
Bound-T timing analysis tool

Using Bound-T in
HRT Mode

Version 1
2005-04-06 Tidorum Ltd.

Tid
rum

Tidorum Ltd
www.tidorum.fi
Tiirasaarentie 32
FI-00200 Helsinki
Finland

This document was written at Space Systems Finland Ltd by Niklas Holsti, Thomas Långbacka and
Sami Saarinen.
The document is currently maintained at Tidorum Ltd by Niklas Holsti.

Copyright 2005 Tidorum Ltd.
This document can be copied and distributed freely, in any format, provided that it is kept entire,
with no deletions, insertions or changes, and that this copyright notice is included, prominently
displayed, and made applicable to all copies.

Document reference: TR-UM-002
Document issue: Version 1
Document issue date: 2005-04-06
Bound-T version: 2
Web location: http://www.bound-t.com/hrt-manual.pdf

Trademarks:
Bound-T is a trademark of Tidorum Ltd.

Credits:
This document was created with the free OpenOffice.org software (http://www.openoffice.org/).

ii

Tid
rum

Preface

The information in this document is believed to be complete and accurate when the
document is issued. However, Tidorum Ltd. reserves the right to make future changes in
the technical specifications of the product Bound-T described here. For the most recent
version of this document, please refer to the web-site http://www.tidorum.fi/.

If you have comments or questions on this document or the product, they are welcome via
electronic mail to the address info@tidorum.fi, or via telephone or ordinary mail to the
address given below.

Please note that our office is located in the time-zone GMT + 2 hours, and office hours are
9:00 - 16:00 local time. In summer "daylight savings time" makes the local time equal
GMT + 3 hours.

Cordially,

Tidorum Ltd.

Telephone: +358 (0) 40 563 9186
Web: http://www.tidorum.fi/
E-mail: info@tidorum.fi

Mail: Tiirasaarentie 32
FI-00200 Helsinki
Finland

Credits

The Bound-T tool was first developed by Space Systems Finland Ltd. (http://www.ssf.fi/)
with support from the European Space Agency (ESA/ESTEC). Free software has played an
important role; we are grateful to Ada Core Technology for the Gnat compiler, to William
Pugh and his group at the University of Maryland for the Omega system, to Michel
Berkelaar for the lp-solve program, to Mats Weber and EPFL-DI-LGL for Ada component
libraries, and to Ted Dennison for the OpenToken package. Call-graphs and flow-graphs
from Bound-T are displayed with the dot tool from AT&T Bell Laboratories.

iii

This page is blank on purpose.

iv

Contents

1 INTRODUCTION 1
1.1 What Bound-T Is..1
1.2 Hard Real Time Programming Model..1
1.3 Overview of this Manual..1
1.4 References...2

2 THE HRT MODEL 3
2.1 Introduction..3
2.2 Threads..3
2.3 Protected Objects..4
2.4 An Example HRT program...5
2.5 The Threads and Protected Objects File...6
2.6 The Execution Skeleton...8

3 USING HRT MODE 9
3.1 Inputs and Outputs..9
3.2 Command Line...9
3.3 HRT Mode Operations...10
3.4 Example ESF...11

4 SYNTAX OF TPO FILE 13

5 SYNTAX OF EXECUTION SKELETON FILE 15

6 TROUBLESHOOTING 18
6.1 Bound-T Warning Messages for HRT Mode...18
6.2 Bound-T Error Messages for HRT Mode...18

7 GLOSSARY 21

Tables
Table 1: HRT-Related Warning Messages...18
Table 2: HRT-Related Error Messages..18

Figures
Figure 1: Structure of the Example HRT Program...5
Figure 2: Inputs and Outputs for Bound-T in HRT Mode..9

v

This page is blank on purpose.

vi

1 INTRODUCTION

1.1 What Bound-T Is

Bound-T is a tool for developing real-time software - computer programs that must run fast
enough, without fail. The main function of Bound-T is to compute an upper bound on the
worst-case execution time (WCET) of a program or subprogram.

The function, "bound time", inspired the name "Bound-T", pronounced as "bounty" or
"bound-tee".

The basic functions and usage of Bound-T are described in the Bound-T User Manual
(reference [1]).

1.2 Hard Real Time Programming Model

Bound-T contains special high-level support for the programs that follow the Hard-Real-
Time (HRT) programming model, an architectural style for concurrent, real-time programs
originally defined by the European Space Agency.

