
Bound-T
Application Note

MCS-51 (8051) Family

Version 1

March 2001

Space Systems Finland Ltd
www.ssf.fi

Kappelitie 6
FIN-02200 ESPOO

Finland

This document was written at Space Systems Finland Ltd. by Ville Sipinen.

The document is currently maintained by the same person(s).

Copyright 2001 Space Systems Finland Ltd.

This document can be copied and distributed freely, in any format, provided that it is kept entire, with
no deletions, insertions or changes, and that this copyright notice is included, prominently displayed,
and made applicable to all copies.

Document reference: CWT-SSF-MA-002
Document issue: Draft
Document issue date: March 2001
Bound-T version: 1
Web location: none

Trademarks:

Bound-T Application Note 8051 iii
Preface

The information in this document is believed to be complete and accurate when the
document is issued. However, Space Systems Finland Ltd. reserves the right to make
future changes in the technical specifications of the product Bound-T described here.
For the most recent version of this document, please refer to the web address
http://www.ssf.fi/boundty/.

If you have comments or questions on this document or the product, they are wel-
come via electronic mail to the address bound-t@ssf.fi, or via telephone, fax or ordi-
nary mail to the address given below.

Please note that our office is located in the time-zone GMT + 2 hours, and office
hours are 9:00 -16:00 local time.

Cordially,

Space Systems Finland Ltd.

Telephone: +358 9 6132 8600
Fax: +358 9 6132 8699
Web: http://www.ssf.fi

http://www.ssf.fi/boundty/

Mail: Kappelitie 6
FIN-02200 ESPOO
Finland

NOTICE FOR PRELIMINARY DOCUMENT VERSION:

Notwithstanding the above preface, the present version of this document is entirely
preliminary and distributed for your information only. The distribution of this docu-
ment shall not be understood as placing Space Systems Finland (SSF) under any
obligation to create or supply a product of the type described here. SSF is develop-
ing this product with the support of the European Space Agency and others, but SSF
has no obligations to other parties with respect to this development.
March 2001 Preface

iv Bound-T Application Note 8051
This page is blank on purpose
Preface March 2001

Bound-T Application Note 8051 v
CONTENTS

Chapter 1 Introduction

1.1 Purpose and Scope . 1

1.2 Overview . 1

1.3 References . 2

1.4 Abbreviations and Acronyms . 2

Chapter 2 The 8051 and Timing Analysis

2.1 The 8051 . 3

2.2 Static Execution Time Analysis on the 8051 . 3

Chapter 3 Supported MCS(R)-51 (8051) Family Features

3.1 Overview . 4

3.2 Levels of Support . 5

3.3 Implications of Limited Support . 6

3.4 Reminder of Generic Limitations . 7

3.5 Support Synopsis . 7

3.6 Registers and Memory Accesses. 9

3.7 Keil C-51 Calling Protocol . 9

3.8 Instructions . 10

3.9 Time Approximations . 11

Chapter 4 Using Bound-T 8051

4.1 Input Formats . 12

4.2 Command Arguments and Options . 12

4.3 The Keil Library Routines . 13

4.4 Analysing Programs that Use RTX-51 . 13

4.5 HRT Analysis . 13

4.6 Choice of Calling Protocol . 14

4.7 Basic Output Format Limitations . 14

4.8 Warning Messages. 14

4.9 Error Messages . 15

4.10 Output of Option “-trace effect”. 17

Chapter 5 Writing Assertions

5.1 Using Scopes . 19

5.2 Naming C Subprograms. 19

5.3 Naming Assembler Subprograms . 19

5.4 Naming C Variables . 19
March 2001 Table of Contents

vi Bound-T Application Note 8051
5.5 Naming Assembler Variables . 20

5.6 Specifying Variable and Subprogram Addresses. 20

5.7 Properties . 20

Appendix A: Variant Support 21
Table of Contents March 2001

Bound-T Application Note 8051 vii
LIST OF TABLES

Table 1: Definition Analysis vs Arithmetic Analysis . 5
Table 2: Generic Limitations of Bound-T. 7
Table 3: Synopsis of 8051 Support . 8
Table 4: Support of 8051 variants . 21
March 2001 List of Tables

viii Bound-T Application Note 8051
This page is blank on purpose
List of Tables March 2001

Bound-T Application Note 8051 1

ari-

les,
eated.
am’s
whole

ure of
 pro-
hould
ted in

ey

 sup-
1 Introduction

1.1 Purpose and Scope

Bound-T is a tool for computing bounds on the worst-case execution time of real-
time programs; see reference [1]. There are different versions of Bound-T for differ-
ent target processors. This Application Note supplements the Bound-T User
Manual [1] by giving additional information and advice on using Bound-T for one
particular target processor family, the Intel MCS(R)-51 (8051) Family.

Some information in Chapters 4 and 5 of this Application Note applies only when
the target-program executable is generated with the Keil 8051 C-compiler or assem-
bler. This information could have been the subject of an independent Application
Note but was included here because the Keil tools are very commonly used for this
processor family.

1.2 Overview

The reader is assumed to be familiar with the general principles and usage of Bound-
T, as described in the Bound-T User Manual [1]. The user manual also contains a
glossary of terms, many of which will be used in this Application Note.

In a nutshell, here is how Bound-T bounds the worst-case execution time (WCET) of
a subprogram: Starting from the executable, binary form of the program, Bound-T
decodes the machine instructions, constructs the control-flow graph, identifies loops,
and (partially) interprets the arithmetic operations to find the “loop-counter” v
ables that control the loops, such as n in “for (n = 1; n < 20; n++) { ... }”.

