Bound-T time and stack analyzer

TR-AN-SPARC-001

Application Note

SPARC/ERC32

V7, V8, VBE

Version 7

2010-02-10 Tidorum Ltd.

Tidorum Ltd
www.tidorum.fi
Tiirasaarentie 32
FI-00200 Helsinki
Finland

This document was originally written at Space Systems Finland Ltd by Sami Saarinen and Niklas Holsti
within an ESTEC-supported project to develop a Bound-T version for the ERC32 (SPARC V7) target.
The document is currently maintained by Niklas Holsti at Tidorum Ltd.

Copyright 2005-2007, 2010 Tidorum Ltd.

This document can be copied and distributed freely, in any format or medium, provided that it is kept
entire, with no deletions, insertions or changes, and that this copyright notice is included, prominently
displayed, and made applicable to all copies.

Document reference: TR-AN-SPARC-001
Document issue: Version 7
Document issue date: 2010-02-10

Bound-T/SPARC version: 4a3
Last change included: BT-CH-0219
Web location: http://www.bound-t.com/app_notes/an-sparc.pdf

Trademarks:

Bound-T is a trademark of Tidorum Ltd.

SPARC® is a registered trademark of SPARC International, Inc.
RapiTime is a trademark of Rapita Systems Ltd.

Credits:
This document was created with the free OpenOffice.org software, http://www.openoffice.org/.

http://www.openoffice.org/
http://www.bound-t.com/app_notes/an-sparc.pdf

Preface

The information in this document is believed to be complete and accurate when the
document is issued. However, Tidorum Ltd. reserves the right to make future changes in
the technical specifications of the product Bound-T described here. For the most recent
version of this document, please refer to the web address http://www.bound-t.com/.

If you have comments or questions on this document or the product, they are welcome via
electronic mail to the address info@tidorum.fi, or via telephone or ordinary mail to the
address given below.

Please note that our office is located in the time-zone GMT + 2 hours (+3 hours in the
summer) and office hours are 9:00 -16:00 local time.

Cordially,

Tidorum Ltd.

Telephone: +358 (0) 40 563 9186

Fax: +358 (0) 42 563 9186

Web: http.//www.tidorum.fi/
http://www.bound-t.com/

Mail: info@tidorum.fi ~ (please include the word "Bound-T" in the Subject line)

Post: Tiirasaarentie 32
FI-00200 HELSINKI
Finland

Credits

The Bound-T tool was first developed by Space Systems Finland Ltd (http://www.ssf.fi)
with support from the European Space Agency (ESA/ESTEC). ESA has also supported
some of the work on the version for SPARC V8 (specifically the LEON). Free software has
played an important role; we are grateful to Ada Core Technology for the Gnat compiler,
to William Pugh and his group at the University of Maryland for the Omega system, to
Michel Berkelaar for the Ip-solve program, to Mats Weber and EPFL-DI-LGL for Ada
component libraries, to Ted Dennison for the OpenToken package, and to Marc Criley for
the XML EZ Out package. Call-graphs and flow-graphs from Bound-T are displayed with
the dot tool that is a part of the GraphViz package from AT&T Bell Laboratories.

The extension to include SPARC versions V8 and V8E was supported by ESA/ESTEC under
ESA/Contract No. 19535/05/NL/JD/jk. The interface to the RapiTime tool was created in
collaboration with Rapita Systems Ltd within that contract.

http://www.bound-t.com/
http://www.bound-t.com/
http://www.tidorum.fi/

Contents

1

INTRODUCTION 1
1.1 PUIPOSE ANA SCOPE....uuuuiieiiiiiiiiiiiiiititeeteteeeeeeeeeeeeeeeaeasasassssaaaaaassassrsaeaeeeeeeeeeeessnnnnsens 1
1.2 OVIVIBW . eetieeeee et ettt e e e et e e e ettt ettt e e e e e e e eeeeeettaaas b e e e e e eeeeeeeeeteannaa e aeeaaaes 1
1.3 RE{ETEIICES. ..eiiiiiiieiiiiieee ettt ettt e e e ettt e e e e s s rabtaeeeeeeeeeeeeeeeeeaeeaeeeeeeesensnrnnes 2
1.4 Abbreviations and ACTONYIMS.uuuurrriieeeeereeeeeeeeeeeeeeeeeeeeeseessssasnnnnnsssssssereeeersnnnnnns 3
1.5 GlOSSATY Of TOIIMS. .uueeitieieeeeiiiiiteeeeeeeieet e e e e ettt e e e e sttt e e e eseaeeeeeeeeeeeeeeeeeeeeeeeeenes 4
1.6 Typographic CONVENtIONS. . ..ceiuuiiieeetieiiiiteee ettt e e e ettt e e e s et teeeesessaeeeeeeeees 5
THE SPARC AND TIMING ANALYSIS 6
2.1 The SPARC arChit@CIUTE. .. .uuvurrrieiieieieieeeeeeeeeeeeee et e e eeeeeeeeeeeseaeeaaaaseaareseeseeaenneeeeeeenenes 6
2.2 Static Timing Analysis of the SPARC Integer Unit........cccceevrvimreeeeeeeeeeierieeeeeenenennennns 8
2.3 Static Timing Analysis of the SPARC Floating Point Unit...........ccceeeeeuuuurrrrrrnnnnnnnne. 10
2.4 Timing APPIOXIMAtIONS.......cuuuriiiiiiiiiiiiiiiiietiititiiitiieeeiiiiiierrrrrrrreeeeeeeesaaaaes 11
2.5 Stack Usage Analysis for the SPARC.........cccceiieiieiieiiiiiiiiietrreereereeeeeeeeeeeeeeeeaaennas 12
SUPPORTED SPARC FEATURES 13
3.1 OVEIVIBW. .. eeeiiiiiiiiiee e e e e e e ettt ettt e e e e e e e e e ettt bbb aba e e e e e e e eeeeeaettsaaaa e aeeeeeeeeeeaeeenans 13
3.2 LeVEIS Of SUPPOIT....cciiiiiiiiiiiiiiiiitttetee e e e e eeeeeeeeeeeeeeeeeeeaaaasassaaaaeeeeesssnnnnaeaesssssnnns 13
3.3 Implications of Limited SUPPOIt.......cceeiiiiiiiiiiiiiiieieiiiieeeeeeeeceecevaae e e e e e eeeeanes 15
3.4 Reminder of Generic Limitations........cceeeiiiiieeiieeiiiiiiiiiiiiiirvereree e eeeeeeeeeeeeeeaennns 16
3.5 SUPDDOIT SYMOPSIS. ceeteeiiiiitiiiiiieeet ettt eeeetttttt e e e e e e et et e tteaaria s e rebeseeeana s eeeenaserenas 16
3.6 Data Registers and MemOTy ACCESSES......ceeveerrrrrrrrereiiiiiiiiiireeeererreeeeeeeennaeeeeeesennns 19
3.7 Registers and the Calling Protocol.........c.cccouuiiiiiiiiiiiiiiiiiiiiiieeeeeeee e 20
3.8 CoNdition COES.......eeeeeeeeeiiiiiiieieieeeeeeet ettt ettt eeeeeeeeeaaeeeeeasassssssaaaaaaeaaseeeeeeaaas 21
3.9 Computational OPETratiONS.........cceeeeeeeeeeeeeineineeeeereeerrerrreeeeereeeeeeeeeeeseesssnneeeesesssnnns 23
3.10 Division and Remainder ROULINES...........uuvriiiiiieieiieieeereeeeeeeeeeeeeeeeeeeeeeesiennneeeeeesesnnns 25
3.11 Jumps, Calls, Returns and Traps........cccceeeeeeriureeeeeeenniiieeeeeeeeeeiireeeeeeeeeeeennnenaaees 25
3.12 SAVE and RESTORE INStIUCHIONS.uuuuuuurieiiiiiiiiiiteeeeeeeeeeeeeeeeeeeeeeseeeeeemumnnnseeeeeensnnns 29
3.13 CONtrol/Statlis ReGISTETS. .ceeeeiuiiiiiiiiiiiiiiiiitieette ettt eeeeeeee e et e e eeeeeeeeaeeeeeeeetaaaeeeeeeensanas 29
3.14 Time ADPIOXIMALIONS. ...ccvvuuuerierrrieiereerrrriereeerrennesseernsnneseerrerssnssesrersnsssersnssnsennssesnnns 30
USING BOUND-T FOR SPARC 32
4.1 INPUE FOIMIALS. c.ittiiiiiiiiiiiiiiiiiiiiiiii ettt ettt e e e s e e esaaa e 32
4.2 Command Arguments and OPtiONS.......uuuueieeeeirreeereririeeiieireeeeeereneeeernneeernnaeeerennnns 34
4.3 HRT SKeleton ANALYSiS.......uuuuuieiiiieieieieeieieeeeeeeeeeeeeeeeesesennseesesssereeeeeeesnnneeeesssssnnns 42
4.4 OULPUL. et eeeeiiiiiteiieee et eee ettt eee e e e e e e e e e et teeee b eee s s e e eeeeeeteee s s e eebaa e enananeerenaes 45
4.5 WaINING MeESSAZES. .. uuuuuuuuuriririiiiiiiiteteteeeeeeeteteteeeaaeeeeaeaeaaaaaaiiraeeseeetesranasseeeesssnnns 47
4.6 EITOT MBSSAZES. ...ttt ettt ettt ettt et e et e e e e e e e e b bbb s e e eeeeeeeeaanaaas 54
4.7 RaPITIMe EXPOTIt...uuuuiiiiiiiiiiiiiiiiiiiiiiiieiieieee e eeeeaaaaaes 65
WRITING ASSERTIONS 68
5.1 Naming SUDPIOZIAIMIS.ceeeiiiiiiiiiieeeiiiiiiiiteeeeeeeiiieteeee e e et e et eeeeeeeeeeeeeeaaeaees 68
5.2 Naming Variables.......ccuuiiiiiiiiiiiiiiiiiieiieeieeieeeeeeee e e e e eeeeeeeeeeeeeeeeeeeaanaaas 69
5.3 Naming Items Dy AddIess........coeiiiiiiiiiiiiiiieeee e e e e e e e e e e e e e e ee e e e e e e eeeeas 69
5.4 Loop and Return OffSets.........ccceieeeeeeeieiiiiiiietteeeereeerere ennanns 71
5.5 INStIUCHON ROIES. ...ttt ettt e seseeenaaaaananneeeeeeensnnnns 71
S T 7o) 01 o 6 =S PP PPPPPROPPRPP 71

