register) and for
“software” stacks that may be defined by a compiler or by programming convention. It is
therefore common to pass parameters to 8051 subprogram through statically allocated
memory locations in the internal or external data memory. Of course such a subprogram is not
reentrant and cannot be recursive (except, perhaps, tail-recursive) but many 8051 applications
need neither reentrancy nor recursion.

Local variables are often handled in the same way, as statically allocated data.

A simple way to manage statically allocated parameters and local variables is to assign
separate memory locations for each separate parameter and local variable in the program. This
can be done subprogram per subprogram. Advanced compilers for the 8051 can use the
program-wide call-graph to determine which subprograms can be active at the same time (in
the same sequence of nested calls) and which cannot. Subprograms that can never be active at
the same time can use the same static memory locations for their parameters and local
variables. Such “overlaying” reduces the total amount of memory used.

Bound-T can analyse parameter-passing through statically allocated locations, whether or not
the compiler lets several subprograms share the same locations. For the 8051 the analysis of
parameters, and the resulting context-dependent analysis of the callee, is limited to 1-bit or 8-
bit data.

Register parameters

Some parameters may be passed via registers (r0 .. r7, A, B, C, DPTR). For Bound-T such
parameters are similar to statically allocated memory locations (the register number is
statically allocated). Analysed parameter values are limited to 1-bit or 8-bit data.

Stack-allocated parameters and local variables

Subprograms on the 8051 can be made reentrant by passing parameters in some kind of stack
or in registers. Local variables for reentrant subprograms must also be allocated in a stack or to
registers. Compilers commonly use the native 8051 stack (the SP stack) primarily for return
addresses and define a separate “software” stack for parameters and local data. The native
stack may also be used to save and restore data, for example callee-save registers that will be
used in a subprogram.

Bound-T models data cells on the SP stack when they are accessed with push and pop
instructions. The 8051 has no SP-based indexed addressing and no standard frame pointer
register. Thus a compiler that places parameters or local variables in the SP stack will use some
compiler-specific method to access those data (probably using indirect addressing with the r0
or r1 registers). Bound-T uses its constant-propagation analysis to discover and model such
accesses to the SP stack by offsets from the initial value of SP on entry to the subprogram.

At present Bound-T has non specific models for software stacks. An access to data on a
software stack will probably appear to Bound-T as an unresolved dynamic (indirect) memory
access that yields an opaque value. While Bound-T can analyse programs that use software
stacks it cannot use data in such stacks for the analysis of loop bounds, nor can it find upper
bounds on the space-usage of software stacks.

38

Calling Standards Bound-T for 8051

Registers and memory locations modified by a call

Bound-T initially assumes that any call can modify any register. In other words, Bound-T
assumes that there are no “callee-save” registers. When Bound-T analyses the callee it finds the
actual set of modified registers (assuming that no register is modified indirectly by a pointer).
The actual modified-register set enters the final analysis of the caller.

For calls to subprograms that are not analysed (because their resource bounds have been
asserted) the inital assumption, that the call can modify any registers, is retained in the
analysis of the caller, but it can be modified by invariance assertions.

Bound-T assumes that a callee subprogram does not modify any location in the SP stack that
was pushed by the caller subprogram, or any higher-level subprogram. That is, Bound-T
assumes that a subprogram modifies only its “own” part of the SP stack.

Bound-T for 8051 Calling Standards 39

7.1

COMPILER SUPPORT

Important compiler features

Different cross-compilers for the 8051 are likely to generate different code for the same source
program. Some differences in the code are unimportant for analysis by Bound-T although they
can influence the results of the analysis, for example the execution-time bounds. Other
compiler-specific properties, idioms or conventions in the code can greatly help or hinder the
analysis. Bound-T is sensitive to the following properties of the program under analysis, and
these properties are (partly) defined by the compiler:

Calls: The compiler decides what code to generate for subprogram calls and returns. In
most cases the standard 8051 call and return instructions (lcall, acall, ret, reti) will be used,
but some compilers may use different instructions in some cases, for example to implement
code banking (not supported in Bound-T at present).

Parameter passing: The compiler decides how to pass parameters between the caller and the
callee. Since the 8051 has weak stack instructions parameters are often placed in statically
allocated storage, but for recursive or reentrant subprograms the compiler must use some
kind of stack. At present Bound-T supports only the native SP stack for this purpose.

Local variables: In principle the compiler decides how to allocate memory for local variables
(guided by the C keywords static, auto, and register). Many compilers for the 8051 support
additional keywords or pragmas that give the programmer more control over this
allocation, for example to choose between internal or external data memory. As for
parameters, local variables are often placed in statically allocated storage. Bound-T can
analyse statically allocated variables and local variables in the SP stack.

Register banks: In principle the compiler chooses the register bank to be used at each point
in the code, but most 8051 compilers support additional keywords that let the program
specify the register bank, usually on a subprogram level. Bound-T assumes that the same
register bank is used throughout the part of the program that is included in one analysis,
that is, in all subprograms in the call-closure of the root subprogram.

Generic pointers: The 8051 uses different instructions for indirect access to data in the
internal memory, in the external memory, and in the code. Thus a C pointer cannot, in
general, be implemented as a simple address, but it must also indicate which of these
address spaces is meant. Such pointers are commonly called “generic” pointers. C compilers
for the 8051 often use library routines to create and use generic pointers, which may
complicate static analysis of the program. However, the compilers usually also provide
keywords to define special pointer types, for example a pointer that can only point to the
internal data memory and can thus be implemented simply and efficiently as an 8-bit
address.

Name mangling: Compilers often make some systematic changes to the source-level (C-
level) identifiers of subprograms and variables when the compiler creates the corresponding
linker symbols. All inputs to and outputs from Bound-T use the linker symbols. For
example, if you need to write assertions to guide the analysis of a subprogram the assertion
must use the linker symbol to identify the subprogram.

40

Compiler Support Bound-T for 8051

7.2

For the above properties Bound-T has the same abilities and limitations for all compilers. The
following properties, however, require some compiler-specific support or adaptation in the
analysis:

« Program file format: A given compiler/linker can usually generate (store) the executable
program in one or a few different forms or file formats such as AOMF or Intel-Hex. Bound-T
for the 8051 can read several formats as explained in section 2.1. The most important
difference between the formats is in the amount and detail of the source-code symbolic
(debugging) information that comes with the raw machine code.

+ Switch-case statements: The switch-case is the most flexible and variable control structure in
the C language, and this flexiblity is reflected in the complexity of the code that is
generated. For example, the data-type of the switch expression can have a large effect on
the code, and the code generated for a densely numbered sequence of cases can be quite
different from the code for sparsely numbered cases. The dense case is likely to use some
form of dynamic jump via a table of jumps or addresses, while the sparse case often uses
compiler-specific “helper” routines that have unusual calling sequences.

 Peculiar calling sequences: Some compilers use library routines with peculiar, non-standard
calling sequences. In one common aberration the call instruction is followed by constant
parameter data embedded in the code, for example a table that represents a sparse switch-
case structure. If such a call is analysed in the normal way this data would be interpreted as
code, with results that may be amusing but surely useless. Bound-T detects some such
peculiar routines and analyses them in special ways.