By comparing the initial value, step and limit value of the loop-counter variab
Bound-T computes an upper bound on the number of times each loop is rep
Combining the loop-repetition bounds with the execution times of the subprogr
instructions gives an upper bound on the worst-case execution time of the
subprogram.

This Application Note explains how Bound-T has been adapted to the architect
the MCS(R)-51 (8051) Family processors and how to use Bound-T to analyse
grams for these processors. To make full use of this information, the reader s
be familiar with the register set and instruction set of this processor, as presen
reference [2].

The remainder of this Application Note is structured as follows:

• Chapter 2 describes the main features of the 8051 architecture and how th
relate to the functions of Bound-T.

• Chapter 3 defines in detail the set of 8051 instructions and registers that is
ported by Bound-T.
March 2001

2 Bound-T Application Note 8051

are
 for

iour

or the
ly.

les

hen
• Chapter 4 explains those Bound-T command arguments and options that
wholly specific to the 8051 processors or that have a specific interpretation
these processors.

• Chapter 5 addresses the user-defined assertions on target program behav
and explains the possibilities and limitations in the context of the 8051.

1.3 References

[1] Bound-T User Manual.
Space Systems Finland Ltd., Doc.ref. DET-SSF-MA-001.

[2] 8-bit Embedded Controller Handbook.
Intel  1990

[3] C51 Compiler User’s Guide 01.97
Keil Software Inc

1.4 Abbreviations and Acronyms

See also reference [1] for abbreviations specific to Bound-T and reference [2] f
mnemonic operation codes and register names of the MCS(R)-51 (8051) Fami

Effort Describes the execution time of an instruction in processing cyc
and the number of memory reads and writes performed by it.

LSB Least Significant Byte

MSB Most significant Byte

Scope Presents the context of an object of the program (for example w
name only is not sufficient)

WCET Worst-Case Execution Time
March 2001

Bound-T Application Note 8051 3

d
n also
xter-

xternal
actual

pera-

 sub-
t most
 be less

d-T.
on the

ation
2 The 8051 and Timing Analysis

2.1 The 8051

The 8051 [2] is an 8-bit micro-controller. It has a “Harvard” architecture (separate
program and data memories). Instructions can be 8, 16 or 24 bits wide. Data ca
be read from the program memory. Data memory is divided into internal and e
nal with respect to the processor. All accesses to the program memory and e
data memory are addressed indirectly with dedicated registers defining the
address.

All arithmetic integer operations are supported in hardware, but floating point o
tions are not supported at all. No standard floating point type is defined.

An on-chip stack in the internal data memory contains the return addresses from
routines and data pushed by PUSH instructions. Since the internal memory is a
256 bytes, and includes the banked registers (see section 3.6), the stack must
than 256 bytes.

2.2 Static Execution Time Analysis on the 8051

The 8051 architecture is very regular and quite fitting for static analysis by Boun
Instruction timing in no case depends on the data being processed, but only
control flow.

The automatic analysis of the loop counters is limited to unsigned 8-bit comput
(see section 3.1).
March 2001

4 Bound-T Application Note 8051

 don’t
not for
gram
1 can-
nd-
ever

nd all
 vari-
ations.
 single
t vari-

 user-

s to be
3 Supported MCS(R)-51 (8051) Family Features

3.1 Overview

This section specifies which 8051 instructions, registers and status flags are sup-
ported by Bound-T. We will first describe the extent of support in general terms,
with exceptions listed later. Note that in addition to the specific limitations concern-
ing the 8051, Bound-T also has generic limitations as described in the User
Manual [1]. For reference, these are briefly listed in section 3.4.

General support level

In general, when Bound-T is analysing a target program for the 8051, it can decode
and correctly time all instructions.

Bound-T can construct the control-flow graphs and call-graphs for all instructions,
unless they contain unresolved jumps to dynamically defined destinations.

When analysing loops to find the loop-counter variables, Bound-T is able to track all
the 8-bit additions and subtractions assuming unsigned variables. Bound-T correctly
detects when this integer computation is overridden by other computations, such as
multiplications in the same registers.

However there is one considerable limitation specific to 8051 processors: they
have any dedicated machine instructions to handle signed numbers and can
example directly compare signed numbers. Because of this limitation the pro
code processing signed integers often contains operations which Bound-T 805
not support at arithmetic level (see section 3.2) and therefore automatic loop bou
ing is possible only if loop counters and limits are unsigned 8-bit numbers. How
counter steps can be positive or negative.

Furthermore because all registers (except the data pointer) are 8 bits wide a
arithmetic operations are performed with 8-bit entities, the processing of bigger
ables requires several arithmetic operations to several registers or memory loc
Currently Bound-T does not understand that these operations actually process
variables and cannot find and bound loop counters that are bigger than 8-bi
ables. In ‘C’ terms loop counters should to be “unsigned char”.

Loops with signed counters or 16-bit or larger counters can be bounded only by
given assertions.

Before detailing the exceptions to the general support, some terminology need
defined concerning the levels of support.
March 2001

Bound-T Application Note 8051 5

ns

pported
lysis

level,
 be

under-
h the
trained
se of

al to
ffer-
 and
The
just the
3.2 Levels of Support

Four levels of support can be distinguished, corresponding to the four levels of anal-
ysis used by Bound-T:

1. Instruction decoding: are all instructions correctly recognised and decoded? Is
the execution time of each instruction correctly and exactly included in the
WCET, or only approximately?

2. Control-flow analysis: are all jump and call instructions correctly traced to their
possible destinations? Are there other instructions that could affect control
flow, and are they correctly decoded and entered in the control-flow graph?