Index of Tables

Table 1: Definition Analysis vs Arithmetic ANalysiS............cceeeiiieeeeeeeieeerree e 14
Table 2: Generic Limitations of BOUNA-T........cccoerriiiiiieiiiiiiiiiiieee et eeeeeeeiiree e e e e e siieeeeeeeessaaees 16
Table 3: Synopsis Of SPARC SUPPOIT........uuuitiiiiiiiiiiiieeeeeeeiiiiteeeeeeeeiiteeeeeeeeeiarteeeeeseesareeeeeeseessnnnees 16
Table 4: Modelling Load INSTIUCHIONS.ccciitriiiiiteeteieiiittteee e e ettt eeeeessieeteeeeesssiareteeeeesssnseeaseenees 20
Table 5: References to Stack Variables.........cocuuuiiiiiiiiiiiiiiiiiiiiiieeee et 21
Table 6: Definition of N Condition Code from Arithmetic Operation..........ccceueeeeeerriiireeeeeerenninnenees 21
Table 7: Modelling the SPARC Condition COES........ccccerreumiiiieiiiniiiiiieeeeeeniiiieeeeeeeeeeeeeeeeeeeeeeeeeeees 22
Table 8: Effect of Unsupported Instructions on the ANalysis.........cccueeeerieeeinniiieeeeeeeneniniiiiieeeeeeeen 24
Table 9: Approximations for INStruCtion TiMES...........uuurrrrreerereeereeeeeeeeeeeeeeeeeeeeeeeeeeseseseeeeeeeeesnnnnneens 30
Table 10: PatCh FOIrmAtS......cceiiiiiiiiiie ettt ettt e e e e e e e e e e e e e e e s s ee e ee e e e e eeennnaanes 33
Table 11: Device SeleCtiOn OPtIONS. . .c.ieeuuuriiiieiiieiiitieee ettt e e ettt e e e e ettt e e e e s essaeeeeeeeeeaeaeeenaes 35
Table 12: Program Loading Options for SPARC........cccciiiiiiiiitieeieiiiieeee e eeiieeee e e e e e eeeeeeeeeeeeeeeeenees 36
Table 13: Instruction Modelling Options for SPARC.......cccoiiruiiiiiiiiiiiiiieeeeeeee e eeeeeeeeeeeeeeeeeeeeeeees 37
Table 14: Register Window Analysis Options for SPARC......cccccvvuuiiiieiiiiiiiiiieeeieeiiieeeee e 39
Table 15: Floating-Point Options for SPARC........cccccuitiiiiiiieiiiieeeeeiieee ettt e et e s 40
Table 16: Memory Timing Options for SPARC..........ciiiiiiiiiiiiieeeiieeee et eieee e e s e 41
Table 17: Conversion Between Memory Wait States and System ClOCKS.........cccceeurrrrrneeeeeeerrennnnnn. 42
Table 18: SPARC-SPECIfiC -1TACE TLEIMIS. .cceeeeeeiieiiieiiiiiiiitrirrrrrreeerereeeeeeeeeeeeaeaeaaaaeaaaaasassaeeeeesssnnnnneens 42
Table 19: OUtPUts fOr SPARC.cciiiiiiiiitteee ittt e ettt e e e e ettt e e e s e s sabbbeeeeeseesanneenaaas 45
Table 20: Warning MeESSAZES. ...ccceeerruuriiieeetieiiiitteeeeeeesietteeeesesaiteteeeessssatarteeeeseeeeeeeeeeeeeeeeeeemsessmnnes 47
TaDIE 21 EITOT IMESSAZES. ceeeiiieiiiiieiieeeeeeeeeeeeiiiiiiitteteete ittt eteeeeeeeeeeeeesesaesssssssssssssssnsnnsssssssssasssnsnnnnnes 54
Table 22: RapiTime EXPOIt OPLiONS.uuutieeiiiiiiiiiiiieeeeeiiiitteeeeeeeiieteeeeseeeibereeeeesessnrreeeeeeeeeaeanennaes 65
Table 23: RapiTime Export Warning MeSSAZES......cccceeeieireeeeeererrriiiiiiiieiteeeeeeeeeeeeesaaeeeeeeeennaannnnes 66
Table 24: RapiTime EXPOrt ErTOr MeSSAZES. ...ccceuriuumriiiiiiiiiiiiiiiieeeeeiirteeeeeeeiirtee e e e e esireeeeeeeeeeanees 66
Table 25: Register Zroups and NAIMIES.........ceeieieieeeeeeeeeeeeeeeeeeeeeerreereeeeeeeeeeeeeeeessresnnnaeeeeeessnnnnaeens 70
Table 26: ASSEItable PrOPEITIES. ...cccvvvviueeiiiieeeeeeeeeeeetrereeeneaeaeeeeeeeeeeeerrrsnnnnnnsaeeeseeeeeseennsssnnnnnnssessnns 72
Table 27: Default properties for unanalysed sUDPIOZIams..........cccooereuuiiieeiiiniiiiiieeeeeeeeeeeeeeeeeeeeenees 73

Document change log

Issue Section Changes

7 Front matter Added section for document change log.

7 Section 2.2 Corrected the discussion of caches in the "General " section.
7 Section 5 Extended introduction.

7 Section 5.4 Extended to include return offsets.

7 Section 5.5 Added section on instruction roles (none defined).

Vi

1.1

1.2

INTRODUCTION

Purpose and Scope

Bound-T is a tool for computing bounds on the worst-case execution time of real-time
programs; see reference [1]. There are different versions of Bound-T for different target
processors. This Application Note supplements the Bound-T Reference Manual [1] and the
Bound-T User Guide [2] by giving additional information and advice on using Bound-T for
target processors that use the SPARC architecture (version V7 or version V8, including the
"embedded extensions V8E).

For timing analysis this version of Bound-T supports one particular SPARC processor that
is used in European space projects: the ERC32. Stack usage analysis is supported for all
SPARC V7, V8 or V8E processors. This includes the LEON processor family.

The ERC32 is a SPARC V7 processor for space applications implemented by Atmel Wireless
& Microcontrollers (formerly TEMIC Semiconductos) (http://www.atmel-wm.com). The
three-chip implementation of this processor is described in references [4] [5] [6], but it is
no longer used; the Bound-T tool supports the single-chip version [7], for which also the
former references apply. The ERC32 is usually applied without cache memories.

The LEON is a series of SPARC V8 processors [9] [10] designed by Gaisler Research and
implemented for space applications by Atmel as the AT697 chip [11]. LEON processors
usually include on-chip cache memories. The cache memories, and other design
differences, make the LEON instruction timing different from that of the ERC32.

The first goal of this document is to explain the sort of SPARC code that Bound-T can or
cannot analyse and so help you write analysable programs. The second goal is to explain
the additional command-line options and other controls that are specific to the SPARC.

Some information in Section 4.3 and Chapter 5 of this Application Note applies only when
the target-program executable is generated with specific compilers, linkers and run-time
kernels. Other compilers may be addressed in separate Application Notes.

Overview

The reader is assumed to be familiar with the general principles and usage of Bound-T, as
described in the Bound-T Reference Manual [1]. The reference manual also contains a
glossary of terms, many of which will be used in this Application Note.

So what's it all about?

In a nutshell, here is how Bound-T bounds the worst-case execution time (WCET) of a
subprogram: Starting from the executable, binary form of the program, Bound-T decodes
the machine instructions, constructs the control-flow graph, identifies loops, and
(partially) interprets the arithmetic operations to find the "loop-counter" variables that
control the loops, such as n in "for (n = 1; n < 20; n++) { ... }".

By comparing the initial value, step and limit value of the loop-counter variables, Bound-T
computes an upper bound on the number of times each loop is repeated. Combining the
loop-repetition bounds with the execution times of the subprogram's instructions gives an

Bound-T for SPARC 0 1

1.3

upper bound on the worst-case execution time of the whole subprogram. If the sub-
program calls other subprograms, Bound-T constructs the call-graph and bounds the
worst-case execution time of the called subprograms in the same way.

When does it work?

This sort of "static program analysis" is in theory an unsolvable problem and cannot work
for all programs (like the well-known "halting problem"). It succeeds for programs that
have a suitable structure, for example programs in which all loops have counters with
constant initial and final values and a constant step. Moreover, since we are analysing low-
level machine coder rather than high-level source code, the nature of the instruction set
and the specific instructions used (or, usually, generated by the compiler) may help or
hinder the analysis.

This Application Note explains how Bound-T has been adapted to the architecture of the
SPARC processors and how to use Bound-T to analyse programs for these processors and
in particular for the ERC32. To make full use of this information, the reader should be
familiar with the architecture and SPARC architecture and instruction set as presented in
references [8] [9] [10].