The HRT methodology consists of

• a formalism for modelling real-time programs, and

• a method for analysing such models and determine if they are schedulable, that is, if all
deadlines can be met.

HRT schedulability analysis needs upper bounds on the WCET of the executable objects in
the HRT program, which is where Bound-T steps in. For an HRT program, Bound-T can
generate so-called execution skeletons with detailed WCET information as required by
HRT schedulability analysis.

This manual explains the "HRT mode" of Bound-T: what it is and how to use it. We
assume that the reader is already familiar with the basic functions of Bound-T as explained
in the User Manual [1]. The HRT mode is an extension of the basic Bound-T functions.
The HRT mode is activated by a Bound-T command that contains the -hrt option. Without
the -hrt option we say that Bound-T is used in the "basic mode".

1.3 Overview of this Manual

What the reader should know

We assume that the reader is familiar with the Bound-T User Manual [1] and the
background knowledge it requires.

This manual will focus on the HRT modelling formalism and how to use Bound-T for
WCET analysis of HRT programs. The schedulability analysis is not addressed. It is
usually an application of deadline-monotonic, fixed-priority, preemptive scheduling with
priority ceiling inheritance.

Using Bound-T in HRT Mode Introduction 1

The manual is organised into chapters as follows:

• Chapter 2 introduces the HRT model, including the concepts of thread, resource object
and synchronisation object.

• Chapter 3 explains how to execute Bound-T in HRT mode.

• Chapter 4 gives the syntax of the Threads and Protected Objects File (TPOF), which
describes the structure of an HRT program and tells Bound-T which subprograms
should be analysed in HRT mode.

• Chapter 5 gives the syntax of the Execution Skeleton File (ESF), which is the main
output from Bound-T in HRT mode. The ESF augments the TPOF with the worst-case
execution-time bounds and worst-case execution path that Bound-T has found.

• HRT-related warning messages and error messages are listed in Chapter 6, with
explanations and advice on solving the problems.

• A glossary of HRT-related terms in Chapter 7 concludes the manual.

1.4 References

[1] Bound-T User Manual.
Tidorum Ltd., Doc.ref. TR-UM-001.
http://www.bound-t.com/user-manual.pdf

2 Introduction Using Bound-T in HRT Mode

2 THE HRT MODEL

2.1 Introduction

The HRT (Hard Real Time) methodology consists of

• a formalism for modelling real-time programs, and

• a method for analysing such models and determine if they are schedulable, that is, if all
deadlines can be met.

In the HRT model, a real-time program contains a fixed set of threads and a fixed set of
protected objects. A thread is an active, executing entity (task, process) while a protected
object is a passive, data entity, not far removed from a monitor. The threads interact only
by calling entries in protected objects.

The HRT model is quite similar to the “Ravenscar profile” for Ada programs, but is not
dependent on programming language or real-time kernel.

The Bound-T user may have to map the HRT concepts to the primitives of the particular
programming language and real-time kernel used by the target program. Therefore, we
describe the concepts of thread and protected object in some detail.

2.2 Threads

Root subprograms

A thread is a sequential process, executing concurrently (in the logical sense, at least) with
other threads. In the program, a thread has a root subprogram representing the top level of
the sequential algorithm. The root subprogram usually contains an endless loop of the form

loop
wait for next activation signal or activation perod;
perform one activation of the thread;

end loop;

The root subprogram can call other subprograms, so the control flow of the thread is by no
means confined to the root subprogram.

In some real-time kernels a loop as above is not used, or is used only for background
threads. Instead, the kernel invokes the root subprogram for each activation of the thread,
and the root subprogram returns to the kernel when the activation is completed. This is
often the case for threads activated by interrupts (interrupt handlers).

Cyclic or sporadic

A thread is either a cyclic thread, an interrupt-sporadic thread or a software-sporadic
thread:

• A cyclic thread is activated periodically with a constant period particular to the thread.

• A software-sporadic thread is activated by some other thread(s) when needed, but with
some minimum time interval between activations, which again is particular to the
thread.

Using Bound-T in HRT Mode The HRT Model 3

• An interrupt-sporadic thread is activated by a hardware interrupt, again with some
minimum interval.

Once a thread is activated, it performs some computation (perhaps including input and
output) and then suspends itself to wait for the next activation. As part of the computation,
the thread may call entries of protected objects.

For any thread, the HRT model assumes knowledge of the worst-case execution time
(WCET) of one activation, and also of the protected entries called by the thread.