3. Definition analysis: does Bound-T correctly trace the effect of each instruction
on the data flow, in terms of which “cells” (registers, memory locations) are
defined (written, modified) by the instruction?

4. Arithmetic analysis: to what extent are the arithmetic operations of instructio
mastered, so that the range of the results can be bounded?

These levels are hierarchical in the sense that a feature is considered to be su
at one level only if it is also supported at all the lower levels, with arithmetic ana
as the highest level.

Opaque values

When an operation is supported at the definition level, but not at the arithmetic
then Bound-T’s arithmetic analysis considers the operation’s results to
“unknown” or opaque.

When an opaque value is stored in a register or memory location, the store is
stood to destroy the earlier (possibly non-opaque) value and replace it wit
opaque value. For arithmetic analysis, an opaque value represents an uncons
value from the set of possible values of the storage cell (8 bits - or 16 bits in ca
data pointer - for a general register, 1 bit for a flag).

The difference between definition analysis and arithmetic analysis is cruci
Bound-T’s ability to bound the worst-case times of loops. To illustrate this di
ence, the following table lists some 8051 instructions in the leftmost column
their definition-analysis and arithmetic analysis in the two other columns.
instructions are assumed to be executed in sequence. The analysis contains
aspects supported by Bound-T.

Table 1: Definition Analysis vs Arithmetic Analysis

Instruction Definition analysis Arithmetic analysis

MOV A,#80H Accumulator gets new value Accumulator gets value 128

ADD A,#90H Accumulator gets new value Accumulator gets value 16 (8 LSB bits of
sum 80H + 90H) and carry flag gets value 1
since sum did not fit in 8 bits.
March 2001

6 Bound-T Application Note 8051

g

se

n or
or the

n
at-
-T.
 if
tion

 fea-
 can-
Arithmetic analysis tracks the formulae, not the values; the values (or value ranges)
are then calculated from the formulae when needed.

3.3 Implications of Limited Support

Looking at the support levels from the Bound-T user’s point of view, the followin
implications arise when the target program uses some 8051 feature which is not sup-
ported at some level.

• Arithmetic analysis: If a feature is supported at all levels except arithmetic
analysis, then using this feature in any loop-counter computation will keep
Bound-T from identifying the loop-counters (due to opaque values) so the
loops cannot be bounded automatically. However, the other results from
Bound-T stay valid.

For example, if the initial value of a loop-counter is read from a memory locatio
a register whose value is unknown, then Bound-T cannot compute bounds f
initial value and thus cannot bound the loop (without a user-given assertion).

• Definition analysis: If a feature is not supported in definition analysis, then i
addition to the preceding impact, using this feature implies a risk of invalid
ing the arithmetic analysis, and thus a risk of incorrect results from Bound
Few 8051 features are at this level of non-support, and Bound-T will warn
they are used. The switching of the register bank is one example (see sec
3.6).

• Control-flow analysis: If a feature is not supported in control-flow analysis,
then Bound-T can produce arbitrary (correct or incorrect) results when this
ture is used in the target program, because the correct control-flow graphs
not be determined. Again, Bound-T will warn of such usage.

MOV DPTR,#0 Data pointer gets new value. Data pointer gets value 0

MOVX @DPTR,A External memory location pointed
by the data pointer gets new value

External memory location 0 gets value 16

INC DPTR Data pointer gets new value Data pointer gets value 1 (previous value 0
incremented by one)

MOVX A,@DPTR Accumulator gets new value Accumulator gets opaque value, because the
memory location 1 has unknown value (there
is no instruction that would have been set
some known value to it).

MOV R0, PSW R0 gets new value R0 gets opaque value, because state of PSW
is considered to be always unknown.

SETB F0 No effect, because F0 bit (of PSW)
is not tracked

No effect

Table 1: Definition Analysis vs Arithmetic Analysis

Instruction Definition analysis Arithmetic analysis
March 2001

Bound-T Application Note 8051 7

 is
e only
orted

cture,

res.
d on
port.
• Instruction decoding: If a feature is not supported even for decoding, then it
useless to run Bound-T on a target program that uses this feature, since th
reliable result will be error messages. However, all 8051 features are supp
at this level.

3.4 Reminder of Generic Limitations

To help the reader understand which limitations are specific to the 8051 archite
the following compact list of the generic limitations of Bound-T is presented.

3.5 Support Synopsis

The following table gives a synoptical view of the level of support for 8051 featu
A ‘X’ in a cell means that the feature corresponding to the table row is supporte
the level corresponding to the table column. A shaded cell indicates lack of sup

Table 2: Generic Limitations of Bound-T

Generic Limitation Remarks for 8051 target

Understands only integer operations in loop-
counter computations.

Loop counter analysis can succeed only if
loop counters and limits are unsigned 8-bit
variables.

Understands only addition, subtraction and
multiplication by constants, in loop-counter
computations.

The MUL instruction and logical/arithmetic
shifts must not be used in loop counting.

Assumes that loop-counter computations
never suffer overflow.

Loop counter analysis can succeed only if the
loop repeats less than 256 times. A loop that
repeats 256 times can be built when an over-
flow of a 8-bit variable is used together with a
suitable overflow option (see section 4.2 for
details about 8051 specific options).

Can bound only counter-based loops. No implications specific to the 8051.

Can analyse only reducible control-flow
graphs

No implications specific to the 8051.

May not resolve aliasing in dynamic mem-
ory addressing.