The rest of this chapter explains the compilers that Bound-T supports, explaining the
properties of the code that the compiler generates, how Bound-T analyses that code, and which
compiler options and features are supported or not supported. However, the information may
be incomplete, in particular concerning library routines with peculiar calling sequences. When
we say that Bound-T "supports" a compiler we mean that Bound-T has some knowledge of that
compiler. It does not mean that Bound-T can analyse all programs compiled by that compiler.

IAR C compiler

Introduction

IAR Systems [9] supplies a C, C++ and EC++ compiler for the 8051. The rest of this section is
based on the Reference Guide [10] and our own experiments and tests.

C or C++

While Bound-T may be able to analyse some parts of a C++ or EC++ program compiled by the
8051 IAR C/C++, it has no specific support for C++ features such as virtual function calls.
Virtual function calls will probably appear as unresolved dynamic jumps in the analysis.

Those features of C++ or EC++ that do not cause more dynamic control-flow or dynamic data
accesses should not cause analysis problems.

Program formats

The 8051 IAR C/C++ compiler (with the XLINK linker) can generate executable programs in
several formats, but the most complete format is IAR's own Universal Binary Relocatable
Format, UBROF. Bound-T can read 8051 programs in UBROF form (although Bound-T does
not yet use all of the UBROF information).

Bound-T for 8051 Compiler Support: IAR 41

Register banks

The 8051 IAR C/C++ run-time system and all non-interrupt application subprograms use a
common register bank — the default register bank — that is usually bank 0 but can be set to
some other bank by a linker command. The compiler supports a register_bank pragma by
which an interrupt handler function can use a different register bank. In this case the compiler
generates code to switch register banks but does not save or restore the registers in the chosen
bank.

Thus the 8051 IAR C/C++ compiler is compatible with Bound-T as regards register banks. The
default option in Bound-T is -reg_bank=0 but it can be set to another value when an interrupt
handler is analysed.

Paged memory

The 8051 IAR C/C++ compiler assumes that paged data (pdata) uses one fixed page of
external data memory. The page is chosen by linker commands. This is compatible with
Bound-T as long as the Bound-T option -page is set to the same value.

Subprogram call and return

For non-banked code the 8051 IAR C/C++ compiler uses the ordinary call and return
instructions, agreeing with Bound-T. The question of function pointers is not yet explored.

Calling conventions and parameter passing

The 8051 IAR C/C++ compiler provides a choice of six different calling conventions to control
the (default) allocation and placement of parameters and local variables.

Two of the IAR conventions use statically allocated storage and do not support reentrant
subprograms. The remaining four conventions use various types of stacks and do support
reentrancy.

At present Bound-T for the 8051 can model only computations using statically allocated
parameters, corresponding to the two static IAR conventions: “data overlay” and “idata
overlay”. These conventions use the internal data memory and therefore have tight limits on
the total size of parameters and local variables. The IAR compiler does not provide a
convention that uses statically allocated external data memory. The programmer can use the
xdata keyword to place local variables in external memory, but not parameters.

The four stack-based IAR calling conventions are discussed below, under “Stacks”.

The IAR compiler defines registers r6 and r7 as “permanent” or callee-save registers. The DPTR
register is also callee-save for some kinds of subprograms. At present Bound-T does not treat
r6 and r7 specially. Bound-T initially assumes that any call may alter any register; analysis of
the callee may then reduce the set of altered registers and should thus reveal that r6 and r7
(and perhaps DPTR) are not altered. However, if you prevent the analysis of the callee by
asserting its resource bounds it may help the analysis of the callers if you also assert that r6
and r7 and perhaps DPTR are invariant in all calls of this callee.

Stacks

The 8051 IAR C/C++ compiler provides four reentrant calling conventions, respectively using
the 8051 processor stack in the internal memory, a software-managed stack in paged external
memory, a software-managed stack in non-paged external memory, or the “extended”
hardware-managed external-memory stack that is available in some 8051 devices. As
explained above in section 7.1 Bound-T is unable to analyse computations that use data on the

42

Compiler Support: IAR Bound-T for 8051

stack. Bound-T can analyse programs that use the first three reeentrant calling conventions but
will not find loop-bounds that depend on stack-allocated parameters or local variables. Bound-
T does not support the “extended stack” option.

Switch-case statements

Under investigation. Information to be provided in a later issue.

Library subprograms that violate the calling standard

Under investigation. Information to be provided in a later issue.

Compiler options

Table 17 below lists those IAR compiler options that influence the generated code and explains
how Bound-T supports, or does not support, each option. Options not listed are supported. The
options are shown in their long form. Please refer to the IAR manual [10] for the
corresponding short forms.

If you have a pressing need to use an option that Bound-T does not support now, please
contact Tidorum to discuss your needs.

Table 17: IAR compiler options

Option Value Supported? Remarks

--calling_convention=

data_overlay Yes
idata_overlay TBC
idata_reentrant Yes/No These options make the compiler place all parameters
pdata_reentrant and local variables in a stack. Bound-T cannot analyse

xdata_reentrant computations using stacked data; thus it will not find

any loop-bounds that depend on stacked data. You can
work around this with assertions, of course.

ext_stack_reentrant No Bound-T supports only the standard 8-bit SP register,
no extension registers.

--char_is_signed Yes/No Bound-T models all literal operands as unsigned (non-
negative) numbers. Analysis of computations involving
negative literals will probably fail.

--code_model=
tiny Yes
near
banked No Bound-T does not support banked code, nor extended
far code memories larger than 64 Ko.
--core=
plain Yes
tiny TBD To be investigated. These devices are rare, it seems.
extended No Bound-T does not support these extensions.
--data_model=

Bound-T for 8051 Compiler Support: IAR 43

7.3

Option Value Supported? Remarks
tiny Yes
small
large
generic Yes/No Bound-T has no model for “generic” pointers; it is
unable to resolve even statically set pointers of this
kind.
far No Bound-T does not support data space beyond 64 Ko.
--debug Yes, and Bound-T needs the debugging information to interpret
recommended assertions and parameters and to annotate the analysis
results with source-code identifiers and locations.
--dlib_config Yes, TBC Tidorum has not analysed all the library routines for all
library variants.
--dptr=
16,1 Yes Bound-T supports one DPTR register of 16 bits.
any other value No At present Bound-T does not support multiple DPTR
registers or DPTR registers of more than 16 bits.
--eC++ Yes/No Bound-T cannot analyse virtual function calls so they
--EEeC++ appear as unresolved dynamic jumps. In other respects
the analysis of C++ code is the same as for C code.
--extended_stack No Bound-T supports only the standard 8-bit SP register,
no extension registers.
--nr_virtual_regs=n Yes TBC
--omit_types No/Yes This option makes the compiler omit the information
about the types of variables. This may make Bound-T
omit these variables from its own symbol-table in which
case assertions cannot use these variables (by name).
--place_constants=
data Yes, but... At run time the constants reside in writable data
data_rom memory, therefore Bound-T does not consider the
values to be static constants, but (probably) opaque.
code Yes Bound-T understands that data embedded in the code
memory is read only and finds the constant value from
the program file.
-s Yes TBC Tidorum has not tested all sorts of C code under all
-z optimization levels.