The remainder of this Application Note is structured as follows:

+ Chapter 2 describes the main features of the SPARC architecture and how they relate to
the functions of Bound-T.

+ Chapter 3 defines in detail the set of SPARC instructions and registers that is supported
by Bound-T.

« Chapter 4 explains those Bound-T command arguments and options that are wholly
specific to the SPARC or that have a specific interpretation for this processor.

+ Chapter 5 addresses the user-defined assertions on target program behaviour and
explains the possibilities and limitations in the context of the SPARC and certain
software development tools used with the SPARC.

References

[1] Bound-T Reference Manual.
Tidorum Ltd., Doc. ref. TR-RM-001.
http://www.bound-t.com/manuals/ref-manual. pdf

[2] Bound-T User Guide.
Tidorum Ltd., Doc. ref. TR-UG-001.
http://www.bound-t.com/manuals/user-guide.pdf

[3] SPARC Processor for Space Applications.
TEMIC Semiconductors.

[4] TSC691E Integer Unit User's Manual for Embedded Real time 32-bit Computer
(ERC32) for SPACE Applications.
Temic Semiconductors, Rev. I, September 1998.

[5] TSC692E Floating Point Unit, User's Manual for Embedded Real time 32-bit
Computer (ERC32) for SPACE Applications.
Matra MHS, Rev. H, December 1996
TEMIC Semiconductors.

0 Bound-T for SPARC

http://www.bound-t.com/manuals/user-guide.pdf
http://www.bound-t.com/manuals/ref-manual.pdf

1.4

(6]

[71

(8]

(9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

TSC693E Memory Controller User's Manual for Embedded Real time 32-bit
Computer (ERC32) for SPACE Applications.

Matra MHS, Rev. D, April 1997

Temic Semiconductors.

TSC695E Rad-Hard 32-bit SPARC Embedded Processor User's Manual.
Atmel Wireless & Microcontrollers, Rev. F, March 2001.

SPARC V7.0 Instruction Set, for Embedded Real time 32-bit Computer (ERC32) for
SPACE Applications.
Atmel Wireless & Microcontrollers, Rev. C, 28 August 2001.

The SPARC Architecture Manual, Version 8.
Revision SAV080SI9308. SPARC International Inc. 535 Middlefield Road, Suite 210,
Menlo Park, CA 94025.

SPARC-V8 Embedded (V8E) Architecture Specification.
Version 1.0, October 23, 1996. SPARC International, 3333 Bowers Avenue, Suite
280, Santa Clara, CA 95054-2913, USA

Rad-Hard 32 bit SPARC V8 Processor AT697E.
Rev. 4226C-AERO-08/05, Atmel Corporation.

ERC32 Timing Measurements.
Space Systems Finland Ltd., BTE-TN-SSF-001, Version 1, September 2001.

Using Bound-T in HRT Mode.
Tidorum Ltd., Doc. ref. TR-UM-002.

RapiTime. http://www.rapitasystems.com/wcet.html, Rapita Systems Ltd.

Exporting the Bound-T Program Model to RapiTime. Tidorum Ltd, Doc. Ref. TR-
PEAL-ICD-001, Issue 2, 2006-06-02.

DWARF Debugging Information Format, Version 3.
Free Standards Group, December 20, 2005. http://dwarf.freestandards.org.

Bound-T Assertion Language.
Tidorum Ltd., Doc. ref. TR-UM-003.
http://www.bound-t.com/manuals/assertion-lang.pdf

Abbreviations and Acronyms

See also references [1] and [2] for abbreviations specific to Bound-T, reference [8] for the
mnemonic operation codes and register names of the SPARC, and reference [13] for
abbreviations specific to the "HRT mode" of Bound-T.

ASI Alternate (address) Space Identifier

ASR Ancillary State Register

CWP Current Window Pointer

DWARF Debugging With Attribute Record Format (although this expansion is not
given in the DWARF standard itself [16])

EDAC Error Detection And Correction

ELF Executable and Linking Format

Bound-T for SPARC 0 3

http://www.bound-t.com/manuals/assertion-lang.pdf

1.5

ERC32
ESF
FP

fp

FPQ
FPU
GNAT
HR
ILP
I0P

IU
MEC
MMU
NaN
ORK
PSR
RISC
RW

sp
SPARC
STABS
TBR
TPO
WCET
WIM

Embedded Real-time 32-bit Computer
Execution Skeleton File (for an HRT program)
Floating Point

Frame Pointer = register r30
Floating-Point Operation Queue
Floating-Point Unit

GNU Ada Translator

Hard Real Time

Integer Linear Programming
Internal OPcode

Integer Unit

Memory Controller

Memory Management Unit

Not a Number

Open Ravenscar Kernel

Processor State Register

Reduced Instruction Set Computer
Register Window

Stack Pointer = register r14
Scalable Processor Architecture
Symbol TABle

Trap Base Register

Threads and Protected Objects file
Worst-Case Execution Time

Window Invalid Mask register

Glossary of Terms

See also reference [1] for general terms used in static execution-time analysis and Bound-T
in general. The following list contains only terms specific to the SPARC version of Bound-T
as described in the present document.

Alternate

Caller-save

Ipoint

An alternate SPARC calling sequence or return sequence. That is, a
sequence that uses the UNIMP instruction to transmit an additional
parameter.

A subprogram that is called with CALL or JMPL immediately followed by a
SAVE instruction in the delay-slot. The calling sequence (CALL;SAVE or
JMPL; SAVE) thus creates a register window for the called subprogram. The
subprogram itself shall not contain a SAVE but shall contain a RESTORE.

An instrumentation point for RapiTime. See reference [14] and section 4.7.

Bound-T for SPARC

1.6

Leaf

Non-leaf

Normal

Self-save

A suprogram that executes with the same register-window as its caller. Any
normal subprogram (as distinct from a trap handlere) that is neither a self-
save subprogram nor a caller-save subprogram is a leaf subprogram. A leaf
subprogram shall not contain any SAVE or RESTORE instructions and SAVE
instructions shall not appear (as the delayed instruction) in calls to this
subprogram.

A subprogram that is not a leaf subprogram. See leaf. Thus, a subprogram
that executes in its own register-window, not in the same register-window
as its caller.

A normal SPARC calling sequence or return sequence. That is, a sequence
that does not involve the UNIMP instruction.

A subprogram that contains one SAVE instruction that creates a register
window for use in the subprogram. This subprogram shall be called with an
instruction pair (starting with CALL or JMPL) that does not contain a SAVE
instruction. The subprogram shall contain a RESTORE instruction executed
after the SAVE.

Typographic Conventions

We use the following fonts and styles to show the role of pieces of the text:

register
INSTRUCTION
-option
symbol

text

The name of a SPARC register embedded in prose.
A SPARC instruction.

A command-line option for Bound-T.

A mathematical symbol or variable.

Text quoted from a text / source file or command.

Bound-T for SPARC 0 5

2.1

THE SPARC AND TIMING ANALYSIS

The SPARC architecture

The SPARC architecture [8] [9] [10] defines a 32-bit, load-store RISC architecture where
all computation is register-to-register. Instruction fetch, decode, execute and write cycles
are pipelined, and branch instructions have one delay-slot.

Each instruction is 32 bits wide. Integer operations are typically executed in one cycle. The
execution time of some complex instructions depends on the implementation, especially
for the optional floating-point instructions which are (conceptually) implemented by an
optional floating-point unit running as a coprocessor. Depending again on the implemen-
tation the processor may or may not have caches, fetch buffers, write buffers or other
performance accelerators. The architecture also defines an optional Memory Management
Unit (MMU) for virtual memory addressing and memory protection.

The number of pipeline stages and the pipeline timing may also depend on the implemen-
tation. However, two pipeline stages are architecturally visible and are called the “decode”
and “execute”. The result is that jumps and calls are usually “delayed”; the jump or call
instruction is followed by one “delay” instruction that is executed before the transfer of
control.

Data formats and operations

Integer operations work on 32-bit integers, but load/store operates also on data of length
8 or 16 bits (with or without sign extension) or 64 bits. Two's complement representation
is used for integer data.

A special variant of integers called tagged data, which is useful for dynamically typed
programming languages, is also supported by the SPARC. It contains 30 bits of data and a
2-bit tag.

Integer addition and subtraction are supported in hardware by the Integer Unit (IU) [4]
but (full) multiplication and division are not. Some implementations may support floating-
point operations in hardware by a separate Floating-point Unit (FPU). The ERC32 has an
FPU [5] which runs as a concurrent unit with the Integer Unit. The LEON AT697E has an
FPU that runs sequentially with the Integer Unit. In some SPARC implementations the FPU
can work on only one instruction at a time; other implementations have pipelined FPUs
and may have a floating-point instruction queue to further buffer FP instructions streaming
from the IU to the FPU.

Floating-point operations use either 32-bit (single precision) or 64-bit (double precision)
IEEE-standard formats. Some implementations also support wider formats such as a 96-bit
“extended” format (in the ERC32) or the 128-bit “quadruple” precision format.

Memory and register addressing

Memory is byte-addressed but the memory bus is usually 32 bits wide. Data and
instructions use the same address space (von Neumann architecture). Instructions must be
aligned at 32-bit (4-byte) multiples, and data for load and store must be aligned at a
multiple of the data length (eg. an even address for 16-bit data).