No implications specific to the 8051.
March 2001

8 Bound-T Application Note 8051
Table 3: Synopsis of 8051 Support

8051 registers, instructions,
or other features

Program Status Word (PSW) X X X

Carry flag (C) X X X X

Accumulator (Acc) X X X X

B-register X X X

Data Pointer (DPTR) X X X X

Special Function Registers X X X

DPH & DPL (MSB & LSB of Data pointer) X X X

Register bank (registers R0 .. R7) X X X X

Register bank switching X X

Indirect addressing X X X X

Bit addressing X X X

Paged addressing X X X X

Addition & Subtraction X X X X

Multiplication X X X

Division X X X

Logical operations (bitwise AND, OR and XOR) X X X

Rotation operation (left & right) X X X

Swapping of nibbles X X X

Data transfer (MOV, MOVX, MOVC) X X X X

Boolean variable manipulation X X X

Decimal adjust and digit exchange X X X

Arithmetic effects of branch instructions (CJNE,
DJNZ)

X X X X

D
ec

od
in

g

C
on

tr
ol

 f
lo

w

D
ef

in
iti

on

A
ri

th
m

et
ic
March 2001

Bound-T Application Note 8051 9

ory in
ssible
ed reg-
k 1 is
 selec-
nalysed
k is
gister

spec-
 regis-
 leads
n the

ecu-
ctively
nt to
 the

rom it
cked
 regis-

ulator,
y read-

rame-
ssible
3.6 Registers and Memory Accesses

The 8051 contains several Special Function Registers with different roles and sev-
eral general purpose registers whose location in the memory depends on the effec-
tive register bank selection. This section explains how Bound-T supports these
registers.

Banked registers R0 - R7

Banked registers are located in the beginning of the processor’s internal mem
the locations defined by the effective register bank selection. There are four po
register bank selections: bank 0, 1, 2 and 3. When bank 0 is selected the bank
isters correspond to memory locations 0 .. 7, to locations 8 .. 15 when ban
selected an so on. Bound-T does not track the changes of the register bank
tions, but assumes that the register bank selection stays unchanged in the a
processing thread. If an instruction which would change the register ban
detected, it is ignored, but a warning message is printed. The one effective re
bank selection can be set with a target specific option described in section 4.2.

DPH & DPL Registers

The DPH and DPL registers contain the MSB and LSB of the Data Pointer re
tively. The values of these registers are not tracked, but manipulation of these
ters affects the Data Pointer and therefore writing to either of these registers
generally to an opaque value of the Data Pointer. The only exception is whe
instructions MOV DPH,#immediate8 and MOV DPL,#immediate8 are in cons
tive code addresses in either order. In this case these instructions are effe
merged to one MOV DPTR,#immediate16 instruction that loads a 16 bit consta
the Data Pointer. The effort of the “merged” instruction is however of course
sum of the efforts of the original instructions.

Program Status Word

The value of this register as a whole is not tracked and therefore any reading f
yields an opaque value. However when a writing to it is detected, it is che
whether the new value would change the register bank selection (see banked
ters). The value of the Carry flag included in this register is anyway tracked.

Special Function Registers

The only Special Function Registers whose values are tracked are: the Accum
the Data Pointer and the page register (P2) for the paged addressing mode. An
ing of other Special Function Registers always yields an opaque value.

3.7 Keil C-51 Calling Protocol

Because of its very limited size the processor’s internal stack is not used for pa
ter passing. The banked registers are the primary method, but with them it is po
to pass only very few parameters (see reference [3]).
March 2001

10 Bound-T Application Note 8051
If the called subroutine is not re-entrant those parameters that do not fit in the regis-
ters are passed in statically assigned memory locations. For re-entrant subroutines a
simulated stack in the external data memory is used (see reference [3]). However
currently Bound-T does not implement parameter passing through the simulated
stack and therefore if a parameter affects one or more loop bounds, it should be
passed within those parameters that are passed in registers (see reference [3]).

Bound-T treats the banked registers and memory locations equally as data cells
whose values are passed to the called subroutine when necessary. This applies also
for the data cells corresponding to global variables used by both the caller and the
callee.

3.8 Instructions

Whether or not a computational operation is supported on the arithmetic analysis
level depends exclusively on the generic abilities of Bound-T; the only concern here
is to map these abilities onto the 8051 instruction set.

Arithmetic operations

The supported arithmetic operations are addition (ADD, ADDC), subtraction
(SUBB), increment (INC) and decrement (DEC). Except for increment of DPTR
(INC DPTR) all of these operate on 8-bit values. The data pointer is the only 16-bit
register and the only arithmetic operation for it is the increment.

Because the range for the 8-bit variables is so small, the tracking of overflows may
be necessary. The 8051 version of Bound-T offers options for that (see section 4.2).
One of the options is to always set the target of an arithmetic operation possibly
causing overflow to an unknown state. With that option automatic loop bounding is
not possible and all loop bounds have to be asserted.

The targets of all unsupported arithmetic operations (logical operations etc.) are set
to an unknown state.

Rotate operations

The bit rotation operations of the 8051 are not tracked, but the targets of these opera-
tions are set to an unknown state.

Branch instructions

All jump and call instructions are supported on all levels. However, there are generic
limitations on the control-flow analysis of indirect jumps and calls.

All return instructions are supported on all levels.