Keil C compiler

Introduction

The C51 compiler from Keil [11] is one of the best known C compilers for the 8051. The rest of
this section is based on the Keil C51 User's Guide [12] and our own experiments and tests. A
variant called CX51 supports extended versions of the 8051 that provide up to 16 Mo of code
space. Bound-T does not support such devices so this section talks only of the C51 compiler.

44

Compiler Support: Keil

Bound-T for 8051

Keil provides two linkers: BL51 and LX51. Their differences are usually not important for
Bound-T.

Program formats

Keil C51 can generate executable programs in AOMF form as defined by Intel [15] with
symbolic debugging information extensions defined by Keil [16]. Reference [18] explains how
Bound-T supports this AOMF format. Keil C51 and in particular the LX51 linker can optionally
generate programs in the newer Keil-defined OMF2 format, which Bound-T can also read.

Register banks

By default Keil C51 compiles code to use register bank 0, agreeing with the default bank in
Bound-T. The REGISTERBANK directive can used to define another register bank. This
directive defines a “common” register bank in the sense that the caller and callee are expected
to use the same register bank; the compiler does not insert bank-switching code.

Keil C51 supports the using keyword that specifies the register bank that a subprogram uses.
The compiler also generates code to switch register banks on entry to and return from this
subprogram. Subprograms that use different register banks can call one another. In contrast,
Bound-T assumes that all subprograms in the same call-graph use the same register bank, set
with the option -reg_bank. However, it may be able to analyse call-graphs in which the register
bank is changed if there is no significant data-flow across the points of change.

Paged memory

In the Keil tools, the base address of the paged external memory is defined by the linker
directive PDATA in BL51 or the equivalent directive (TBD) in LX51. There is no default value
in the linker itself; there may be a default value in the Keil IDE. The Bound-T default -page=0
corresponds to PDATA(0).

Subprogram call and return

By default Keil C51 uses the ordinary call and return instructions, agreeing with Bound-T. The
question of function pointers is not yet explored.

For code banking or some extended 8051 devices C51 can use extended or unusual forms of
call and return code. The compiler directives that lead to such code are marked as “not
supported” in Table 18 and Table 19 below.

Parameter passing

By default Keil C51 passes subprogram parameters in registers and statically allocated memory
locations (internal or external, depending on options and source-code keywords). This is
compatible with Bound-T.

Stacks and reentrant subprograms

Keil C51 never uses the processor stack for parameters, only for return addresses. This is
compatible with Bound-T.

For reentrant subprograms Keil C51 can use software-defined stacks in internal data memory
(SMALL memory model), in paged external memory (COMPACT model) and in general
external memory (LARGE model), while still using the processor stack for return addresses.
Different subprograms in the same program may use different models so there may be up to
four stacks in use at the same time, in the same program.

Bound-T for 8051 Compiler Support: Keil 45

As explained above in section 7.1 Bound-T is unable to analyse computations that use data on
the software-defined stacks, whatever the memory model.

Switch-case statements

In our experience Keil C51 can generate three kinds of code for switch-case statements,
depending on the type of the index expression and on the numbering of the case branches:

« When there are few cases, C51 generates a cascade of in-line comparisons and conditional
jumps, similar to the code that would result from the cascade of if-else if statements that is
equivalent to the switch-case. All jumps have static targets. The code for the cases is
embedded within the cascade of comparisons and conditional jumps.

« When there are more cases, but the cases are numbered densely (consecutively) and the
index type is an 8-bit type, C51 generates a table of ljmp instructions, one for each case. The
code for the switch-case statement uses the dynamic jump instruction jmp @A+DPTR to
jump into the indexed point in this table, and then the ljmp at that point in the table jumps
to the code for this case.

+ In other cases (a considerable number of sparsely numbered cases, or a wider index type)
C51 generates a switch table that contains the case numbers and the address of the code of
each case. C51 puts this data table in the code memory, immediately after a call to a special
switch handler routine in the C51 run-time library. The switch handler routine scans the
switch table, matches the case numbers to the index value, and when they match, jumps to
that case using a dynamic jump (jmp @A+DPTR, again).

Bound-T can of course analyse the first form (in-line comparisons and static jumps) without
problems.

For the second form, using a dense table of jumps, Bound-T applies arithmetic analysis to the
computation of the switch index — in particular to the comparisons that check that the index is
in range — to find all the entries in the jump table, thus all statically possible target addresses
of the dynamic jump, jmp @A+DPTR, into the jump table. At present this works only for 8-bit
index types (C “char” types) because Bound-T for the 8051 models only 8-bit computations.
Moreover, even for 8-bit types C51 sometimes uses the MUL instruction to compute the jump
address, and then Bound-T cannot find the jump table (because MUL has a 16-bit result). If
Bound-T finds the jump table it can analyse each jump table entry in the normal way because
the Ijmp instructions in the table have static targets.

For the third form, using a switch table and a switch handler routine, Bound-T partially
evaluates the switch handler with respect to its constant parameter: the switch table. This
method is explained in reference [23]. The partial evaluation of the dynamic jumps in the
switch handler turns them into static jumps, at which point the partial evaluation ceases and
normal analysis of the case branches continues. This method is insensitive to most internal
details of the Keil C51 switch table formats and switch handler routines but relies on the
following assumptions:

— The name of the switch handler is ?C?CCASE, ?C?ICASE, or ?C?LCASE, and this symbol
is present in the debugging information in the program file.

— The switch handler is invoked by a call statement (acall or Icall) and the switch table is
placed in the code immediately after the call statement (thus the return address points to
the start of the table).

— The switch handler ends by executing a jmp @A+DPTR instruction to go to the chosen case
branch.

46

Compiler Support: Keil Bound-T for 8051

Library subprograms that violate the calling standard

Under investigation. Information to be provided in a later issue. If you experience any
problems with library subprograms please contact Tidorum.

Symbolic debugging information

Keil C51 makes some systematic changes (“mangling”) when converting the C name of a
subprogram to a linker symbol:

— If the subprogram passes some parameters in registers, C51 puts an underscore ' ' in front
of the name: “foo” becomes “ foo”. An underscore is not added for subprograms that pass
all parameters in fixed memory locations.

— Other cases under investigation. Information to be provided in a later issue.

Compiler options

Table 18 below lists those Keil C51 compiler directives (options and pragmas) that influence
the generated code and explains how Bound-T supports, or does not support, each directive.
Unless otherwise stated support for a directive X implies support for the negative form NOX of
the directive, too, when the negative form exists. Directives not listed are supported. Table 19
below lists the linker directives for BL51 and LX51 in a similar way.

If you have a pressing need to use a directive that Bound-T does not support now, please
contact Tidorum to discuss your needs.

Table 18: Keil C51 compiler directives

Directive Supported? Remarks

AREGS Yes Bound-T always models register accesses as “absolute” direct

addresses (relying on the specified register bank in use). Thus
the program can use relative (r0 .. r7) or absolute (internal
data address O .. 31) register addresses, as it pleases.