0 Bound-T for SPARC

For integer operations, 32 registers of 32 bits can be accessed, divided into 8 "global"
registers (r0 to r7), 8 "out" registers (r8 to r15), 8 "local" registers (r16 to r23) and 8 "in"
registers (r24 to r31). The "out", "local" and "in" registers are mapped to a 24-register
window into a much larger register file, relative to a Current Window Pointer (CWP) in the
processor state register (PSR). The normal calling convention manipulates the CWP on
call/return so that the "out" registers of the caller are visible as the "in" registers of the
callee. The "local" registers are private to each subprogram level. Thus, the register file is
used as a ring buffer to hold the local context of the deepest currently active subprograms.

The size of the register file, or register ring, depends on the implementation. The ERC32
and the AT697E have register files with 128 registers (8 full sets or "windows" of 16
registers).

Hardware traps occur when the CWP wraps around in the register ring, and software trap-
handlers then spill or load register windows to a memory-resident stack. The number of
windows spilled or loaded per trap is not fixed by the architecture, but the manuals [4]
state that spilling and loading one window at a time has been found best. One window is
reserved for the trap handler. Thus, on the ERC32 or LEON seven windows are usually
available for normal subprograms, but a different number can be defined by the Window
Invalid Mask (WIM) register.

The floating-point unit contains a more conventional set of 32 floating-point registers (f0
to f31) without any register-window mechanism.

The Y register is a special 32-bit register in the integer unit. An instruction that multiplies
two 32-bit values places the upper 32 bits of the 64-bit product in Y. Vice versa, a division
instruction can take the upper 32 bits of the 64-bit dividend from Y.

Fault tolerance

The ERC32 internal data paths include error checks and the memory includes error
correction bits that are updated and checked on the fly by the EDAC (error detection and
correction). The LEON design is available in a fault-tolerant version (LEON FT) with
similar features.

Optional co-processor

The SPARC architecture defines an interface to an optional co-processor (in addition to the
Floating-Point Unit) and a subset of the instruction space for co-processor instructions. The
purpose and functionality of the co-processor is left entirely open. The ERC32 and LEON
processors do not have such co-processors.

Control flow

The IU PSR contains four condition-code bits, N = negative, Z = zero, V = overflow, and
C = carry. Many arithmetic and logical instructions have two forms, one that sets
condition codes and another that does not. The FPU has its own set of condition code bits.
Accordingly, there are two conditional branch instructions: Bicc for IU condition codes and
FBfcc for FPU condition codes. (The SPARC architecture has a third such instruction,
CBccc, for coprocessor condition codes, but the ERC32 and LEON have no coprocessors.)
Each of these has 16 forms that differ by the condition for which the branch occurs,
including “always” or “never”.

Bound-T for SPARC 0 7

2.2

The instruction in the delay slot (following the branch) is always executed if the branch is
taken. An “annul” bit in the instruction selects whether the delay-slot instruction is
executed in case the branch is not taken. (The branch-always instruction is a special case
here.) Thus, if the annul bit is set, the delay-slot instruction works as if it were the first
instruction at the target of the branch.

Concurrent Functional Units

In some SPARC implementations, such as the ERC32, the FPU can execute operations
concurrently with the IU, as a form of parallel computation. This requires special
consideration in any static execution-time analysis of such SPARC devices. The rest of this
chapter first describes the analysis of the IU, and then considers the FPU.

Static Timing Analysis of the SPARC Integer Unit

General

The SPARC Integer Unit architecture in the ERC32 is very regular. The ERC32 IU is
suitable for static analysis by Bound-T, since instruction timing in no case depends on the
data being processed, but only on the control flow and sometimes on data-flow
dependency between the source and target registers of consecutive instructions. The
dependencies can be resolved statically.

Bound-T currently does not include a static analysis of cache memories. Thus, Bound-T
cannot analyse execution time for processors with caches, for example the LEON
processors. Moreover, the LEON has several other “accelerator” features that the present
version of Bound-T does not model, such as the Instruction Burst Fetch, the Write Buffer,
and the MMU. The timing model in this version of Bound-T applies only to the ERC32 and
does not support timing analysis of LEON processors.

Register Window Traps

The static timing analysis of the Integer Unit is complicated by the spilling and loading of
register windows when the register file overflows or underflows. Whether a spill or load
occurs for a particular call or return depends on the call-nesting depth, which is a property
of paths in the call-tree and cannot be deduced from a local analysis of the subprograms.

To predict the occurrence of register window traps, Bound-T/SPARC optionally applies a
global analysis to the call-tree rooted at the subprogram(s) that the user specifies for
WCET analysis. The global analysis computes two values for each subprogram S in the call
tree:

« an upper bound rwu_max(S) on the number of register windows in use when S is
called,

+ lower and upper bounds on the number win_depth(S) of register windows pushed and
popped by an execution of S, including its callees.

These numbers let Bound-T predict which calls and returns can cause overflow or
underflow traps. The prediction is conservative (if a trap actually occurs, it is predicted)
but not necessarily precise (a predicted trap may not actually occur). The prediction relies
on some assumptions:

0 Bound-T for SPARC

« Bound-T assumes that only the program itself changes the number of register windows
in use, via SAVE and RESTORE instructions at calls and returns. If the program is run
under a real-time kernel that can interrupt or pre-empt tasks, this means that Bound-T
assumes that the kernel preserves the contents of the register file so that when the task
is resumed, the number of active windows is the same as when the task was
interrupted.

« Bound-T assumes that the trap handlers spill or load one register window at a time, as
recommended in [4]. These trap handlers are usually part of the kernel or run-time
system.

What can be done if the kernel or run-time system violate these assumptions? There seem
to be only two reasonable ways for the kernel to handle the register file when a task is
resumed: either the register file is entirely restored, as Bound-T assumes, or only one
window is restored, which can be expected to minimize task switching overhead. In the
latter case, Bound-T's prediction for overflow traps remain safe (but may become more
pessimistic), but it predicts too few underflow traps. If W is the number of windows
available to the application (as defined by the WIM, usually W = 7), each suspension and
resumption causes at most W-1 underflow traps in addition to those that Bound-T predicts.

There are two ways to work around this. The first way is to tell Bound-T to assume that
every return may cause an underflow trap (command-line option -returns_trap). This is a
safe prediction but quite pessimistic. The second way is to use the standard Bound-T
analysis to estimate the WCET of each task, including the predicted number of traps, but to
add the time for the additional underflow traps to the kernel's task-resumption time, when
analysing the schedulability of the whole (multi-task) program.

If more than one register window is spilled or loaded by the trap handlers, the current
Bound-T register-file trap analysis cannot be used. Bound-T then computes WCET values
which do not include any time for register file traps. We are considering a potential
extension to Bound-T/SPARC to make the number of register windows loaded or spilled a
configurable parameter.

When the register-file trap analysis is enabled (option -rw) Bound-T by default assumes
that the root subprograms, that is, the subprograms named by the user for WCET analysis,
start execution with two register windows in use (rwu_max = 2). The rationale is that a
root subprogram is assumed to be called from another subprogram (perhaps in the
kernel), which uses at least one window. Therefore, if the entry sequence of the root
subprogram executes a SAVE instruction, as is usually the case, it will have at least two
windows in use. This assumption can easily be overridden by asserting the value of the
property rwu_max for the subprogram (option -assert).

For each predicted register-file overflow trap, Bound-T includes the WCET of the overflow
trap handler in the WCET bound of the calling subprogram, even if the SAVE instruction
that triggers the trap is actually at the start of the callee subprogram.

For each predicted underflow trap, Bound-T includes the WCET of the underflow trap
handler in the WCET bound of the returning subprogram.

By default, Bound-T itself computes the WCET of these trap handlers, locating them with a
default trap base address. The user can specify a different trap base address (option
-trap_base) or directly the WCETs for the trap handlers (options -rw_overflow and
-rw_underflow).

Bound-T for SPARC 0 9

2.3

10

Static Timing Analysis of the SPARC Floating Point Unit

The static execution-time analysis of the SPARC floating-point unit (FPU) is complicated
by two features:

+ Possible concurrent execution of the FPU and the IU.
+ Possible queuing of several floating-point instructions between the IU and the FPU.

+ Variable (data-dependent) floating-point instruction time.

FPU and IU sequential operation

In SPARC implementations such as the LEON AT697E that feature an FPU with sequential
operation, all instructions are fetched and executed sequentially. Integer instructions and
control instructions are executed in the IU (the FPU is idle); floating-point instructions are
executed in the FPU (the IU is idle). The next instruction, of whatever type, starts
execution only after the preceding instruction is completed. Of course the IU pipeline
overlaps some of the execution steps of consecutive instructions but this overlap is exactly
modelled by the delayed control transfers and the "pipeline blocking" delays that occur
between certain pairs of instructions.

Thus, a static timing analysis of a SPARC implementation with a sequential FPU can treat
IU instructions and FPU instructions as one stream. The only complicating factor is the
variable, data-dependent execution time of the floating-point operations, on which more
below.

As this version of Bound-T only supports timing analysis for the ERC32 processor, which is
always equipped with a concurrent FPU, the sequential alternative is not really relevant.

FPU and IU concurrent operation

In SPARC implementations such as the ERC32 that feature an FPU with concurrent
operation, floating-point operations are fetched and decoded by the IU and FPU in lock-
step, but the decoded floating-point instructions enter the FPU's Floating-point Operation
Queue (FPQ) and are then executed asynchronously, while the IU fetches, decodes and
executes further IU instructions. If the IU encounters more floating-point operations, they
can be put in the FPQ as long as there is room, while earlier floating-point operations are
still executing. (The ERC32 FPQ [5] has room for only one instruction, which simplifies
the analysis as shown later.)