Loops

On the machine code level there is only one instruction that can be considered as
being targeted for loop structures: decrement by one and jump if not zero (DJNZ).
This instruction is fully supported.
March 2001

Bound-T Application Note 8051 11

op
epeats
f loop

56

the
, or in

stant.
tions,
 that
g the

t the

 sup-

 there
Bound-T does not generally handle overflows of loop counters properly, but in some
situations this limitation can be tolerated or even taken adavantage of. For example
when using the “overflow_off”-option (see section 4.2) the following kind of lo
structure can be used for a loop reapeating 256 times (usually only loops that r
less than 256 times can be automatically be bounded, because of 8-bit limit o
counters):

MOV R0, #255
INC R0 ; R0 becomes 0 in reality, but when Bound-T

; ignores overflows, R0 is assumed to become 2
Head: DJNZ R0, Head ; R0 decremented and jumps if result <> 0

Moves and miscellanea

All “move” instructions (MOV) are supported on the arithmetic level when
source and target are byte registers or byte variables in static memory locations
case of loading of the data pointer register a 16-bit register or a 16-bit con
When the source or target are bit registers or bit variables in static memory loca
support is reduced to the definition level. The only bit manipulation instructions
are supported on the arithmetic level are clearing, setting and complementin
carry flag (CLR C, SETB C and CPL C).

Exchange of two byte variables (XCH) is supported on the arithmetic level, bu
exchange digit instruction (XCHD) is supported only on the definition level.

Decimal adjust (DA) and swap nibble (SWAP) of accumalator instructions are
ported only on the definition level.

The NOP operation is supported on all levels (well it’s not very hard is it!).

3.9 Time Approximations

The execution times of all 8051 instructions are always constant and therefore
is no need for any approximations of the instruction execution times.
March 2001

12 Bound-T Application Note 8051
4 Using Bound-T 8051

4.1 Input Formats

The target program executable file must be supplied in the Intel defined AOMF for-
mat produced for example by the Keil BL-51 banked linker. Some other developing
environments (compilers & linkers) have been tested, but not extensively.

4.2 Command Arguments and Options

The generic Bound-T command format and arguments apply without modification to
the 8051 version of Bound-T.

There are specific options as explained in the table below. All the generic Bound-T
options apply also.

Option Meaning and default value

-bank0 Function Selects register bank 0: registers R0 .. R7 are located
in internal RAM locations 0 .. 7.

Default Yes.

-bank1 Function Selects register bank 1: registers R0 .. R7 are located
in internal RAM locations 8 .. 15.

Default No.

-bank2 Function Selects register bank 2: registers R0 .. R7 are located
in internal RAM locations 16 .. 23.

Default No.

-bank3 Function Selects register bank 3: registers R0 .. R7 are located
in internal RAM locations 24 .. 31.

Default No.

-overflows_on Function Sets the overflow tracking on, with exact effects for
operations possibly generating overflows. Currently
this option prevents the success of the automatic loop
bounding.

Default No.

-overflows_ignore Function Sets the overflow tracking to ignore the possible
overflows. This means that for example adding 1 to
255 gives result 256 instead of 0 and overlfow.

Default Yes.

-overflows_off Function Sets the overflow tracking off, giving opaque values
to targets of operations possibly generating over-
flows. With this option it is not possible to bound
loops automatically and therefore all loop bounds
need to be asserted.

Default No.
March 2001

Bound-T Application Note 8051 13

s and
4.3 The Keil Library Routines

Some of the Keil library routines contains irreducible flow graphs or unresolvable
dynamic jumps, or they do not follow the standard calling protocol. For these rea-
sons Bound-T cannot analyse these subroutines and when they are called from the
program being analysed, the execution time of them has to be asserted.

4.4 Analysing Programs that Use RTX-51

The Keil RTX-51 is a real time kernel for 8051 processors. It contains some func-
tions that cannot be analysed with Bound-T, because they contain irreducible flow
graphs or unresolvable dynamic jumps. Some of the functions can also switch tasks
and their operation does not entirely concern the scope of determination of the worst
case execution time for a single processing thread. The table below lists RTX-51
functions that cannot be analysed and their execution times (courtesy of Keil). When
these operations are used in the program being analysed, assertions for them have to
be written.

(*) The execution times are average values provided by the Keil Software, Inc.
Unfortunately the worst case values have not been available.

4.5 HRT Analysis

For HRT analysis, the 8051 is usually run with the RTX-51 kernel from Keil Soft-
ware. See reference [1] for details about HRT analysis.

The memory reads and writes reported in the HRT analysis output are interpreted to
concern only access of external memory. Therefore programs whose variables are
located entirely in the processor’s internal memory will have zero memory read
memory writes unless there are some reads from external program memory.

RTX-51 Function
Execution Time
(cycles) (*)

isr_recv_message (with message in mailbox) 71

os_attach_interrupt 199

os_create_task 312

os_send_message (to standard task) 459

os_send_message (to fast task) 361

os_send_signal (to standard task) 425

os_send_signal (to fast task) 335

os_start_system 6096

os_wait (on already set signal) 72
March 2001

14 Bound-T Application Note 8051
4.6 Choice of Calling Protocol

Currently Bound-T handles all subroutine calls equally and does not for example
separate calls to re-entrant and non re-entrant subroutines.

4.7 Basic Output Format Limitations

Most Bound-T outputs, including warning and error messages, follow a common,
basic format that contains the source-file name and source-line number that are
related to the message.

4.8 Warning Messages

The following lists the Bound-T warning messages that are specific to the 8051 or
that have a specific interpretation for this processor. The messages are listed in
alphabetical order. The Bound-T User Manual [1] explains the generic warning mes-
sages, all of which may appear also when the 8051 is the target.

The specific warning messages refer mainly to unsupported or approximated fea-
tures of the 8051.

Warning Message Meaning and Impact

Attempt to change the register bank
ignored

Reasons Bound-T expects that only one register bank is used
through out the analysed processing thread and switch-
ing the register bank is not supported. This warning is
printed when a machine code instruction which would
change the register bank selection is detected.