BROWSE Yes The format of AOMF “source browse” records is not described

in [16], thus Bound-T cannot make use of them and will skip
them while reading the AOMF program.

COMPACT Yes Assuming that the correct base address of the paged part of the

external data memory is set using the Bound-T -page option.

DEBUG Yes, and Bound-T needs the debugging information to interpret

recommended assertions and parameters and to annotate the analysis results
with source-code identifiers and locations.

DISABLE Yes

LARGE Yes

MDU_F120 Yes TBC These directives make use of additional computational units
M(D)B_Dims that are accessed as SFRs. Bound-T can analyse the code that

reads and writes the SFRs but has no knowledge of the
computations performed by these SFRs nor of how long these
computations can take.

Bound-T for 8051

Compiler Support: Keil 47

Directive Supported? Remarks

MOD517 No These directives make C51 use extended sets of forms of Data

MODA2 Pointer Registers. Bound-T supports only one DPTR register.

MODAB2 1 . if for th

MODC2 Please contact Tidorum if you need support for these

MODDP2 extensions.

MODH2

MODP2

AMAKE TBD

OBJECTADVANCED Yes TBC for shared entry code (may need “integrated” decoding).

OBJECTEXTEND Yes, and Increases the amount and quality of symbolic debugging

recommended information that Bound-T can use.

OMF2 Yes Bound-T can read programs in the absolute subset of the
OMF2 format.

ONEREGBANK TBD

REGISTERBANK Yes Assuming that the same register bank is set for Bound-T using
the Bound-T option -reg_bank and is used for all subprograms
in one analysis (in the analysed call-graph).

REGPARMS Yes Registers are statically addresses storage locations, so Bound-T
can analyse parameters passed in registers.

RET_PSTK No These directives make C51 generate nonstandard handling of

RET_XSTK return addresses.

ROM (SMALL) Yes These directives make C51 choose short or long forms of jump

ng gEA?I;\AGPEA;CT) and call instructions. Bound-T supports all forms.

ROM (D512K) No These directives make C51 use extended forms of jump and

ROM (D16M) call instructions that Bound-T does not support.

SMALL Yes

STRING Yes The value specified for this directive (CODE, XDATA, or FAR)
may affect the string-manipulation code, making it easier or
harder to analyse, but not impossible.

VARBANKING No Bound-T does not support data-memory extension by “data
banking”.

XCROM Yes

Table 19: Keil BL51/1LX51 linker options

Option BL51 [LX51 Supported? Remarks

BANKAREA o o No Bound-T does not support code banking.

BANKx . No Bound-T does not support code banking.

IBANKING

NOAJMP . o No Bound-T does not support code banking.

NOINDIRECTCALL

NOJMPTAB

OVERLAY o o Yes

48

Compiler Support: Keil

Bound-T for 8051

Option BL51 LX51 Supported? Remarks

PDATA . Yes Ensure that the value agrees with the value of
the Bound-T -page option. The default in
Bound-T is -page=0, corresponding to
PDATA(0).

SDCC - Small Device C Compiler

Introduction

The Small Device C Compiler is a free, open-source C compiler [13] for some small target
processors. It uses the ASxoox assembler and the ASLINK linker [21]. The system supports the
basic 8051 architecture and a few variants. The rest of this section is based on the SDCC User
Guide [14] and our own experiments and tests.

Program formats

SDCC and ASLINK can generate executable programs in Intel Hex form or in AOMF with Keil
extensions. References [19] and [18] explain how Bound-T supports these formats,
respectively. The AOMF format contains debugging information, but not in very nice form; for
one thing, all identifiers are converted to upper case. The Intel Hex format contains no
debugging information, but Bound-T can instead read the debugging information from the
“CDB?” file that SDCC also generates. CDB files have the correct (original) identifiers. Therefore
the combination Intel-Hex + CDB is recommended. Reference [22] explains how Bound-T
supports CDB.

Register banks

SDCC uses register bank O (internal data locations O .. 7) except for functions that are
explicitly marked with the using keyword to use some other bank. These are typically interrupt
handler functions. Thus SDCC is compatible with Bound-T in this respect; the default option in
Bound-T is -reg_bank=0 but it can be set to another value when an interrupt handler is
analysed.

Paged memory

By default SDCC places paged data (pdata) in the first page of external data memory. This is
also the default in Bound-T (default option -page=0).

Subprogram call and return

SDCC uses the ordinary call and return instructions, agreeing with Bound-T. The question of
function pointers is not yet explored.

SDCC often performs tail call optimization: when the last statement in a subprogram is a call of
another subprogram, this optimization implements the call as a jump to the callee, not as a call
instruction. Bound-T makes an effort to detect such jumps and to model them as calls.

Bound-T for 8051 Compiler Support: SDCC 49

Parameter passing

By default SDCC passes the first parameter in registers (DPL, DPH, B, A) and the remaining
parameters in statically allocated data memory. Bound-T can analyse scalar values that are
passed by value in this way.

SDCC uses the same four registers to pass values returned by functions.

By default SDCC makes the calling subprogram save and restore all registers (r0 .. r7), leaving
the callee free to use and modify these registers. Compilation options or source-code pragmas
can change this around so that the callee is responsible for saving and restoring registers. For
an SDCC-compiled program Bound-T initially assumes that any call may alter any register;
analysis of the callee may then reduce the set of altered registers. Thus Bound-T is not
sensitive to the choice of caller-save or callee-save in the compilation phase.

Stacks

For reentrant subprograms SDCC can use the processor stack for parameters and local
variables, in addition to return addresses. The option --xstack directs SDCC to use instead a
software-managed stack in the paged part of the external data memory, where more space may
be available. As explained above in section 7.1 Bound-T attempts to analyse computations that
use data on the SP stack but does not do so for the optional external-memory stack.

Naked functions

SDCC supports the keyword _ naked that declares a C function to be “naked” in the sense that
the compiler provides no prologue or epilogue code. Instead, the function is itself responsible
for saving and restoring registers, selecting the register bank, including a return instruction,
and so on. Bound-T supports such code except that it cannot track changes in the choice of
register bank.

Switch-case statements

Under investigation. Information to be provided in a later issue.

Library subprograms that violate the calling standard

Under investigation. Information to be provided in a later issue.

Symbolic debugging information

It seems that the SDDC compiler does not record the symbols for paged data variables in the
CDB file. For such symbols the CDB file contains only the linker record that gives the absolute
address of the variable, but not its type (size). For such symbols Bound-T by default assumes a
type of “unsigned octet” and a location in the external memory. See the command-line option -
defxu8 in Table 5 on page 15.

Compiler options

Table 20 below lists those SDCC compiler options that influence the generated code and
explains how Bound-T supports, or does not support, each option. Options not listed are
supported.

If you have a pressing need to use an option that Bound-T does not support now, please
contact Tidorum to discuss your needs.