From the programming language point of view, an Ada task corresponds exactly to an
HRT thread, but in HRT the inter-thread communication is restricted and not all Ada
facilities are allowed. POSIX threads can also be seen as HRT threads.

2.3 Protected Objects

A protected object is a means for controlled interaction between threads, and is either a
resource object or a synchronisation object.

Resource objects

A resource object provides a set of entries (services, subprograms) that let two or more
threads access some shared data in mutual exclusion. That is, while a thread is executing
an entry of a protected object, no other thread can access the same protected object.

Synchronisation objects

A synchronisation object provides the means to activate a sporadic thread. It provides two
entries: a "wait for activation" entry for use by the sporadic thread, and an "activate" entry
for use by the activating threads.

Each synchronisation object is statically associated with a particular software-sporadic
thread, and vice versa. In other words, a given software-sporadic thread always waits on its
"own", fixed synchronisation object, and each synchronisation object is "owned" by some
software-sporadic thread.

A protected entry (i.e. an entry in a protected object) can call other protected entries as
long as the called entries are not blocking (have no barriers).

For each protected entry, the HRT model assumes knowledge of the WCET of the entry
and which other protected entries it calls.

From the programming language point of view, an Ada protected object corresponds to an
HRT protected object. However, as a matter of terminology, note that only the "wait for
activation" entry of an HRT resource object corresponds to an Ada entry; other HRT
"entries" correspond to protected subprograms in Ada. Furthermore, HRT allows only a
subset of the Ada facilities.

POSIX mutex and semaphore objects can also be used as HRT resource objects and
synchronisation objects, respectively. Again, the HRT model places restrictions on how
these POSIX objects can be used.

4 The HRT Model Using Bound-T in HRT Mode

2.4 An Example HRT program

To illustrate the HRT concepts and the Bound-T HRT mode, consider a program
Monitor_Example that contains three threads:

• The Sampler thread runs cyclically at 100 Hz and reads sensor samples. It can raise an
alarm if the value of a sample is above a threshold.

• The Monitor thread runs cyclically at 1 Hz to monitor the average value of the samples.
It can raise an alarm if the average value is below a threshold.

• The Reporter thread is a sporadic thread that is activated when an alarm is raised, and is
responsible for handling (reporting) the alarm.

These threads interact via two protected objects as follows:

• The protected object Averager is a resource object that provides two entries,
Averager_Add to add a sample to a cumulative sum and count, and Averager_Get to
return the average and reset the cumulative sum and count.

• The protected object Alarmer is a synchronization object that provides two entries,
Alarmer_Signal to raise an alarm and store an alarm value, and Alarmer_Wait to wait
until an alarm is raised and return the alarm value.

The following figure illustrates the interaction between the threads and protected objects in
this example.

Figure 1: Structure of the Example HRT Program

Using Bound-T in HRT Mode The HRT Model 5

Averager

Add

Get

Alarmer

Wait

Reporter

100 Hz

1 Hz sporadic

Monitor

Sampler

Signal

2.5 The Threads and Protected Objects File

When Bound-T is used in the HRT mode to analyse a target program, in addition to the
target program itself the user provides an input file that lists the threads and protected
objects in the HRT structure of the target program. This file is called the TPO file (Threads
and Protected Objects file) or TPOF.

The TPOF is a text file written in a specific syntax which is defined in Chapter 4 but which
we hope is rather self-explanatory, given the concepts of the HRT model.

Example TPOF

A TPOF for the Monitor_Example program could be as follows; we have complicated the
Sampler thread by defining two modes for it. (The underscores prefixed to thread and entry
names compensate for underscores added by the compiler before linking; they are not a
specific feature of the TPOF or Bound-T.)

program Monitor_Example

-- Monitor: Tiny HRT Example for Bound-T
--
-- This program has three threads and two protected objects,
-- one resource object and one synchro object.

protected Averager
--
-- The Averager object accumulates data samples into a sum
-- and counts. Then, the average value can be read out,
-- which also resets the sum and count.
--

 type resource
 entry _Averager_Add
 entry _Averager_Get

end Averager

protected Alarmer
--
-- The Alarmer object provides a one-place buffer for an
-- alarm value and Wait and Signal operations to wait for
-- and signal an alarm.