The floating-point compare instructions such as FCMPS are not executed concurrently with
IU instructions, instead they cause the IU to halt until their execution is finished. This
ensures that the resulting condition codes are available to the IU for the FBfcc instruction.

Load/store instructions for the FPU registers (f0 to 31 and control registers) are not placed
in the FPQ, but other interlocks apply (see below).

The FPU thus executes concurrently (in parallel) with the IU, with synchronisation only at
specific points. The main synchronisation points are the following ([5], section 3.2.2.2):

+ When a new floating-point operation is fetched, but the FPQ is full, the IU waits until
the currently executing FPU instruction finishes and leaves room in the FPQ for the new
one. The waiting time is thus the remaining execution time of the head instruction in
the FPQ.

+ A "load" into an FPU register is delayed until all queued FPU operations that use this
register (as input or output) are completed.

0 Bound-T for SPARC

2.4

« A "store" from an FPU register is delayed until all queued FPU operations that place
results in this register are completed.

+ A "load" into or a "store" from the FPU status register is delayed until any ongoing FPU
instruction is completed.

A complete model of the FPU state for timing analysis should include the number of
operations in the FPQ, their source and destination registers, their worst-case execution
time, and the remaining (worst-case) execution time of the instruction in execution (the
head of the FPQ). This FPU state should then evolve in the natural way as the execution
progresses, with old operations finishing their execution and leaving the FPQ, and new
operations entering the FPQ.

For the SPARC devices that Bound-T supports, where at most one operation fits in the
FPQ, the model is simplified: either the FPQ is empty, or it contains one operation with
known source and destination registers and some remaining execution time (a zero time
can be used to indicate that the FPQ is empty). Bound-T analyses this dynamically evolving
state to bound the possible states at each point in the control-flow graph of a subprogram.

Variable instruction execution time

The execution time of most floating-point instructions is data-dependent, with sometimes a
large factor between the minimum and maximum times. For example, on the ERC32 [5] a
single-precision addition (FADDS) takes between 4 and 17 cycles, and double-precision
square-root (FSQRTd) takes from 6 to 80 cycles. This may lead to WCET bounds that are
pessimistic.

The execution time of floating-point instructions also depends on the FPU implementation;
the ERC32 and the LEON AT697E have different FPU execution times.

By default, Bound-T uses the worst-case times for the chosen target processor; in the
present version only the ERC32 is supported. A command-line option to use instead the
"typical" times is provided as well as a command-line option by which the user can specify
the floating-point instruction times in a configuration file. The options are described in
section 4.2.

Timing Approximations

The following architectural features can lead to approximate (over-estimated) execution
times for the concerned instructions:

+ The register window traps.

« The possible concurrent operation of the floating-point unit and the integer unit.

« The data-dependent, variable floating-point execution time.

+ The memory wait states that vary for different memory types.

See section 3.14 for more information about the approximations.

Bound-T for SPARC 0 11

2.5

12

Stack Usage Analysis for the SPARC

An optional Bound-T function is to compute an upper bound on the stack usage of a
subprogram and its callees. This analysis is activated by the command-line options -stack
or -stack_path. This analysis is available for all SPARC processors that use the V7, V8 or
V8E architectures, including the ERC32 and the LEON.

For the stack-usage analysis, Bound-T first finds the size of the stack frame for each
subprogram by analysing the instructions that modify the stack pointer. Next, Bound-T
analyses the call graph to find the call path that has the largest total stack usage.

The SPARC architecture defines one stack located in main memory. The stack is used for
passing parameters, for local variables, and for spilling register windows on overflow of
the register file. Register r14 is the dedicated stack pointer and register r30 is the dedicated
frame pointer. The standard SPARC calling protocol uses the SAVE instruction to allocate a
stack frame and the RESTORE instruction to deallocate a stack frame. However, a SPARC
program can also change the stack and frame pointers with other instructions such as ADD
and SUB.

The stack-usage analysis in Bound-T for the SPARC relies on the standard calling protocol.
Currently, the analysis allows at most one SAVE instruction per call; this instruction can
occur immediately after the CALL (in the delay slot) or somewhere in the called
subprogram (but not both). The CALL (if present) must be matched by a RESTORE that is
usually the last instruction of a subprogram, in the standard instruction sequence for
returning from a subprogram. These rules take special forms in “tail calls” on which more
later in section 3.11.

If SAVE or RESTORE instructions occur in other ways, an error message is emitted and the
stack-usage analysis fails.

The program is allowed to use other instructions to modify the stack pointer or frame
pointer registers. This may be necessary for subprograms that have a lot of local data or
local data of a dynamically computed size, for example a local array with a size defined by
an input parameter.

Some programming languages or compilers may use additional stacks under software
control. At present, Bound-T has no support for any additional stacks on the SPARC.

0 Bound-T for SPARC

3.1

3.2

SUPPORTED SPARC FEATURES

Overview

This chapter specifies which SPARC instructions, registers and status flags are supported
by Bound-T and how Bound-T models them. We will first describe the extent of support in
general terms, with exceptions listed later. Note that in addition to the specific limitations
concerning the SPARC processor, Bound-T also has generic limitations as described in the
Reference Manual [1]. For reference, these are briefly listed in section 3.4.

General support level

In general, when Bound-T is analysing a target program for the ERC32 SPARC processor, it
can decode and correctly time all IU instructions, with minor approximations. FPU
instructions have more important timing approximations.

Bound-T can construct the control-flow graphs and call-graphs for all instructions when all
branches, jumps and calls have static target addresses. Some, but not all, forms of dynamic
jumps can be analysed. Analysis of dynamic calls (calls via function pointers) is not
provided, but the targets of such calls can be defined by assertions.

Bound-T supports the SPARC call/return protocol, using the CALL instruction and the and
the standard SPARC instruction sequences that return from a subprogram, with or without
the register windowing with SAVE and RESTORE instructions. The alternate call/return
protocol that uses an UNIMP instruction is also supported.

Bound-T can also analyse trap handler subprograms. Explicit invocation of trap handlers
with the Ticc instruction is best supported if the trap number is statically available in the
trap instruction (immediate operand). Bound-T also tries to analyse trap numbers given as
register operands but this is likely to succeed only when the register is given a single static
value in the subprogram that contains the Ticc instruction.

When analysing loops to find the loop-counter variables, Bound-T is able to track all the
32-bit integer (fixed point) additions and subtractions. Bound-T detects when this integer
computation is overridden by other computations, such as multiplications, divisions,
logical operations or loads (of any size) into the same registers.

In summary, for a program written in a compiled language such as Ada or C, it is unlikely
that the Bound-T user will meet with any constraints or limitations that are specific to the
SPARC target system, apart from the approximations in floating-point execution time and
possibly in register window trapping.

Before detailing the exceptions to the general support, some terminology needs to be
defined concerning the levels of support.

Levels of Support

Four levels of support can be distinguished, corresponding to the four levels of analysis
used by Bound-T:

1. Instruction decoding: are all instructions correctly recognised and decoded? Is the
execution time of each instruction correctly and exactly included in the WCET, or only
approximately?

Bound-T for SPARC 0 13

2. Control-flow analysis: are all jump, call and loop instructions correctly traced to their
possible destinations? Are there other instructions that could affect control flow, and
are they correctly decoded and entered in the control-flow graph?

3. Definition analysis: is the effect of each instruction on the data flow correctly traced, in
terms of which "cells" (registers, memory locations) are defined (written, modified) by
the instruction?

4. Arithmetic analysis: to what extent are the arithmetical operations of instructions
mastered, so that the range of the results can be bounded?

These levels are hierarchical in the sense that a feature is considered to be supported at
one level only if it is also supported at all the lower levels, with arithmetic analysis as the
highest level.

Opaque values

When an operation is supported at the definition level, but not at the arithmetic level, then
Bound-T's arithmetic analysis considers the operation's results to be unknown or opaque.

When an opaque value is stored in a register or memory location, the store is understood
to destroy the earlier (possibly non-opaque) value and replace it with the opaque value.
For arithmetic analysis, an opaque value represents an undefined value from the set of
possible values of the storage cell (32 bits for an IU register, 1 bit for a condition flag).

The difference between definition analysis and arithmetic analysis is crucial to Bound-T's
ability to bound the worst-case times of loops. To illustrate this difference, the following
table lists some SPARC instructions and their definition-analysis and arithmetic analysis.
The instructions are assumed to be executed in sequence. The analysis contains just the
aspects supported by Bound-T.

Note that the IU global register r0 has special semantics: a read of r0 returns zero, and a
write into r0 has no arithmetic effect. In the assembly code, register number i is written as
"%ri" or just "%i". Thus, the instruction in the first row, "add %r0, 33, %r4" means to add the
value of r0 (which is zero) to 33 and store the result in r4.

Table 1: Definition Analysisvs ArithmeticAnalysis

Instruction Definition analysis Arithmetic analysis
1 add %r0, 33, %r4 r4 gets a new value. r4 gets the value 33.
2 addcc %r4, 1, %r5 15 gets a new value. 15 gets the value r4 + 1, which is 34.
Z and N get new values. Z and N get the value 0.
3 subcc %r4, %r5, %r0 Z and N get new values. N gets the value 1, since r4 < r5.
Z gets the value 0.
4 mulscc %r4, %r5, %r7 17 gets a new value. 17 gets an opaque value (Bound-T does
Z and N get new values. ;ﬁ;&iﬁr;rﬁﬁﬁ ;i.cation in
Z and N get opaque values.
5 wr %r4, %r5, %y No effect. The Y register is not No effect.
tracked.
6 rd %y, %r5 15 gets a new value. 15 gets an opaque value (any reading of

14

an untracked register is opaque).