50

Compiler Support: SDCC Bound-T for 8051

Table 20: SDCC compiler options

Option Supported? Remarks

--all-callee-saves Yes Bound-T is not (currently) sensitive to the difference
between caller-save or callee-save protocols.

--callee-saves Yes Bound-T is not (currently) sensitive to the difference
between caller-save or callee-save protocols.

--debug Yes, and Bound-T needs the debugging information to interpret
recommended assertions and parameters and to annotate the analysis
results with source-code identifiers and locations.

--fdollars-in-identifiers TBD May cause trouble in CDB files where dollar signs are used as
field delimiters.
--float-reent TBD TBD
--int-long-reent TBD TBD
--main-return Yes Without this option Bound-T will complain that the main
function contains an eternal loop (the “lock up” loop [14]).
-mP Only for The only SDCC target processor that Bound-T currently
P = mcs51 supports is the MCS51 = 8051.
--model-small Yes These --model options only affect the default memory space
--model-medium that the compiler chooses for variables and parameters.
--model-large TBD This --model option places variables in the external data

memory by default, which is not a problem for Bound-T.
However, [14] reports that the option also disables several
optimizations, which might complicate the program code
and hamper the analysis.

--nojtbound No Bound-T needs the boundary condition checks to find the
bounds on the jump table.

--out-fmt-ihx Yes Bound-T can read Intel Hex format. Use a CDB file for the
debugging information.

--out-fmt-s19 No Bound-T for the 8051 cannot now read Motorola S19 format.

--stack-auto Yes/No This option makes the compiler place all parameters and

local variables in a stack. Bound-T attempts to analyse
computations using data in the SP stack.

--xstack Yes/No This option makes the compiler place stacked parameters
and local variables in the external memory. At present
Bound-T cannot analyse computations using such data.

Other compilers

If you want to use Bound-T to analyze programs compiled with some other cross-compilers for
the 8051, please contact Tidorum to ask for advice. You can also check if your compiler can
generate an executable in some form that Bound-T can read (for example Intel-Hex form,
option -form=ihex), and if it can emit symbols for debugging in some form that can be
translated to Bound-T symbol-definition files (option -symbols filename) as described in the
Bound-T Reference Manual [2].

If the answer is yes to both questions, Bound-T should be able to analyse most code generated
by your compiler, with possible problems (as always) for switch-case statements, function
pointers, and library routines with special calling conventions.

Bound-T for 8051 Compiler Support: SDCC 51

8 WARNINGS AND ERRORS FOR THE 8051

8.1 Warning messages

The following Table 21 lists the Bound-T warning messages that are specific to the 8051 or
that have a specific interpretation for this processor. The messages are listed in alphabetical
order. Variable fields in the message are indicated by italic text and are ignored in the
alphabetical ordering.

For other warning messages (not in Table 21) you can find explanations from other sources:

The Bound-T Reference Manual [2] explains the generic warning messages, all of which
may appear also when the 8051 is the target.

The HRT-mode manual [5] explains the warnings that are specific to an HRT analysis.

The Technical Note on AOMF [18] explains the warnings that are specific to AOMF
program files.

The Technical Note on Intel Hex [19] explains the warnings that are specific to Intel Hex
program files.

The Technical Note on the SDCC CDB format [22] explains the warnings that are specific to
CDB symbol files from the SDCC compilation system.

Warnings specific to UBROF or (A)OMF2 files are not documented as UBROF and OMF2 are
proprietary and closed formats. If such warnings appear please contact Tidorum.

Table 21: Warning messages

Warning Message Meaning and Remedy

Assuming no misses in the CC2510 Reasons Bound-T does not model the flash cache in the Texas

flash-cache Instruments CC2510 device. The execution-time model
omits delays due to cache misses.

Action Note that the WCET bound for a CC2510 device is accurate
only if the clock frequency is less than 13 MHz. For higher
clock frequencies the WCET bound may be too small
because delays from cache misses are omitted.

Assuming that Register Bank is Reasons See the warning “PSW modified directly” below.
NOT changed

Action Ditto.

Call to address zero replaced by Reasons The instruction at A is a call to address zero. Such a call
return at A results in a processor reset (reboot). Bound-T ends the
analysis (of this execution path) at this call.

Action Take note that the given time and space bounds do not
include the time for the reset and reboot.

52 Warning messages Bound-T for 8051

Warning Message

Meaning and Remedy

CDB register not understood: R

Clearing PSW.P has no effect

Code Banks (Seg ID /= 0) not
supported

Reasons

Action

Reasons

Action

Reasons

Action

A symbol record in the CDB file [20] locates a variable in a
register called R, but Bound-T does not undstand which
8051 register is meant by R. Bound-T ignores the symbol
record.

The CDB file may use a version of the CDB format [20] that
Bound-T does not support [22] or it may be generated for
another target processor.

Fields 2 and 4 of the output line show the CDB file name
and line number respectively.

Please report the problem to Tidorum.

This instruction is clr PSW.P, that is, it clears the parity flag
P in the PSW. However, the instruction has no effect
because the next cycle makes P reflect the parity of A.

Consider why the program contains this useless instruction.

The program seems to use “code banking”. Bound-T does
not support code banking.

Change the program to avoid code banking.

Complementing PSW.P has no
effect

Reasons

Action

This instruction is cpl PSW.P, that is, it inverts the parity flag
P in the PsSw. However, the instruction has no effect
because the next cycle makes P reflect the parity of A.

Consider why the program contains this useless instruction.

Data not loaded into segment of
type T

Move from a location to the same
location

PSW modified directly
followed by

Assuming that Register Bank is
NOT changed

PSW Register Bank bits modified

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

Action

The memory image of the targe program, as defined in the
executable file, contains some data or code for a segment of
type T, not supported in Bound-T.

Take note that the analysis does not use this data or code.

This instruction is a mov where the source and destination
are the same cell. Thus, the instruction has no effect, unless
the cells are SFRs where reading and writing has some side
effect on peripheral devices.

Check that the instruction is meaningful in this program.

An instruction stores a new value into the PSW (the whole
octet). Bound-T assumes that this does not change the
register bank selection.

Verify that Bound-T's assumption is correct. Otherwise take
note that the analysis may fail to follow the flow of data
within the general registers.

A bit (Boolean) instruction stores a new value into one of
the register bank selection birs RSO or RS1 in the PSW.

Take note that the analysis may fail to follow the flow of
data within the general registers, because another register
bank is selected.

Bound-T for 8051

Warning messages 53

Warning Message Meaning and Remedy

Quit-flag ignored on return Reasons The partial evaluation of a special routine (such as a switch
handler, see section 7.3, page 46) has resolved a return
instruction into a normal return, not into a jump. In such a
case, Bound-T continues the partial evaluation, rather than
quitting it.

Action Check that the control-flow graph that results from the
partial evaluation corresponds to the target program.

Setting PSW.P has no effect Reasons This instruction is setb PSW.P, that is, it sets the parity flag P
in the PSW. However, the instruction has no effect because
the next cycle makes P reflect the parity of A.

Action Consider why the program contains this useless instruction.