 type synchro

 entry _Alarmer_Signal
 barrier
 entry _Alarmer_Wait

end Alarmer

thread Sampler
--
-- This thread runs at 100 Hz in two modes, slow and fast.
--

6 The HRT Model Using Bound-T in HRT Mode

-- In the fast mode, it samples 10 data points and sends
-- them to Averager.
--
-- In the slow mode, it samples one datum and sends it to
-- Averager. In addition, if this datum is above 290,
-- it signals an alarm.
--
 type cyclic
 root _Sampler

end Sampler

thread _Monitor
--
-- Monitors the average sampled value at 1 Hz.
-- If the average is below 50, signals an alarm.
--
 type cyclic

end _Monitor

thread _Reporter
--
-- Sporadic thread to report alarms.
--
 type sporadic

end _Reporter

end Monitor_Example

Example C code

To illustrate the relationship between the TPOF and the actual code, here is a possible C
implementation of the Sampler thread, in the form of a subprogram that represents one
cycle of the thread:

void Sampler (void)
/* This thread runs at 100 Hz in two modes, slow and fast.
 *
 * In the fast mode, it samples 10 data points and sends
 * them to Averager.
 *
 * In the slow mode, it samples one datum and sends it to
 * Averager. In addition, if this datum is above 290,
 * it signals an alarm.
 *
 */
{
 int datum, i;
 if (Mode == Slow) {
 datum = New_Sample();
 Averager_Add (datum);
 if (datum > 290) {
 Alarmer_Signal (datum);
 }
 } else {

Using Bound-T in HRT Mode The HRT Model 7

 for (i = 0; i < 10; i++) {
 Averager_Add (New_Sample());
 }
 }
}

2.6 The Execution Skeleton

The HRT schedulability analyser needs, for each thread, a description of the worst-case
execution path and a list of all the protected entries called (in any execution path). This is
called the execution skeleton of the thread. The execution skeleton abstracts the overall
worst-case execution path of one activation of the thread as a sequence of computations
separated by protected entry calls. The sequence can contain loops with bounded repetition
counts. Loops can be nested.

The execution skeleton cannot contain branching (alternative paths); it represents only the
overall worst-case path. Other paths are represented only through the list of all protected
entries called by the thread in any execution path.

The schedulability analyser also needs the execution skeleton of each protected entry, in
the same form as for threads.

The purpose of the Bound-T HRT mode is to generate the execution skeletons of all
threads and protected entries listed in the TPOF by analysing the corresponding
subprograms. The skeletons are collected in the Execution Skeleton File (ESF) which is the
main output of Bound-T in the HRT mode. Section 3.4 shows the ESF for the
Monitor_Example.

8 The HRT Model Using Bound-T in HRT Mode

3 USING HRT MODE

3.1 Inputs and Outputs

As in basic mode, Bound-T in HRT mode needs the compiled and linked form of the target
program and may also need a file of user assertions to guide the analysis.

HRT mode needs, in addition, an input file that lists the threads and protected objects in the
HRT structure of the target program. This is the TPOF (Threads and Protected Objects
File). Chapter 2 showed an example TPOF. Chapter 4 defines the full TPOF syntax.

In HRT mode, Bound-T tries to bound the execution time of all threads and protected-
object operations named in the TPOF. The results are displayed in the usual basic output
format [1]. In addition, the results are combined with the TPOF into an Execution Skeleton
File (ESF) which lists the threads and protected objects and provides a summary or
skeleton of the worst-case execution path of each thread and protected operation.

The HRT schedulability analyser (not provided with Bound-T) uses the ESF to decide
whether the target program is schedulable.

The following figure illustrates the inputs and outputs for Bound-T in HRT mode.

Figure 2: Inputs and Outputs for Bound-T in HRT Mode

An example ESF is shown at the end of this chapter. It corresponds to the example TPOF
in Chapter 2. Chapter 5 defines the full ESF syntax.

3.2 Command Line

For the HRT mode of operation, the Bound-T command has the form:

boundt -hrt <more options> <target exe file> <TPOF name>

The option -hrt does not have to be first in the option list, but we recommend it for clarity
because this is the part that separates the two modes of operation, basic mode and HRT
mode.

Using Bound-T in HRT Mode Using HRT Mode 9

Compile, linksource code binary exe

assertions WCET bounds
stack bounds

TPOF ESF

HRT
schedulability

analyser

Bound-T

<more options>

The other options are described in the Bound-T User Manual [1]. There are no special
options for HRT mode, other than the option -hrt itself, and all basic-mode options can be
used in HRT mode as well.

<target exe file>

The first argument after the options is the name of the file that contains the target program
in linked, executable form, as in the basic mode.