Impact The ignored attempt for register bank switching can
lead to incorrectly decoded arithmetic effects, because
after the ignored bank switch the operations with reg-
ister addresses point to the wrong memory addresses
and that would lead wrong results at least after the
bank would be switched back to the original. This
warning can be ignored when it concerns bank switch-
ing at the beginning of the interrupt service.

Call to address zero replaced by
return at

Reasons Because after processor reset the execution of any pro-
gram starts at zero address, this would correspond to
rebooting of the program.

Impact The flow stops at the return and if the call was at the
worst case execution path, the analysis concerns the
worst case execution time until the reboot.

Dynamic control flow unbounded at Reasons Destination address of a dynamic jump could not be
bounded.

Impact The call is replaced by a return which means that the
target of the jump is not included in the flow graph and
is therefore ignored in the analysis.
March 2001

Bound-T Application Note 8051 15
4.9 Error Messages

The following lists the Bound-T error messages that are specific to the 8051 or that
have a specific interpretation for this processor. The messages are listed in alphabet-
ical order. The User Manual explains the generic error messages, all of which may
appear also when the 8051 is the target.

Idle loop (jump to self) replaced by
return at

Reasons The idle loop would lead to infinite execution time
estimate and therefore it has to be replaced by some-
thing else. Here it it is replaced by return, because the
execution time of the operation could not be analysed
anyhow.

Impact Analysis stops at the iternal loop and the result con-
cerns only worst case execution time until the loop.

Scope not closed Reasons The scope end was not found when expected.

Impact The target program file may be corrupted and impossi-
ble to analyse.

Unbounded dynamic memory access Reasons The address of the dynamic memory access could not
be bounded.

Impact If the dynamic access concerned memory read, the tar-
get of the operation gets opaque value. The write oper-
ation is ignored and can lead to opaque value of the
target of some read operation.

Unknown scope record Reasons The input file containing the target program includes a
scope record with unknown structure.

Impact The target program file may be corrupted and impossi-
ble to analyse.

Error Message Meaning and Impact

Address string not in valid format Problem String describing a variable or subprogram address could
not be converted to a numerical value.

Reasons The assertion file contains an invalid address string.

Solution Correct the address string in the assertion file.

Address string too short Problem String describing a variable or subprogram address is too
short to contain a valid address.

Reasons The assertion file contains an invalid address string.

Solution Correct the address string in the assertion file.

Warning Message Meaning and Impact
March 2001

16 Bound-T Application Note 8051

y

s
Bit space not supported Problem Bit variables are not supported.

Reasons The assertion file contains an address string defining a bit
address (“B:xx”).

Solution Change the memory space of the address or remove the
assertion containing the bit address.

Cannot read file Problem The file containing the target program cannot be read.

Reasons The target program file may not have read permission.

Solution Give read permission to the target program file.

Could not read code byte at offset Problem There does not exist a code byte at the requested offset.

Reasons The target program file may be corrupted.

Solution Try to generate a new target program file. If that does not
help, there may be an internal error in Bound-T.

File not found Problem Specified target program file was not found.

Reasons The name of the target program file was wrong or the path
of it was wrong.

Solution Correct the name or path of the target program file, or cop
it to proper place.

Illegal instruction at Problem The instruction being decoded is not a valid 8051 instruc-
tion.

Reasons The target program file may be corrupted.

Solution Try to generate a new target program file. If that does not
help, there may be an internal error in Bound-T.

Invalid direct bit address in instruc-
tion at

Problem The instruction being decoded has an invalid bit address
argument.

Reasons The target program file may be corrupted.

Solution Try to generate a new target program file. If that does not
help, there may be an internal error in Bound-T.

Invalid direct data address in
instruction at

Problem The instruction being decoded has an invalid data addres
argument.

Reasons The target program file may be corrupted.

Solution Try to generate a new target program file. If that does not
help, there may be an internal error in Bound-T.

Invalid immediate byte argument in
instruction at

Problem The instruction being decoded has an invalid immediate
byte argument.

Reasons The target program file may be corrupted.

Solution Try to generate a new target program file. If that does not
help, there may be an internal error in Bound-T.

Error Message Meaning and Impact
March 2001

Bound-T Application Note 8051 17

am’s
iden-
ction
pt that

nly

i-
4.10 Output of Option “-trace effect”

There are two trace options that provide information about the target progr
decoding process: “-trace decode” and “-trace effect”. Both provide otherwise
tical information, except that the latter outputs the decoded effect of the instru
and the former does not. So the description below applies to both options, exce
“-trace decode” does not provide the instruction effects.

Invalid immediate word argument
in instruction at

Problem The instruction being decoded has an invalid immediate
word argument.

Reasons The target program file may be corrupted.

Solution Try to generate a new target program file. If that does not
help, there may be an internal error in Bound-T.

Memory space not recognized Problem String describing a variable or subprogram address contains
an unrecognized memory space indicator.

Reasons The assertion file contains an invalid address string.

Solution Correct the address string in the assertion file.

Record checksum mismatch Problem The checksum of one (or more) of the records included in
the target program file is wrong.

Reasons The target program file may be corrupted.

Solution Try to generate a new target program file. If that does not
help, there may be an internal error in Bound-T.

Subprogram address not in code
space

Problem The address string describing an address of a subprogram
defines an address in a memory space other than the code
space.

Reasons The address string in the assertion file contains some other
space indicator than “C:”.

Solution Change the space indicator of the address string to “C:”.

Unexpected end of file Problem The target program file ended unexpectedly.

Reasons The target program file may be corrupted.

Solution Try to generate a new target program file. If that does not
help, there may be an internal error in Bound-T.