Stack initialized: sp = V Reasons This instruction assigns a statically known constant value V
to the stack pointer SP. Bound-T assumes that this instruc-
tion initializes the stack area, and thus it assumes that the
local stack height becomes zero at this point.

Action Note that any instructions using SP that occur earlier in this
subprogram may be using a different stack area.

Store via pointer to bit-addressable Reasons This instruction stores a value in a memory location using a

octet at A dynamically computed address (a pointer). Bound-T has
resolved the address to A and noted that this is a bit-
addressable memory octet. The current design of Bound-T
means that the analysis ignores the effect of this instruciton
on the one-bit cells within the octet at address A.

Action Note that the analysis of the values of the bits within the
memory octet at A may be wrong. If these bits are impor-
tant in the analysis of loop bounds or the feasibility of
execution paths, the resulting execution-time bounds and
stack-usage bounds may be wrong too.

The special routine R at A will be ~ Reasons The program executes a call or jump to a Keil library

simulated routine called R, with entry address A, and this routine has
a special role which means that it must be analysed using
simulation (partial evaluation), not as a normal
subprogram. See section 7.3, page 46 for the Keil switch
handler routines.

Action Note that the flow-graph of the (application) subprogram
under analysis will be expanded to contain the result of the
simulation of the special routine R.

8.2 Error messages

The following Table 22 lists the Bound-T error messages that are specific to the 8051 or that
have a specific interpretation for this processor. The messages are listed in alphabetical order.
Variable fields in the message are indicated by italic text and are ignored in the alphabetical
order.

For other warning messages (not in this table) you can find explanations from other sources:

+ The Bound-T Reference Manual [2] explains the generic error messages, all of which may
appear also when the 8051 is the target.

54 Error messages Bound-T for 8051

« The HRT-mode manual [5] explains the error messages that are specific to an HRT analysis.

+ The Technical Note on AOMF [18] explains the error messages that are specific to AOMF

program files.

+ The Technical Note on Intel Hex [19] explains the error messages that are specific to Intel

Hex program files.

+ The Technical Note on the SDCC CDB format [22] explains the error messages that are
specific to CDB symbol files from the SDCC compilation system.

Error messages specific to UBROF or (A)OMF2 files are not documented as UBROF and OMF2
are proprietary and closed formats. If such errors appear please contact Tidorum.

Table 22: Error messages

Error Message

Meaning and Remedy

Address out of range for M memory: A Problem

Reasons

Solution

Cannot determine format of program file Problem

Reasons

Solution

The analysis tried to use a memory location at
address A, in memory of type M (Code, Internal
Data, External Data, or Paged Data), but A is not in
the range of addresses for this type of memory.

The debugging information in the program file
wrongly claims that a variable in memory M has
address A; or Bound-T has overestimated the possible
addresses while analysing a dynamic memory
reference (a memory reference with a computed
address).

Please inform Tidorum.

In the absence of a -form option Bound-T has tried
but failed to determine the format (type) of the
target program file by examining the contents of the
file itself.

Perhaps the program file has some other format,
neither AOMF, AOMF2, Intel Hex, nor UBROF.
Perhaps the program file is damaged.

Make sure that your target program file has a
supported format, and use a -form option to specify
the format for Bound-T.

Cannot read file Problem

Reasons

Solution

Code Banking is not supported Problem

Reasons

The target program executable file is not readable.

The file may be read-protected (insufficient access
rights) or the command-line may mistakenly name a
directory or some special file that cannot be read.

Correct the file access permissions or correct the file-
name on the command line.

The program seems to be using code banking: an
extension to the 8051 program memory architecture
that allows more than 64 Ko of code. However,
Bound-T does not currently support code banking.

The program is written and compiled with code
banking enabled.

Bound-T for 8051 Error messages 55

Error Message

Meaning and Remedy

File not found

Solution

Problem

Reasons

Solution

Try to make the program fit in 64 Ko without code
banking. Perhaps divide the program (for analysis
purposes) into smaller parts that do fit in 64 Ko.

The program file named on the command line was
not found and could not be opened.

Perhaps the file name is mistyped; perhaps the file is
in a directory that is not accessible.

Correct the file name on the command line. Set
directory access rights to allow access to the file.

Further CDB file ignored: filename

Ignoring asserted “returns” values (must

be single value O .. 2)

Invalid register number R for variable

No instruction loaded at this address

Problem

Reasons

Solution

Problem

Reasons
Solution

Problem

Reasons

Solution

Problem

Reasons

Solution

The command line has more than one -cdb option.
This filename is mentioned in the second or later -cdb
option and is therefore ignored; the file is not read.

Mistake on the command line.

Correct the command line. If you have a persistent
need to read several CDB files in the same run of
Bound-T, please inform Tidorum.

An assertion on the “returns” property specifies a
range of values, or a single value outside the valid
range O .. 2.

Error in the assertion.
Correct the assertion. See section 3.7.

The UBROF file claims that a program variable is
stored in register number R, but R is not the number
of an 8051 register, as Bound-T understands it.

Incompatible (too old or too new) version of UBROF,
or an UBROF file compiled for another target
processor.

Ensure that the program is compiled for the 8051
and stored in a version of UBROF that Bound-T
supports. If the problem persists, please inform
Tidorum.

According to Bound-T's analysis, the program fetches
an instruction from a program memory address that
is blank; that is, the target program file does not load
any code at this address.

The target program file is incomplete; or the
program itself stores something at this address at
run-time using some (device-specific) method; or the
command line specifies a root-subprogram address
that points to a blank part of the program memory;
or Bound-T's program-flow analysis is in error.

The most common kind of error in the program-flow
analysis is an over-estimation of the possible target
addresses of a dynamic jump or call.

Prepare a complete target-program file; avoid self-
modifying code; give the correct root-subprogram
address; or contact Tidorum if the error seems to be
in the program-flow analysis.

56

Error messages

Bound-T for 8051

Error Message

Meaning and Remedy

Patching is not implemented for 8051

Paged-address base must be a multiple
of 256

Reading blank code memory at address
A, using zero value

Reading code memory at invalid address
A, using zero value

SP-relative offset too large: D

Problem

Reasons
Solution

Problem

Reasons

Solution

Problem

Reasons

Solution

Problem

Reasons

Solution

Problem

Bound-T cannot implement the command-line option
-patch because program patching is not implemented
for the 8051 target.

The -patch option is used on the command line.
Remove the -patch option.

The base address given in the command-line option -
page=address is not a multiple of 256 (octets), but it
should be.

Error in command line.

Correct the command line. The address given in
-page must be a hexadecimal number with “00” as
the last two digits.

While analysing a move instruction that reads data
from code memory, Bound-T found that the content
of the computed address A in code memory (which
may be just one of the possible addresses) is not
defined in the target program file. Had it been
defined, Bound-T would have continued the analysis
with the known code-memory value at this address,
but now it will limp on with a zero value instead.

The target program file is incomplete; or the
program itself stores something at this address at
run-time using some (device-specific) method; or the
program computes the move address in a way that
Bound-T cannot analyse, perhaps involving
deliberate overflow.

Disable arithmetic analysis of this subprogram. Assert
bounds on the subprogram's loops.