Bound-T for SPARC

#

Instruction Definition analysis Arithmetic analysis

7

3.3

subcc %r5, %r4, %r1 11 gets a new value. 1 gets the value r5 - r4.

Z and N get new values. Z is set if r5 = r4, otherwise cleared.

N is set if r5 < r4, otherwise cleared.

Note that in row 7, arithmetic analysis tracks the fact that r1 is now the difference between
r5 and r4, even though r5 has an opaque value. This tracking is important, for example
when Bound-T examines the way a loop-body modifies a variable, to see if the variable is
the loop-counter.

In fact, the same holds for all the table rows: arithmetic analysis tracks the formulae, not
the values; the values (or value ranges) are then calculated from the formulae when
needed.

Implications of Limited Support

Looking at the support levels from the Bound-T user's point of view, the following
implications arise when the target program uses some SPARC feature which is not
supported at some level.

+ Arithmetic analysis: If a feature is supported at all levels except arithmetic analysis, then
using this feature in any loop-counter computation will keep Bound-T from identifying
the loop-counters (due to opaque values) so these loops cannot be bounded
automatically. However, the other results from Bound-T stay valid.

For example, if the initial value of a loop-counter is read from the Y register as for r5 in
Table 1, row 6, then Bound-T cannot compute bounds for the initial value and thus cannot
bound the loop.

+ Definition analysis: If a feature is not supported in definition analysis, then in addition
to the preceding impact, using this feature implies a risk of invalidating the arithmetic
analysis, and thus a risk of incorrect results from Bound-T. Few SPARC features are at
this level of non-support, and Bound-T will warn if they are used.

For example, if the instruction "rd %y, %r5" in Table 1, row 6 were not supported in the
definition analysis, it would not be seen to store a new value in r5, and the next instruction
in row 7 would seem to get r5's value from row 2, which would be quite wrong.

« Control-flow analysis: If a processor feature is not supported in control-flow analysis,
then Bound-T can produce arbitrary (correct or incorrect) results when this feature is
used in the target program, because the correct control-flow graphs cannot be
determined. Again, Bound-T will warn of such usage.

« Instruction decoding: If a feature is not supported even for decoding, then it is useless to
run Bound-T on a target program that uses this feature, since the only reliable result
will be error messages.

Bound-T for SPARC 0 15

3.4 Reminder of Generic Limitations
To help the reader understand which limitations are specific to the SPARC architecture,
the following compact list of the generic limitations of Bound-T is presented.
Table 2: Generic Limitations of Bound-T
Generic Limitation Remarks for SPARC target
Understands only integer operations in loop-counter All results from floating-point operations can be
computations. considered opaque.

Understands only addition, subtraction and multiplication No implications specific to the SPARC.
by constants, in loop-counter computations.

Assumes that loop-counter computations never suffer The PSR flag v is assumed to be zero, except
overflow. when it is explicitly tested, in which case it is

considered unknown (opaque).

The c flag is considered unknown (opaque).

Can bound only counter-based loops. No implications specific to the SPARC.

May not resolve aliasing in dynamic memory addressing. No implications specific to the SPARC.

3.5

Support Synopsis

The following table gives a synoptical view of the level of support for SPARC features. A
plus '+'in a cell means that the feature corresponding to the table row is supported on the
level corresponding to the table column. A shaded cell indicates lack of support.

The features are ordered from the fully supported at the top, to the unsupported at the
bottom. More detail on the support level is given in the following sections.

Table 3: Synopsis of SPARC Support

50 § g 2
SPARC registers, instructions £ S 8 3
g 4 ’ T 8 B E Remarks
or other features g § S s
] 5] &
§ / <
IU addition, subtraction, LOAD, STORE, SETHI + + + |+
xoR when both operands are the same register + + The result is zero.

or when one operand is literally zero (the mov

The result is the other operand.

+
4
+
+

pseudo-instruction)

or with a literal operand that extends an

Equivalent to loading a 32-bit immediate

immediately preceding SeTHI operand into the destination register.
PSR flags z, N + + + |+

IU conditions for signed comparisons, in the The synonym mnemonics are not listed
Bicc and Tice instructions: + + + + but are supported since the binary

BN, BE, BLE, BL, BNEG, BA, BNE, BG, BGE, BPOS encoding is the same.

cALL followed by an instruction (not save) that

The callee may execute SAVE to allocate a

does not modify the return address register window for itself.

16

0 Bound-T for SPARC

2 9
g .8
o . 22 8 %
SPARC registers, instructions, S =~ 8B £
S © & = Remarks
or other features S & &€ =
$ £%%
§ S <
Implies that the callee will not itself
caLL followed by sAve + + + + execute savE since the caller did it on
behalf of the callee.
Tail call; the RESTORE deallocates the
caLL followed by RESTORE when the subprogram I T subprogram's register window and

is executing in its own register window

cALL followed by an instruction (not RESTORE)
that modifies the return address register

+ o+ o+ o+

makes the callee return to the caller of
the subprogram.

If the subprogram is executing in its
caller's register window and Bound-T
can deduce that the return address is set
to the return address of the subprogram
itself, this is a tail call.

If Bound-T can deduce the static value of
the return address, this is an ordinary
call (not a tail call) with an unusual
return address.

Otherwise this is a call with an unknown
return address and the control-flow
analysis fails.

Only one stand-alone execution of SAVE
in each subprogram; to allocate the

SAVE alone + + + + register window for the subprogram;
only allowed if the caller does not save
as part of the call.

sAVE in the delay slot of a cALL or of a JmpL that Allocates the register window for the

) Y + + + + callee; implies that the callee will not

implements a call .
itself execute SAVE.

uNimp as part of call sequence ([7]) + +

JMPL in standard return sequences + +

.. . Assuming that Bound-T's analysis find

JMPL as an indirect jump (not a call) + 4 4 4 Ossuming Una-=s ys s
the target(s) of the jump.

Tice with a static (immediate) trap number + + + + Value of TBR must be known.

The register must be given a single,

Ticc with a dynamic (register) trap number + + + + static value in the subprogram that

1 .
y & P contains the Tice. Also, the value of TBR
must be known.
The execution time of this instruction

Store barrier (SPARC V8): STBAR + + + + may be underestimated for complex

memory interfaces.
By default an unsigned condition is

IU conditions for unsigned comparisons, in the approximated with the corresponding

Bicc and Tice instructions: + + + | + signed condition.

BLEU, BLU, BGU, BGEU The option -no_unsigned_cond makes
unsigned conditions opaque.

Bound-T for SPARC 0 17

2 Q
]
. . . ¥ 2 s
SPARC registers, instructions, S =~ 8B £

S © =& = Remarks
or other features S & &€ =
2 £XE
§ 8 <

Condition codes that get a constant
. . . val T rted in arithmetic.

IU shift, AND, OR, xoR for two different registers + + + alue are suppo efi a et
Constant-propagation analysis supports
the bit-wise logical operations.

The result and th ndition I

IU ANDN, ORN, XORN (second operand negated) + + + e result and the condition codes are
opaque.

IU multiplication and division (SPARC V8):

UMUL, SMUL, UDIV, spIv, DIivs (V8E)

. + + + Opaque values result.

IU multiply-accumulate (SPARC V8E): paq

UMAC, SMAC

Find leading bit (SPARC V8E): scaN + + Opaque values result.

PSR condition codes V, C. These condition codes are opaque.

Tagged values: TADDCC, TADDCCTV, TSUBCC, +l+ |+ Opaque values result in the destination

TSUBCCTV register and the condition codes.

Reading control registers: PSR, WIM, TBR + + o+ Opaque values are read.

The Y register is not modeled as a cell.

Operations on the Y register + + + Writing to it has no arithmetic effect,
and opaque values are read from it.

FPU operatlf)r}s on smgle-preaswn (32-bit) and + |+ 14 FP computation is not modelled.

double-precision (64-bit) values
The execution time is unknown by
default. An error message is emitted

FPU operations on extended (96-bit) or + 1+ + unless the execution time is defined with

quadruple (128-bit) values the option -fou_time. Disassembled
instruction mnemonics use the 'x' suffix
for “extended”.

FBicc condition codes + + + FP branch conditions are opaque.

. If the IU loads the memory location that
gﬁgig FPU register to memory: STF, STDF, STFSR, + + o+ was stored from the FPU, an opaque
value results.

Assignment to processor status register, PSR + + + Condition codes become opaque.

. . The ASRs are not modelled as arithmetic

Ancillary state registers (SPARC V8): ..

RDASR rWyRASR & () + + + cells. Writing an ASR has no effect;

’ reading an ASR returns an opaque value.

Memory access with an Alternate Space code + +
Warning message will be generated.

SAVE and RESTORE in other contexts + |+ Control flow analysis may be disturbed if
the return address of the executing
subprogram is altered.

caLL followed by RESTORE when the subprogram + Interpretation to be defined. Error

is executing in its caller's register window message is emitted.

. . The effect on register window traps i

Assignment to control registers: WIM, TBR + ¢ chiect o Teglste do aps 18

18 0

not modelled.

Bound-T for SPARC

v & 5%
SPARC registers, instructions, 5 —~ & §
S © =& = Remarks
or other features S .E S
m ~
A3 5
§ / <
Ticc with dynamic trap number that is not Assertions can specify the targets
resolved to a single static value, or a dynamic + (callees) of a dynamic call, otherwise
call constructed with JmpL. error message results.