<TPOF file>

The single remaining argument is the name of the text file that lists the threads and
protected objects in the target program. These entities define the "root" subprograms for
Bound-T.

3.3 HRT Mode Operations

When the -hrt option and the <TPOF name> argument are given, Bound-T works as
follows.

Reading the TPOF

First, the definitions in the TPOF are checked and stored internally before any action is
taken on them.

Analysing the WCET

Bound-T performs a normal WCET analysis of the subprograms that correspond to threads
and protected entries, and their callees, exactly as if these subprograms were listed as root
subprograms in the basic mode. All the basic and optional output from the analysis is
produced just as in basic mode. These outputs are described in the Bound-T User
Manual [1].

Generating the ESF

When the WCET analysis is complete, Bound-T generates an Execution Skeleton File
(ESF) that contains the TPOF information extended with execution skeletons that describe
the worst-case execution path of each thread and protected entry as a sequence of
computations (with WCET bounds given) and protected calls, enclosed in a hierarchical
looping structure.

File name conventions

The TPOF file-name is expected to end with the suffix ".tpo", and the ESF file-name is
then constructed by replacing this suffix with ".esf". Otherwise, the ESF file-name is just
the TPOF file-name extended with ".esf".

10 Using HRT Mode Using Bound-T in HRT Mode

3.4 Example ESF

For the Monitor_Example program, the ESF might turn out as follows. Note that Bound-T
copies all comments lines from the TPOF into the corresponding places in the ESF. The
same does not hold for blank lines, however, and the indentation may change.

 program Monitor_Example
 -- Monitor: Tiny HRT Example for Bound-T
 --
 -- This program has three threads and two protected objects,
 -- one resource object and one synchro object.

 protected Averager
 --
 -- The Averager object accumulates data samples into a sum
 -- and counts. Then, the average value can be read out,
 -- which also resets the sum and count.
 --
 type resource
 entry _Averager_Add
 wcet 52 , 7 , 8
 entry _Averager_Get
 wcet 111 , 11 , 14
 end Averager

 protected Alarmer
 --
 -- The Alarmer object provides a one-place buffer for an
 -- alarm value and Wait and Signal operations to wait for
 -- and signal an alarm.
 type synchro
 entry _Alarmer_Signal
 wcet 27 , 4 , 4
 barrier wcet tbd, tbd, tbd
 entry _Alarmer_Wait
 wcet 27 , 4 , 2
 end Alarmer

 thread Sampler
 --
 -- This thread runs at 100 Hz in two modes, slow and fast.
 --
 -- In the fast mode, it samples 10 data points and sends
 -- them to Averager.
 --
 -- In the slow mode, it samples one datum and sends it to
 -- Averager. In addition, if this datum is above 290,
 -- it signals an alarm.
 --
 type cyclic
 wcet 12 , 2 , 1
 loop 10
 wcet 74 , 0 , 4
 call_po Averager _Averager_Add
 wcet 85 , 2 , 5
 end
 wcet 8 , 2 , 0
 po Alarmer _Alarmer_Signal
 end Sampler

Using Bound-T in HRT Mode Using HRT Mode 11

 thread _Monitor
 --
 -- Monitors the average sampled value at 1 Hz.
 -- If the average is below 50, signals an alarm.
 --
 type cyclic
 wcet 15 , 0 , 2
 call_po Averager _Averager_Get
 wcet 32 , 3 , 4
 call_po Alarmer _Alarmer_Signal
 wcet 38 , 5 , 4
 end _Monitor

 thread _Reporter
 --
 -- Sporadic thread to report alarms.
 --
 type sporadic
 wcet 6 , 0 , 2
 call_po Alarmer _Alarmer_Wait
 wcet 283 , 3 , 5
 end _Reporter
 end Monitor_Example

12 Using HRT Mode Using Bound-T in HRT Mode

4 SYNTAX OF TPO FILE

This chapter defines the formal syntax of the TPO file (TPOF).

Syntax notation

A conventional context-free syntax notation is used, with nonterminal symbols in Plain
Style and Capitalised; literal keywords in bold style; and user-defined identifiers in italic
style. Alternatives are separated by '|'. Repetition of a symbol for one or more times is
denoted by a postfixed '+', and for zero or more times by a postfixed '*'. The symbol null
stands for the empty string. The symbol integer stands for a string of digits 0 .. 9
representing an integer number in decimal form. Underscores '_' are also allowed in an
integer but have no effect on the value of the number.