While analysing a move instruction that reads data
from code memory, Bound-T found that the
computed address A in code memory (which may be
just one of the possible addresses) is out of range.
Had it been in range, Bound-T would have continued
the analysis with the known code-memory value at
this address, but now it will limp on with a zero
value instead.

The target program is probably computing the move
address in a way that Bound-T cannot analyse,
perhaps involving deliberate overflow.

Disable arithmetic analysis of this subprogram. Assert
bounds on the subprogram's loops.

Bound-T is analysing an instruction that accesses
memory indirectly using a dynamically computed
address. Bound-T has determined that the address is
computed by adding an offset D to the SP register.
However, D is outside the valid range for 8-bit stack
offsets.

Bound-T for 8051

Error messages 57

Error Message

Meaning and Remedy

Reasons

Solution

Stack height at return is out of range: H Problem

Reasons

Solution

Stack offset out of range: F Problem

Reasons

Solution

The special routine R at A is not Problem
supported

Reasons

Solution

The program may be relying on overflow in its com-
putation of the offset. For example, the offset may be
computed as the sum of two positive numbers less
than 28 = 256 but giving a total of 256 or more. In
the real processor, overflow will bring the total back
below 256, but Bound-T's analysis does not consider
overflow.

Change the program to avoid such offset compu-
tations. Alternatively, disable arithmetic analysis of
this subprogram, assert bounds on the subprogram's
loops, and note that the stack usage computed for
this subprogram may be incorrect.

Bound-T is analysing a ret instruction as a possible
dynamic jump. The first step in this analysis shows
that the local stack height at this instruction is H.
However, H is outside the valid range for 8-bit stack
heights.

The program may be relying on overflow in its mani-
pulation of SP. For example, it may be decreasing SP
by adding a number greater than 127 to SP.

Change the program to avoid such SP manipulations.
Use subb to decrease SP. Alternatively, avoid using ret
as a dynamic jump so that you can run Bound-T with
the option -returns=static, the equivalent assertion on
the “returns” property, or the equivalent instruction
role assertion on this ret.

While analysing a pop or push instruction (or some
other reference to data on the stack) Bound-T finds
that the computed offset F, relative to the stack
pointer SP, is out of range.

The subprogram may be changing SP in some way
that Bound-T cannot analyse, perhaps relying on
overflow.

Change the program to avoid such SP manipulations.
Alternatively, disable arithmetic analysis of this
subprogram, assert bounds on the subprogram's
loops, and note that the stack usage computed for
this subprogram may be incorrect.

The program executes a call or jump to a compiler
library routine called R, with entry address A, and
this routine has a special role which means that it
cannot be analysed as a normal subprogram. In fact,
Bound-T cannot analyse this routine at all.

At present this error message should not appear.
However, this may change as Bound-T evolves.

Please inform Tidorum of the problem.

58 Error messages

Bound-T for 8051

Error Message

Meaning and Remedy

Truncated instruction Problem According to Bound-T's analysis, the program fetches
a multi-octet instruction from a program memory
address that contains only part of the instruction;
that is, the target program file does not load code
into all the octet addresses occupied by the
instruction.

Reasons Same as for the error “No instruction loaded at this
address”, which see.
Solution Ditto.

Unacceptable paged address base: Problem In this command-line -page option, the string B is not

-paged=B a valid (hexadecimal) base address for the paged
addressing mode.

Reasons Error in command line.
Solution Correct the command line.

Unacceptable value for -movx:C Problem The value C specified as the number of cycles taken
for a movx instruction in the nRF24E1 device is not
an integer in the range 2 .. 9.

Reasons Error in command line option -movx=C.
Solution Correct the command line.

Unexpected end of file Problem The target program file (in AOMF, Intel-Hex, or
UBROF form) is not complete; the file ended in the

or . S
middle of reading it.

Unexpected end of AOMF file Reasons The target program file is damaged; or uses a file

or format or a format-variant that Bound-T cannot read;

Unexpected end of Intel-Hex file or Bound-T is trying to read the. file w%th the wrong
format, perhaps because of a mistake in a -form

or option.

Unexpected end of UBROF file Solution ~ Obtain an undamaged program file, in a format that
Bound-T can read, and use the correct -form option.

Unknown compiler: -compiler=C Problem In this command-line -compiler option, the string C is
not the name of a cross-compiler that Bound-T
knows about for the 8051.

Reasons Mistake in the command line.
Solution Correct the command line. See Table 4.

Unknown file format: -form=F Problem In this command-line -form option, the string F is not
the name of a program-file format for the 8051 that
Bound-T knows about.

Reasons Mistake in the command line.
Solution Correct the command line. See Table 6.

Unknown model for “returns”: Problem In this command-line -returns or -return option, the

-returns=R string R is not one of the values that Bound-T
accepts: dynamic or static.

Reasons Mistake in the command line.
Solution Correct the command line.
Bound-T for 8051 Error messages 59

Error Message

Meaning and Remedy

Unknown or invalid SP net change:
-spch=amount

Unknown register bank: -reg bank=B

Variable address has no memory
symbol: “A”

Variable address is too short: “A”

Variable address not understood: “A”

Variable address starts with unknown
memory symbol: “A”

Problem

Reasons
Solution

Problem

Reasons

Solution

Problem

Reasons

Solution

Problem

Reasons

Solution

Problem

Reasons

Solution

Problem

Reasons

Solution

In this command-line -spch option, the string amount
is not a numeric literal (perhaps with a leading sign),
or the number is out of range (the SP stack is less
than 256 octets).

Mistake in the command line.
Correct the command line.

In this command-line -reg_bank option, the string B is
not the number of a register bank in the 8051, that
is, not a number from O to 3.

Mistake in the command line.
Correct the command line.

In an assertion that refers to a variable by its address
A the address string does not start with a symbol for
the memory space, followed by a colon.

Error in the assertion; wrong syntax for variable
address.

Correct the assertion. See section 3.4.

In an assertion that refers to a variable by its address
A the address string is too short to be interpreted as
the address of a variable in the 8051.

Error in the assertion; wrong syntax for variable
address.

Correct the assertion. See section 3.4.

In an assertion that refers to a variable by its address
A the address string does not have the right form or
specifies an address that is out of range for this
memory space.

Error in the assertion; wrong syntax for variable
address.

Correct the assertion. See section 3.4.

In an assertion that refers to a variable by its address
string A the first character, which should be a
symbol for the memory space, is not one of the
known memory symbols C, D, X, B.

Error in the assertion; wrong syntax for variable
address.

Correct the assertion. See section 3.4.