Variable address in code space Problem The address string describing an address of a variable
defines an address in the code space. This is an error,
because variables cannot be located in the code space. O
constants can be located there.

Reasons The address string in the assertion file contains space ind
cator “C:”.

Solution Change the space indicator to “D:” or “X:”.

Error Message Meaning and Impact
March 2001

18 Bound-T Application Note 8051

ossi-
sed in
of

 the
The output contains the following columns:

Address Instruction Mnemonic / Effect Effort Steps Remarks

These columns contain the following information:

• Address: code offset of the decoded instruction

• Instruction: numeric values in hexadecimal format of the instruction bytes
forming the instuction

Mnemonic: representation of the instruction containing the type(s) of the p
ble parameters and instruction mnemonics corresponding to the symbols u
the reference [2] with the following additions to help the internal operation
the decoder:

CPLC = CPL C, complements the carry flag
GET = MOV <A|addr>, @R<0|1>
GETC = MOVC A, @A+PC or MOVC A, @A+DPTR
GETX = MOVX A, @DPTR or MOVX A, @R<0|1>
INC16 = INC DPTR
MOVB = MOV <dest_bit>, <src_bit>, copy bit value
PUT = MOV @R<0|1>, <A|addr>
PUTX = MOVX @DPTR, A or MOV @R<0|1>, A

• Effect: (on its own line) the decoded effect of the instruction

• Effort: the number of cycles to execute the instruction

• Steps: the step numbers in the general control-flow graph associated with
instruction

• Remarks: additional notes related to the instructions.
March 2001

Bound-T Application Note 8051 19

“sub-
e” is

bpro-

le and

b-

pre-

en-

contain
5 Writing Assertions

This chapter explains any specific limitations and possibilities for user-specified
assertions when Bound-T is used with 8051 programs. In fact, these issues are not
caused by the 8051 as target processor, but by the Keil-PK51 development tools.

The issues concern the naming of subprograms, variables and source lines (via line
numbers).

The special properties that are defined for the 8051 are also listed in the end of this
chapter.

5.1 Using Scopes

The scope of a “C” symbol is defined in the following way:

module|subprogram|name,

where the “module” corresponds to the file where the symbol is defined, the
program” to the name of the subprogram containing the symbol and the “nam
the name of the symbol. If the symbol is not local to any subprogram, the “su
gram” part is naturally excluded from the scope.

The scope of an assembler symbol is defined in the following way:

segment|name,

where the “segment” corresponds to the segment defined in the assembler fi
containing the symbol and the “name” is the name of the symbol.

5.2 Naming C Subprograms

The Keil compiler seems to follow the following principles for names of “C”-su
programs:

• If the subprogram has parameters and/or returns some value, its name is
fixed with “_”.

• If the subprogram has parameters and/or returns some value, and if it is re
trant, its name is prefixed with “_?”.

5.3 Naming Assembler Subprograms

The Keil assembler seems to change the names of assembler subroutines to
only upper-case letters.

5.4 Naming C Variables

The names of C variables seem to remain unchanged.
March 2001

20 Bound-T Application Note 8051

eci-

emory

.

5.5 Naming Assembler Variables

The names of assembler variables seem to be changed to contain only upper-case let-
ters.

5.6 Specifying Variable and Subprogram Addresses

Addresses of variables and subprograms can be specified with the following kind of
strings:

“M:XXXX” or “M:XXXXH”,

where the “M” indicates the memory space and has to be one of the following:

• “C”, for code memory space

• “X”, for external data memory space

• “D”, for internal data memory space

• “B”, for bit memory space

If the string ends with “H” the address value “XXXX” is interpreted as a hexad
mal number, otherwise as a decimal number. For example:

X:1000H = external data address 4096
X:15000 = external data address 15000
D:20H = internal data address 32
C:0200 = code address 200

The code address string has to be at least 4 characters in addition to the m
space indicator and other address strings at least 2 characters.

5.7 Properties

The special properties for 8051 and their meaning is listed in the following table

Property name Meaning, value type and default value

Aregs Function Allows a subprogram to use absolute register
addressing

Value type

Default

Reentrant Function Subprogram is reentrant

Value type

Default
March 2001

Bound-T Application Note 8051 21

es that
unrec-
of the
blems
 not
l func-

erally
ction

oller
cases
, but
Appendix A: Variant Support

There are many vartiants of the 8051 processor. Currently Bound-T has been ported
in particular for the basic 8051 processor. Programs written for the other variants can
also be analysed as long as they don’t use such currently unhandled featur
would affect the results or even disable the analysis (for example because of
ognized machine instructions). The table below lists some common variants
8051, their main differences with respect of the basic 8051 and foreseen pro
and limitations for Bound-T usage. Many of the differences in the variants do
affect the analysis, because they are often related to the memory sizes, specia
tion registers, timers etc. which are not relevant for the Bound-T analysis. Gen
the diffences are relevant to Bound-T only if they include changes in the instru
set and/or addressing modes of the machine code.

The information in the table below has been taken from the Intel 8-bit contr
handbook [2] and internet web-sites of Intel, Philips and Siemens. In some
clear information about the compatibility of the instruction sets was not found
then it was assumed that differences do not exist.