Right-hand-sides are often divided into several lines for clarity, but such lay-out is not
syntactically significant.

Syntax productions

The start symbol is TPOF, representing the whole file.

TPOF →
program prog_name

Definition +
end prog_name

Definition → Thread_Def | Resource_Def | Synchro_Def

Thread_Def →
thread thread_name

type Thread_Type
Optional_Root_Name

end thread_name

Optional_Root_Name → null | root root_subprogram_name

Thread_Type → cyclic | sporadic | interrupt_sporadic

The type of the thread is not necessarily significant for Bound-T, but Bound-T will copy it
to the generated ESF for completeness. If a root_subprogram_name is not given, the
thread_name is used as the name of the root subprogram.

Resource_Def →
protected PO_name

type resource
PO_Entry +

end PO_name

Synchro_Def →
protected PO_name

type synchro
PO_Entry
Barriered_PO_Entry

end PO_name

Using Bound-T in HRT Mode Syntax of TPO File 13

The first PO_Entry is the "activate" entry. The Barriered_PO_Entry is the "wait for
activation" entry.

PO_Entry → entry entry_name

Barriered_PO_Entry → barrier PO_Entry

Lexical rules

On the lexical level, the TPOF is assumed to be a normal text file (ASCII or Latin-1
coding, system-defined line separators). Keywords are case-insensitive and are not
reserved (thus a user-supplied identifier can match a keyword). User-supplied identifiers
are case-sensitive and can contain any graphic character except space. White space
between symbols can be either blanks, tabs or line separators.

The TPOF can contain comments in the Ada style, starting with the double hyphen "--" and
extending to the end of the line. TPOF comments are automatically copied to the generated
Execution Skeleton File.

14 Syntax of TPO File Using Bound-T in HRT Mode

5 SYNTAX OF EXECUTION SKELETON FILE

This chapter defines the formal syntax of the Execution Skeleton File (ESF) that Bound-T
generates. It contains the same information as the user-supplied TPOF, extended with
execution statements and WCET bounds.

The resulting ESF language is intended to be the same as in the HRT reference documents
although the grammar has a slightly different form.

Syntax notation

The same syntax formalism is used as for the TPO file in Chapter 4.

To distinguish similar nonterminals in the TPOF and ESF, the prefix "ES_" is added to
ESF nonterminals.

Syntax productions

The start symbol is ESF, representing the whole Execution Skeleton File.

ESF → program prog_name
ES_Definition +

end prog-name

ES_Definition → ES_Thread_Def | ES_Resource_Def | ES_Synchro_Def

ES_Thread_Def →
thread thread_name

type Thread_Type
Execution_Skeleton

end thread_name

Execution_Skeleton →
Execution_Statement_List
Optional_Protected_Object_Calls

Execution_Statement_List → Execution_Statement +

Thus, the execution skeleton of a thread (or protected entry, see below) consists of two
parts: firstly, a list of execution statements describing the worst-case execution, including
loops and protected entry calls, and secondly, a list of other protected entry calls − if any −
that may occur in other executions.

Execution_Statement →
wcet Time

| call_po PO_name entry_name
| Loop_Statement

Time → Processing_Cycles , Memory_Reads , Memory_Writes

Processing_Cycles → integer

Memory_Reads → integer

Memory_Writes → integer

Using Bound-T in HRT Mode Syntax of Execution Skeleton File 15

The Time measure is divided into three components: number of processing cycles (CPU
cycles), number of memory reads, and number of memory writes. The reads and writes are
separated to let the HRT schedulability analyser account for memory wait states. Note that
the number of processing cycles (the first component) already includes the effect of the
wait states that were specified for the Bound-T analysis (by target-specific options or
assertions).

The two commas in the production for Time are terminal tokens that are generated in the
output file.

Loop_Statement →
loop Loop_Count

Execution_Statement +
end

Loop_Count → integer

The Loop_Statements show the loops that Bound-T has found in the control-flow graph of
the subprogram. The Loop_Count is an upper bound on the number of executions of the
loop body, and may result from Bound-T's automatic loop-bound analysis or from an
assertion.

The ESF syntax describes a loop that tests for termination before or after the loop body,
but not in the middle of the loop body. If the control-flow graph contains a loop with a test
in the middle, Bound-T transforms the loop into the ESF form by duplicating the part of
the loop body that precedes the termination test and exit.