60 Error messages

Bound-T for 8051

Tidorum Ltd

Tiirasaarentie 32
FI-00200 Helsinki
Finland

www.tidorum.fi
info@tidorum.fi

Tel. +358 (0) 40 563 9186
Fax +358 (0) 42 563 9186
VAT FI 18688130

Bound-T for 8051

61

mailto:info@tidorum.fi
http://www.tidorum.fi/

	1Introduction
	1.1Purpose and scope
	1.2Overview
	How it's done
	Necessary earlier knowledge
	Contents

	1.3References
	[1]Bound-T User Guide.
Tidorum Ltd, Doc. ref. TR-UG-001.
http://www.bound-t.com/manuals/user-guide.pdf.
	[2]Bound-T Reference Manual.
Tidorum Ltd, Doc. ref. TR-RM-001.
http://www.bound-t.com/manuals/ref-manual.pdf.
	[3]Bound-T Assertion Language Manual.
Tidorum Ltd, Doc. ref. TR-UM-003.
http://www.bound-t.com/manuals/assertion-lang.pdf.
	[4]find-marks User Manual.
Tidorum Ltd, Doc. ref. TR-UM-004.
http://www.bound-t.com/manuals/find-marks-manual.pdf.
	[5]Using Bound-T in HRT Mode.
Tidorum Ltd., Doc. ref. TR-UM-002.
http://www.bound-t.com/manuals/hrt-manual.pdf.
	[6]8-bit Embedded Controller Handbook
Intel © 1990.
	[7]The C51 Primer.
Phaedrus Systems, Chris Hills (ed.), Edition 3.6, 17 January 2006.
http://www.phaedsys.demon.co.uk/chris/papers/QuEST4_1.pdf.
	[8]C8051F120/1/2/3/4/5/6/7, C8051F130/1/2/3: Mixed Signal ISP Flash MCU Family.
Silicon Laboratories, Rev 1.3 8/04.
	[9]IAR Systems. http://www.iar.com/.
	[10]8051 IAR C/C++ Compiler Reference Guide for the MCS-51 Microcontroller Family.
IAR Systems, part number C8051-3, third edition (July 2005).
	[11]Keil – an ARM company. http://www.keil.com/.
	[12]Keil Cx51 User's Guide.
CHM file in C51 version 8.09.
	[13]Small Device C Compiler (SDCC). http://sdcc.sourceforge.net/.
	[14]SDCC Compiler User Guide.
SDCC 2.7.0, 2007-05-29, Revision 4818.
	[15]External Product Specification for the MCS-51 Object Module Format.
Intel Corporation, V5.0, Sept 05, 1982.
	[16]Additions to the 8051 Object Module Format (OMF-51).
Keil Elektronik GmbH, 05/07/2000.
	[17]External Product Specification for the Object Module Format: 251/MX51 Specification (OMF2 Format).
Keil Software, Rev 2.21, 30-Jun-2006.
	[18]AOMF with Keil C51 extensions as input to Bound-T.
Tidorum Ltd, Doc. ref. TR-TN-AOMF-001.
http://www.bound-t.com/tech_notes/tn-aomf.pdf.
	[19]Intel® Hex as input to Bound-T.
Tidorum Ltd, Doc. ref. TR-TN-IHEX-001.
http://www.bound-t.com/tech_notes/tn-ihex.pdf.
	[20]CDB File Format.
Lenny Story, SDCC Development Team, 2003-03-21.
	[21]ASxxxx Assemblers and ASLINK Relocating Linker.
Alan R. Baldwin, Kent State University, Version 2.0, August 1998.
	[22]CDB from SDCC as input to Bound-T.
Tidorum Ltd, Doc. ref. TR-TN-CDB-001.
http://www.bound-t.com/tech_notes/tn-cdb.pdf.
	[23]Analysing Switch-Case Tables by Partial Evaluation.
Niklas Holsti, 7th International Workshop on Worst-Case Execution Time Analysis (WCET'2007), Pisa, Italy, July 3, 2007.
http://www.tidorum.fi/bound-t/reports/wcet2007/simcase.pdf
or http://www.irit.fr/wcet2007/wcet07_proceedings.pdf.
	[24]CC2510F8: 2.4 GHz Radio Transceiver, 8051 MCU and 8 kB Flash memory.
http://focus.ti.com/docs/prod/folders/print/cc2510f8.html
	[25]nRF24E1 Transceiver / MCU / ADC – Nordic Semiconductor nRF24E1 – System on Chip with 8051 MCU.
http://www.nordicsemi.com/index.cfm?obj=product&act=display&pro=79
	[26]nRF24LE1 – Ultra low power wireless System-on-Chip solution
http://www.nordicsemi.com/index.cfm?obj=product&act=display&pro=95

	1.4Typographic conventions
	1.5Abbreviations and acronyms

	2Using Bound-T for 8051
	2.1Input formats
	2.2Command arguments and options
	Command line form
	Naming root subprpograms
	Options in general
	Target device selection options
	Compiler selection options
	Options for the IAR compiler
	Options for the Keil compiler
	Options for the SDCC compiler
	Input format selection options
	Instruction modelling options
	8051-specific -trace options
	8051-specific -warn options

	2.3Outputs
	Basic output format
	Units of measurement
	Outputs specific to the 8051

	2.4Example
	The program
	Analysis for execution time
	Analysis for stack usage

	3Writing Assertions
	3.1Introduction
	3.2Identifying subprograms by address
	3.3Code-address offsets
	3.4Identifying variables by address
	Spaces and sizes
	Register names and flag names
	Numeric addresses
	Data in the stack
	Examples
	Data in code memory

	3.5Time and space units
	3.6Instruction roles
	3.7Properties

	4The 8051 and Timing Analysis
	4.1Introduction
	4.2The 8051 processor architecture
	Internal data memory
	External data memory
	Program memory
	Arithmetic
	Registers

	4.3Static execution-time analysis of 8051 programs

	5Supported 8051 Features
	5.1Overview
	General support level
	Reminder of generic limitations

	5.2Main assumptions
	5.3Instructions and computations
	Registers and memory
	Bit-addressed internal data memory
	External data memory
	Data from the program memory
	Computations

	5.4Some consequences of the limited arithmetic model
	Arithmetic model without underflow and overflow
	Unsigned interpretation of literal operands

	5.5Time accuracy and approximations

	6Subprogram Calls and Parameters
	6.1Subprogram calls in the 8051
	Static calls
	Dynamic calls and function pointers

	6.2Parameter passing
	Statically allocated parameters and locals
	Register parameters
	Stack-allocated parameters and local variables
	Registers and memory locations modified by a call

	7Compiler Support
	7.1Important compiler features
	7.2IAR C compiler
	Introduction
	C or C++
	Program formats
	Register banks
	Paged memory
	Subprogram call and return
	Calling conventions and parameter passing
	Stacks
	Switch-case statements
	Library subprograms that violate the calling standard
	Compiler options

	7.3Keil C compiler
	Introduction
	Program formats
	Register banks
	Paged memory
	Subprogram call and return
	Parameter passing
	Stacks and reentrant subprograms
	Switch-case statements
	Library subprograms that violate the calling standard
	Symbolic debugging information
	Compiler options

	7.4SDCC – Small Device C Compiler
	Introduction
	Program formats
	Register banks
	Paged memory
	Subprogram call and return
	Parameter passing
	Stacks
	Naked functions
	Switch-case statements
	Library subprograms that violate the calling standard
	Symbolic debugging information
	Compiler options

	7.5Other compilers

	8Warnings and Errors for the 8051
	8.1Warning messages
	8.2Error messages