Table 4: Support of 8051 variants

Variant Main Differences Bound-T Limitations

8031, 80C31 No on-chip ROM None

8032, 80C32 No on-chip ROM, 3 16-bit timers
(instead of 2 timers of basic 8051)

None (additional timer does not affect the
analysis)

8044AH Serial Interface Unit (SIU) and
additional special function regis-
ters to control it

None (additional special function regis-
ters do not affect analysis)

80C51 CMOS version of 8051 None

80C51FA/FB 3 16-bit timers, programmable
counter array, 7 interrupt sources
(instead of 5), serial interface
with framing error detection and
automatic address recognition

None (additions do not affect analysis)
March 2001

22 Bound-T Application Note 8051
80C51GB 3 16-bit timers, watchdog
counter, 2 programmable counter
arrays, 8-bit 8-channel A/D, serial
channel with framing error detec-
tion and automatic address recog-
nition, serial expansion port,15
interrupt sources (7 external, 8
internal) with 4 priority levels
(instead of 2)

None (additions do not affect analysis)

80C52 3 16-bit timers (instead of 2 tim-
ers of basic 8051)

None (additional special function regis-
ters do not affect analysis)

8344AH Same as 8044AH but without
ROM

None (additional special function regis-
ters do not affect analysis)

83C51FA/FB Same as 80C51FA/FB except
with factory masked programma-
ble PROM

None (additions do not affect analysis)

83C51GB Same as 80C51GB except with
factory programmable ROM.

None (additions do not affect analysis)

8744AH Same as 8344AH except with
EPROM

None (additional special function regis-
ters do not affect analysis)

8751, 87C51 On-chip EPROM None

87C51FA/FB/FC Same as 80C51FA/FB except
with EPROM

None (additions do not affect analysis)

87C51GB Same as 80C51GB except with
OTP ROM

None (additions do not affect analysis)

80C152 Global Serial Channel, 2 channels
for DMA transfers, new I/O port,
several new special function reg-
isters (the instruction set is how-
ever the same)

Bound-T does not understand the effects
of the DMA transfers, since a DMA trans-
fer can change memory data without spe-
cific MOV instructions. Thus no loop
counter data or variables should be sub-
ject to DMA input.

80C251 3-stage pipeline, 40 bytes general
purpose Register File accessible
as 16 8-bit, 16 16-bit or 10 32-bit
registers, 24-bit linear code and
data addressing, 64 kBytes stack
space, new instructions and
addressing modes, 64 interrupt
sources with 4 interrupt levels

Bound-T can decode only native 8051
instructions corresponding to the instruc-
tions without escape code “A5H” in the
binary compatibility mode.

80C451 7 I/O ports and 4 additional spe-
cial function registers.

None (additions do not effect analysis)

80515, 80C515 6 I/O ports, 3 timers, 8 bit AD-
converter, watchdog timer, 12
interrupt sources with 4 priority
levels

None (additions do not effect analysis)

Table 4: Support of 8051 variants

Variant Main Differences Bound-T Limitations
March 2001

Bound-T Application Note 8051 23
80C517 4 timers, 16 bit compare/capture
unit, MUL/DIV unit, 8 data point-
ers (1 active selected with a spe-
cific additional special function
register), 14 interrupt vectors

Bound-T cannot handle the change of
selected data pointer and therefore exter-
nal memory addressing with more than
one data pointer is not supported.

80C528 3 timers, watchdog timer, bit

level I2C-bus serial I/O port, 7
interrupt sources,

None (additions do not effect analysis)

80535, 80C535 Same as 80515, but without on-
chip ROM

None (additions do not effect analysis)

80C537 Same as 80C517, but without on-
chip ROM

See 80C517

83C152 Same as 80C152 except with on-
chip ROM

Bound-T does not understand the effects
of the DMA transfers.

83C251 Same as 80C251 except with on-
chip ROM

See 80C251

83C451 Same as 80C451 except with on-
chip ROM

None (additions do not effect analysis)

83C524 Same as 80C528 except with on-
chip ROM

None (additions do not effect analysis)

83C528 Same as 80C528 except with on-
chip ROM

None (additions do not effect analysis)

87C152 Same as 80C152 except with on-
chip EPROM

Bound-T does not understand the effects
of the DMA transfers.

87C251 Same as 80C251 except with on-
chip EPROM

See 80C251

87C451 Same as 80C451 except with on-
chip EPROM

None (additions do not effect analysis)

83C524 Same as 80C528 except with on-
chip EPROM

None (additions do not effect analysis)

83C528 Same as 80C528 except with on-
chip EPROM

None (additions do not effect analysis)

Table 4: Support of 8051 variants

Variant Main Differences Bound-T Limitations
March 2001

	Preface
	1 Introduction
	1.1 Purpose and Scope
	1.2 Overview
	1.3 References
	1.4 Abbreviations and Acronyms

	2 The 8051 and Timing Analysis
	2.1 The 8051
	2.2 Static Execution Time Analysis on the 8051

	3 Supported MCS(R)-51 (8051) Family Features
	3.1 Overview
	3.2 Levels of Support
	3.3 Implications of Limited Support
	3.4 Reminder of Generic Limitations
	3.5 Support Synopsis
	3.6 Registers and Memory Accesses
	3.7 Keil C-51 Calling Protocol
	3.8 Instructions
	3.9 Time Approximations

	4 Using Bound-T 8051
	4.1 Input Formats
	4.2 Command Arguments and Options
	4.3 The Keil Library Routines
	4.4 Analysing Programs that Use RTX-51
	4.5 HRT Analysis
	4.6 Choice of Calling Protocol
	4.7 Basic Output Format Limitations
	4.8 Warning Messages
	4.9 Error Messages
	4.10 Output of Option “-trace effect”

	5 Writing Assertions
	5.1 Using Scopes
	5.2 Naming C Subprograms
	5.3 Naming Assembler Subprograms
	5.4 Naming C Variables
	5.5 Naming Assembler Variables
	5.6 Specifying Variable and Subprogram Addresses
	5.7 Properties

	Appendix A: Variant Support