Optional_Protected_Object_Calls → null | po PO_Entry_Ref +

PO_Entry_Ref → PO_name entry_name

ES_Resource_Def →
protected PO_name

type resource
ES_PO_Entry +

end PO_name

ES_Synchro_Def →
protected PO_name

type synchro
ES_PO_Entry
ES_Barriered_PO_Entry

end PO_name

ES_PO_Entry →
entry entry_name

Execution_Skeleton

ES_Barriered_PO_Entry →
barrier wcet Barrier_Time
ES_PO_Entry

Barrier_Time → tbd , tbd , tbd

16 Syntax of Execution Skeleton File Using Bound-T in HRT Mode

The WCET time for barrier evaluation (Barrier_Time) cannot be computed automatically
by Bound-T. Although the barrier is just a boolean expression, and Bound-T can surely
compute the WCET of a boolean expression, the expression is probably embedded in
compiler- and kernel-specific code that would need specific recognition and parsing. Note
that the three tbd tokens occur as such in the generated ESF and must be edited by the user
before schedulability analysis.

Lexical syntax

Bound-T generates the ESF as a normal text file, like the TPOF.

Using Bound-T in HRT Mode Syntax of Execution Skeleton File 17

6 TROUBLESHOOTING

This section explains how to understand and correct problems that may arise when using
Bound-T in HRT mode, by listing those warning and error messages that are specific to
HRT mode and explaining what they mean and what to do in each case.

All the warning and error messages that can arise in basic mode can also arise in HRT
mode. Please refer to the Bound-T User Manual [1]. Here we discuss only the messages
related to the HRT mode.

If you cannot find a particular message here or in the User Manual, please refer to the
Application Notes for your target system and host platform; additional, target-specific
messages may be listed there.

6.1 Bound-T Warning Messages for HRT Mode

The following table lists all Bound-T's HRT-related warning messages in alphabetical
order using the same format as in the Bound-T User Manual [1].

Table 1: HRT-Related Warning Messages

Warning Message Meaning and Remedy

TPOF line L col C : message : Token :
token

Reasons A problem, described in the message, has been identified in
the TPO file on or after line number L and column number
C, while processing the current lexical token.

Action Correct the TPO file.

6.2 Bound-T Error Messages for HRT Mode

The following table lists all Bound-T's HRT-related error messages in alphabetical order
using the same format as in the Bound-T User Manual [1].

Table 2: HRT-Related Error Messages

Error Message Meaning and Remedy

Barriered entry subprogram name is not
found

Problem In the TPO file, the name of the barriered entry (waiting
entry) does not match any subprogram in the target program.

Reasons Error in the TPO file, or some name mangling by the
compiler and linker.

Solution Correct the TPO file to use the same subprogram name as in
the target program executable.

HRT: number contradictions in HRT
structure.

Problem The stated number of inconsistencies were found in the user-
supplied TPOF or between the TPOF and the target
program. The errors are also shown by earlier, specific error
messages. The analysis is therefore aborted.

18 Troubleshooting Using Bound-T in HRT Mode

Error Message Meaning and Remedy

Reasons The TPOF or the program is incorrect or violates HRT
design rules.

Solution Correct the TPOF and/or the program as indicated by the
earlier, specific error messages.

No TPOF name given. Problem The -hrt option was given to Bound-T at start-up but no
TPOF name was given.

Reasons Perhaps the user has misunderstood the command syntax.

Solution Restart with correct arguments.

Option conflict: HRT analysis requires
time bounds.

Problem HRT analysis is requested (with the -hrt option) but
execution-time analysis is disabled (with the -no_time
option). This is contradictory.

Reasons Mistake on the command line.

Solution Correct the command-line options.

Protected object P calls a thread T Problem In the HRT model, it is impossible for a protected object to
call a thread, but this program does this.

Reasons Probably mistaken names in the TPOF.

Solution Correct the TPOF.

Thread T1 calls another thread T2 Problem In the HRT model, it is impossible for one thread to directly
call another, but this program does this.

Reasons Probably mistaken names in the TPOF.

Solution Correct the TPOF.

TPO file name could not be opened for
reading.

Problem In HRT analysis, the TPO file could not be opened for
reading under the file-name the user gave.

Reasons Wrong file-name or read-protected file.

Solution Correct the file-name or modify the protection of the file.

TPO file name was not found. Problem In HRT analysis, the TPO file was not found under the file-
name the user gave.

Reasons Wrong file-name or protected directories on the path to the
file.