Unimplemented instructions (eg. from SPARC

. Error message is emitted.
versions after VSE) 8

3.6 Data Registers and Memory Accesses

The SPARC architecture contains several sets of registers with different roles. This section
explains how Bound-T supports these registers.

Integer Unit register file

Bound-T supports all SPARC register file locations that are accessible in one subprogram
that follows the standard calling convention. Such a subprogram can access two register
windows: before the subprogram executes a SAVE instruction it accesses the caller's
register window (assuming that the caller did not execute a SAVE as part of the calling
sequence); after the subprogram executes a SAVE instruction it accesses its own register
window. Each “out”, “local” and “in” register in these two register windows is modelled as
a separate data cell, but taking into account the overlap between the windows which
means that the “out” registers of the caller's window coincide with the “in” registers of the
callee's window. The storage cells that modell these coinciding “out” and “in” registers are
called “pass” register cells. To distinguish between the “local” registers in the caller's and
callee's windows, the storage cells that model the callee's “local” registers are called “work”
register cells. More on this system of storage cells in section 5.3.

Of course there is only one set of “global” registers and storage cells that model them, not
connected to any register window.

Bound-T assumes that r14 is used as the stack pointer and r30 as the frame pointer, as is
normal in SPARC programs. Section 3.7 explains this further.

The Y register is not modelled. Its value is considered unknown (opaque).

Floating-point Unit registers

Floating-point operations are not supported in arithmetic analysis (because loop counters
are seldom floating-point variables). The FPU registers f0 - f31 are not modelled as data
cells. A store from the FPU to memory is modelled as writing an opaque value into the
memory word, which may later enter the IU calculations through an IU load from this
memory word.

Memory data

Bound-T generally models SPARC memory locations as 32-bit words. Thus, when a load
instruction reads a word from memory into a register, Bound-T models it as a 32-bit
assignment (not opaque). The result of instructions that load a byte, a half-word or a

Bound-T for SPARC 0 19

3.7

20

double-word is considered opaque (unknown). However, for byte and half-word loads the
arithmetic analysis uses the range bounds that the data-type places on the loaded value.
The following table explains the modelling of memory loads.

Table 4: Modelling Load Instructions

Instruction Data-type loaded Loaded value Range
LDUB, LDSTUB unsigned 8 bits opaque 0..255
LDSB signed 8 bits opaque -128 .. 127
LDUH unsigned 16 bits opaque 0..65535
LDSH signed 16 bits opaque -32 768 .. 32 767
LD signed 32 bits the value of the memory location not applied
LDD 64 bits opaque not applied

The range bounds applied to byte and half-word loads may give loop bounds for loops that
use byte or half-word counters, even if Bound-T is unable to analyse the loop termination
condition. Of course such bounds may be very overestimated.

Range bounds are not applied to word or double-word loads because they could give
ridiculously overestimated loop bounds.

When an instruction stores a 32-bit word from an IU register into memory, Bound-T
models the instruction as a 32-bit assignment to the memory word (not opaque).
Instructions that store smaller data types (octets or half-words) are considered to store an
opaque value in the destination word. Instructions that store doublewords are considered
to store opaque values into both destination words.

For references to stack data see section 3.7.

When a store or load instruction uses an “alternate address space identifier” (ASI) Bound-T
ignores the effect of the store and considers the load to give an opaque value.

Registers and the Calling Protocol

Windowed or flat

Some compilers that target the SPARC support a “flat” register model as an alternative to
the standard “windowed”. The “flat” model uses only one set of IU registers and never uses
SAVE or RESTORE instructions. Bound-T was designed to support the “windowed” model
but should be able to analyse “flat” code, although some spurious warnings may be
emitted because Bound-T then classifies all subprograms as “leaf” subprograms that should
not make further calls. With the “flat” model the register-window trap analysis is
unnecessary and should not be used (do not use the option -rw).

Stack and frame pointers

The registers that are used by the standard SPARC calling protocol are r31 for the return
address, r30 for the frame pointer, r14 for the stack pointer, and r15 as a return address
from a “leaf” subprogram. The standard calling protocol assumes that the values of these
registers are preserved between corresponding call and return. A subprogram that does not

0 Bound-T for SPARC

3.8

follow this calling protocol (such as a task-switching kernel routine) should be analysed
separately, because Bound-T is unable to follow the control-flow into and out of such a
subprogram.

If a subprogram manipulates the calling-protocol registers in some other way, Bound-T
generally emits an error message. However, in some cases modification of calling protocol
registers is necessary. For example, the register underflow trap handler copies the register
values from memory (stack) to the register set, including the frame pointer register. When
Bound-T is analysing this trap handler it therefore allows instructions that modify the
frame pointer and the error message is suppressed.

References to stack variables

SPARC memory references in load and store instructions typically compute the memory
address as the value of a base register plus an offset, where the offset can be a static value
(immediate operand) or a dynamic value from a register. Bound-T interprets memory
references based on the stack pointer sp = r14 or the frame pointer fp = r30 as references
to local variables or to stacked parameters, depending on which register is used and on the
sign of the offset. The details are shown in the table below.

Table 5: References to Stack Variables

Base Offset Interpretation

>0 A stack location. When the subprogram is using its own register
window this is usually a location that passes a parameter from this
subprogram to a callee subprogram (an "out" location), otherwise
sp = r14 (caller's register window) this is a location that passes a parameter
to the current subprogram from its caller.

<0 An illegal reference, because the location is outside the allocated
stack and is therefore volatile on interrupts. A warning is emitted.
>0 A stack location that passes a parameter to this subprogram from its
fp = r30 caller subprogram (an "in" location).
<0 A local variable in this subprogram.

Condition Codes

The IU condition codes that are modelled in arithmetic analysis are Z (result zero) and N
(result negative). The V condition code (overflow) is assumed to be always zero in possible
loop conditions, because of the generic limitations in Bound-T, and the definition of the N
condition code is simplified to the negativity of the result of the arithmetic operations. See
Table 6 below, where O1 and O2 represent the operands of the operation.

Table 6: Definition of N Condition Code from Arithmetic Operation

Operation Condition
Addition, result = O1 + 02 Nis setif O1 + 02 < 0.
Subtraction, result = O1 - 02 Nis setif O1 - 02 < 0.

Bound-T for SPARC 0 21

The SPARC architecture defines different branch conditions, in the Bicc and Ticc
instructions, for signed comparisons and for unsigned comparisons. Bound-T for the SPARC
generally models the arithmetic as signed, therefore it should consistently model the
unsigned conditions as opaque. However, compilers frequently use the unsigned
comparisons for loop counting, so by default Bound-T approximates each unsigned
condition by the corresponding signed condition. This approximation can be disabled with
the option -no_unsigned cond to make the arithmetic analysis safer but also weaker.

The following table shows the model of the SPARC branch conditions (see [8]) under
default options and under -no_unsigned_cond.

Table 7: Modelling the SPARC Condition Codes

Arithmetic model

Mnemonic Condition
Default -no_unsigned_cond
BN Branch Never false false
BE Branch on Equal z z
BLE Branch on Less or Equal ZorN ZorN
BL Branch on Less N N
BLEU Branch on Less or Equal, Unsigned ZorN opaque
BLU Branch on Less, Unsigned N opaque
BNEG Branch on Negative N N
BVS Branch on oVerflow Set opaque opaque
BA Branch Always true true
BNE Branch on Not Equal not 2 not z
BG Branch on Greater not (Z or N) not (Z or N)
BGE Branch on Greater or Equal not N not N
BGU Branch on Greater, Unsigned not (Z or N) opaque
BGEU Branch on Greater or Equal, Unsigned not N opaque
BPOS Branch on Positive not N not N
BVC Branch on oVerflow Clear opaque opaque

22

Bound-T cannot automatically bound loops that use opaque branch conditions. Instead
user assertions are required to bound the repetition count of the loop.

Note that BVS and BVC are considered opaque, even if Bound-T generally assumes that
arithmetic operations do not overflow and so V should be zero. If the program under
analysis uses such branch conditions, it must be assumed that the value of V can change.

Direct assignment to the PSR register via the WRPSR instruction is modelled as storing
opaque values in the condition codes.

Control/status registers other than PSR (WIM, TBR, Y) are not modelled as arithmetic
cells. Writing one of these control/status registers has no effect on the analysis; reading a
control/status register returns an opaque value.

The FPU condition codes are not modelled at all; all conditions are considered opaque in
the FBfcc instructions.

0 Bound-T for SPARC

3.9

Computational Operations

Whether or not a computational operation is supported on the arithmetic analysis level
depends exclusively on the generic abilities of Bound-T; the only concern here is to map
these abilities onto the SPARC instruction set.

Supported Integer Unit arithmetic

All TU operations are supported for definition analysis. The following operations are
supported for arithmetic analysis:

- ADD, ADDCC
+ SUB, SuUBCC
+ XOR, XORCC when the source registers are the same, giving zero.

+ OR, ORCC when one operand is known to be zero, giving the value of the other operand
(this is the MOV pseudo-instruction).

+ OR, ORCC when the dynamically preceding instruction is SETHI and the SETHI
destination register equals the first OR source operand and the second OR source
operand is an immediate (static) constant. In this case, the SETHI and OR together load
an immediate 32-bit value into the OR destination register.

+ SLL when the shift count c is an immediate operand small enough to model the left-shift
as a multiplication of the source register by 2¢. The option -s/l_max sets the limit on shift
count (default ¢ < 10).

+ SLL immediately followed by SRA when the two instructions can be combined into a
"masking" operation where the SLL destination register equals the SRA source operand
and both instructions have the same immediate shift count operand.