Solution Correct the file-name or modify the protection of the
directories.

TPO file contained subprograms that
were not found.

Problem In HRT analysis, one or more of the threads (or their roots)
or protected object entries did not have the same name as
some subprogram in the target program. Each problem has
been separately reported earlier.

Reasons Probably mistakes in the TPO file, or name mangling by the
compiler.

Solution Correct the TPO file to use the subprogram names as they
appear in the target program executable.

TPO file contained total of number
syntax errors.

Problem The TPO file has a number of syntax errors, which have
been reported separately earlier.

Reasons Incorrect TPO file, or name mangling by the compiler
leading to mismatch between source-level subprogram
names and executable-level names.

Solution Correct the TPO file as indicated by the specific errors
reported earlier.

Using Bound-T in HRT Mode Troubleshooting 19

Error Message Meaning and Remedy

TPOF line L col C : message : Token:
token

Problem An error, described in the message, was discovered during
the parsing of the TPO file, on or after line number L and
column number C, while processing the current lexical
token.

Reasons The specific reason is indicated in the message given.
Typically a syntax error in the TPO file.

Solution Edit the TPOF to correct the problem indicated in the
message.

TPOF name does not end with '.tpo' Problem In HRT analysis, the user-supplied name of the TPO file,
which is the last command argument <TPOF name>, does
not end with the suffix ".tpo".

Solution Correct the file name, or accept the resulting perhaps non-
standard ESF name (TPOF name plus ".esf").

Unable to create execution skeleton file
name.

Problem In HRT analysis, Bound-T was unable to create the
Execution Skeleton File, because the name was invalid, or
the file was not writable, or the file had invalid status.

Reasons Write-protected directory or file, internal fault, or operating
system problem.

Solution Check the protection on directories and the ESF and correct
(allow writing).

Unique edge expected, but second edge
found (new after first)

Problem The worst-case path contains alternative branches (other
than loop exits) and cannot be represented in an Execution
Skeleton. The two numbers, first and new, are the indices of
two flow-graph edges that have the same source node.

Reasons Some assertions or analysis force Bound-T to include
alternative paths through some loop body (different paths on
different iterations). For example, the reason may be an
assertion that limits the number of executions of the worst-
case path in the loop body to less than the number of
repetitions of the loop, forcing Bound-T to use another path
for the rest of the iterations.

Solution Change the assertions to make the worst-case path use the
same path in each loop body for all iterations of the loop.

20 Troubleshooting Using Bound-T in HRT Mode

7 GLOSSARY

This glossary contains only HRT-related terms and abbreviations. Please refer also to the
glossary in the Bound-T User Manual [1].

ESF Execution Skeleton File. The text file generated by HRT-mode analysis of
an HRT target program and containing the information from the TPOF
supplemented with execution skeletons containing WCET values. See
chapter 5.

HRT Hard Real Time; a principle for real-time program architecture, and a theory
and tool-set for analysing such programs. An HRT program consists of
threads and protected objects. See chapter 2.

Protected object A component of an HRT program that is a passive entity and acts as a
communication and synchronisation point for threads. See chapter 2.

Rate-Monotonic Analysis
A way to analyse the schedulability of a multi-threaded program where the
threads are periodic and scheduled by priority with pre-emption. Rate-
Monotonic Analysis (RMA) assigns priorities to threads monotonically in
order of thread period so that short-period, high-rate threads have higher
priorities than long-period, low-rate threads. With such a priority assign-
ment the WCETs of the threads can be plugged into mathematical formulae
that show if the thread set is schedulable (each thread can execute to
completion without overrunning its period).

RMA See Rate-Monotonic Analysis.

Scheduling The allocation of processor resources (execution time) to the several threads
in a concurrent program. Specifically, the selection of which thread shall be
running at every moment.

Task See thread.

Thread An active component of a program, executing program statements
sequentially. Some programs have a single thread of exection, but many
real-time programs are multi-threaded, with several threads executing
concurrently. The number of threads that can be (truly) executed in parallel
depends on the number of processors in the target system.

For Bound-T, the usual assumption is that there is one processor, which is
shared among the threads via thread scheduling. See chapter 2.

TPO file Threads and Protected Objects File. See TPOF.

TPOF Threads and Protected Objects File. The user-supplied text file that lists and
describes the structure of an HRT program, for HRT-mode analysis by
Bound-T. See chapter 4.

Using Bound-T in HRT Mode Glossary 21