For these operations, the arithmetic effect is supported for the PSR condition codes z
and N. Furthermore, Bound-T's constant-propagation analysis phase supports the bitwise
logical operations (AND, OR, XOR) fully, not just in the special cases defined above.

When programming in assembly language, it is advisable to limit all loop-counter
arithmetic to use only the above operations (and other features supported on the
arithmetic level). This will maximise Bound-T's automatic loop-bounding ability.

Immediate operands

Immediate (literal) operands are considered as unsigned numbers for the AND, OR and
XOR operations and as signed numbers for all other supported integer operations.

The SPARC instruction set limits the size of immediate operands. To load a 32-bit
immediate value into a register programs use a SETHI instruction to load the high bits
followed by an OR instruction with an immediate operand that defines the low bits.
Bound-T detects such instruction pairs and models the full 32-bit constant.

Unsupported Integer Unit operations

The following IU operations are not supported in arithmetic analysis, except for the special
cases described above:

- ADDX, ADDXCC
. SUBX, SUBXCC

Bound-T for SPARC 0 23

- MuLSCC

« UMUL, SMUL, UDIV, SDIV, DIVS, UMAC, SMAC
. AND, ANDCC

- ANDN, ANDNCC

- OR, ORCC

- ORN, ORNCC

.+ XOR, XORCC

« XNOR, XNORCC

« SLL, SRL, SRA.

In arithmetic analysis these operations are understood to store opaque values in the target
register and the condition codes. However, if an operation yields a constant condition code
value (usually zero), then this condition code is supported arithmetically for this
operation.

Floating-point operations

FPU operations on 32-bit and 64-bit values are decoded and their execution time is
modelled, but not their arithmetic. FPU operations on 96-bit or 128-bit values are decoded
but have no default execution time so an error message is emitted unless the execution
time is defined with the option -fou_time. The arithmetic of 96- or 128-bit floating-point
operations is also not modelled.

The result of any FPU comparison is opaque; the condition on an FPU-related conditional
branch is considered unknown.

The only interaction between the FPU and the arithmetic or definitional analysis occurs
when an FPU store instruction assigns a value to a memory location; if the (detectably)
same location is then loaded into an IU register, an opaque value is assumed.

Example of the unsupported operations

To illustrate the effect of the unsupported instructions on the analysis, the following table
lists some supported and unsupported SPARC instructions with the arithmetic analysis and
explains the effect on the analysis. The instructions are assumed to be executed in
sequence.

Table 8: Effect of Unsupported Instructions on the Analysis

Instruction Arithmetic analysis Effect on the analysis.
or %0, 10, %r1 r1 gets the value 10. The value of r1 is known.
sl %r1, 3, %r2 r2 gets the value r1 * 8, which The value of r2 is known.
is 80.
andcc %r1, %r2, %r0 Condition codes Zand N get | The next branch (bneg) has an opaque condition.

opaque values.

breg xxx No arithmetic effect. Opaque branch condition. If this is a loop branch
the loop cannot be bounded automatically.

sra %r2, 1, %r2 r2 gets an opaque value. If r2 is involved in counting loops, those loops
cannot be bounded automatically.

0 Bound-T for SPARC

Instruction Arithmetic analysis Effect on the analysis.

6 mulscc %r1, %r2, %r3 r3, Z and N get opaque values. If r3 is involved in counting loops, those loops
cannot be bounded automatically.

7 besxxx The condition is opaque. Opaque branch condition. If this is a loop branch
No arithmetic effect. the loop cannot be bounded automatically.

As can be seen from Table 8, if the program counts loop iterations by means of operations
that arithmetic analysis does not support, Bound-T will not be able to bound the loop
automatically. User assertions are required for such loops.

3.10 Division and Remainder Routines

The ERC32 (SPARC V7 architecture) has no integer division instructions so compilers
provide library functions for this purpose, usually identical or similar to the functions
recommended in the SPARC manual (Program 6 in [9]). Unfortunately the recommended
function is written in a form that makes the control-flow graph “irreducible” which means
that Bound-T cannot find a WCET bound. The WCET of these functions must be
determined in some other way and supplied to Bound-T with assertions.

We have measured the execution time of these functions in the GNU “libc” library on an
ERC32 for a large number of randomly generated parameters. The assertions quoted below
show the maximum execution time we measured. Of course, there is no guarantee that this
is actually the WCET for these functions, moreover your library may have different
versions of these functions (although this seems unlikely).

subprogram ".div"

time 149 cycles;
end subprogram ".div";

subprogram ".udiv"
time 150 cycles;
end subprogram ".udiv";

subprogram ".rem"
time 156 cycles;
end subprogram ".rem";

subprogram ".urem"
time 154 cycles;
end subprogram ".urem";

3.11 Jumps, Calls, Returns and Traps

Branch and jump instructions

The branch instruction Bice using IU conditions is supported on all levels. Arithmetic
analysis does not support the floating-point conditions (FBfcc) nor the coprocessor
conditions (CBccc); those conditions are considered opaque.

The jump-and-link instruction JMPL is supported on all levels. However, there are generic
limitations (see [1]) on the control-flow analysis of indirect jumps, that is, JMPL where the
operands that define the target address are registers with dynamically computed values.

Bound-T for SPARC 0 25

26

Jump-and-link can also be used as a register-indirect call instruction (see below) and as a
part of the SPARC "control-transfer couples" (also see below). JMPL instructions that do
not have these standard forms may not be supported on the control-flow level; warnings or
errors are emitted for them.

Jump via address table

For dense switch/case statements some compilers generate code that uses a table of
addresses to jump to the correct case-branch. This code first converts the switch/case
index expression to the address of a table slot (element), then loads the address from this
table slot into a register, and finally jumps to the address in this register. The last two
instructions are thus of the form

LD [x]r
JUPL [r],r0

where x is the expression (base + offset) for the address of the table slot and r is a
working register that holds the address loaded from the table. Bound-T detects this code
idiom, called "jump via table", and analyses the LD and JMPL instructions together. Bound-
T uses arithmetic analysis to find bounds on x. These bounds show the address and length
of the table, so Bound-T can read out the contents of the table (the addresses of the case-
branches) which gives the possible targets of the JMPL and thus defines the continuation of
the control-flow graph after the JMPL.

Call instructions

The CALL instruction is supported on all levels. A JMPL with destination degister r15 is
equivalent to a CALL, but can have a dynamically computed target address (callee entry
address); there are generic limitations (see [1]) on the control-flow analysis of such
dynamic calls but you can define the possible target addresses with assertions.

The SPARC call/return protocol varies in three ways:

- whether SAVE and RESTORE instructions are used to provide the called subprogram
with its own register window,

- whether an UNIMP instruction is used to supply an additional immediate parameter to
the called subprogram (according to the manuals, this parameter defines the size of the
structure that the called subprogram should return),

— whether the subprogram is a trap handler.

Leaf vs non-leaf subprograms

A subprogram that uses the same register window as its caller is known as a leaf
subprogram because it usually contains no calls itself and so is a leaf node in the call tree.
A subprogram for which a register window is allocated with SAVE is boringly called a non-
leaf subprogram.

Bound-T classifies a subprogram as a non-leaf subprogram if the subprogram executes a
SAVE instruction (we call this a self-save subprogram) or if all calls to the subprogram have
a SAVE instruction as the delay instruction (we call this a caller-save subprogram).

Bound-T classifies a subprogram as a leaf subprogram if the subprogram does not execute
a SAVE instruction and the calls to the subprogram do not have SAVE instructions either
(as the delay instruction of the CALL instruction).

0 Bound-T for SPARC

Bound-T checks that the presence and placement of the SAVE instruction is consistent for
all calls. For example, if a self-save subprogram is called with a caller-save sequence (a
CALL followed by SAVE) an error message (“mismatch of RW kind”) results.

Normal vs alternate calls

Calls and returns that do not use UNIMP are called normal calls and returns, while those
that use UNIMP are called alternate calls and returns.

The normal calling sequence consists just of a CALL or JMPL instruction and its delay
instruction (perhaps a SAVE). The callee returns to the instruction following the delay
instruction, at (address of CALL) + 8, unless the delay instruction loads another return
address into r15. in which case the callee returns to r15 + 8.

The alternate calling sequence consists of a CALL or JMPL instruction and its delay
instruction as above, and one following UNIMP instruction at the normal return point,
(address of CALL) + 8, or at the return address defined by loading r15 in the delay slot, r15
+ 8. The callee returns to the instruction following the UNIMP, at (address of CALL) + 12
orri5 + 12.

Bound-T checks for the UNIMP instruction and chooses the assumed return point
accordingly. However, Bound-T does not model the way in which the callee might access
the additional parameter from the UNIMP operand.

In principle, the called subprogram (the callee) could also check its own return address
and adapt to being called with either calling sequence, normal or alternate. However,
Bound-T assumes that a given subprogram always uses the same sequence, and therefore it
checks that all calls of a given subprogram use the same form of calling sequence. Bound-T
also checks that the callee uses the return sequence (normal or alternate return) that
corresponds to its calling sequence (normal or alternate call).

The UNIMP instruction is supported only as a part of the alternate calling sequence.
Otherwise, this instruction causes a warning message to be emitted. The instruction is then
modelled as a return from the subprogram (a stop-gap to let the analysis continue).

Tail calls

When the last action in a subprogram is to call another subprogram, a compiler can
sometimes optimize the call-return sequence by using a CALL instruction immediately
followed (in the delay slot) by some instruction that removes the subprogram itself from
the call chain and makes the callee return to a higher level, bypassing the subprogram that
executes this CALL. The term tail call is used for such constructs.

Bound-T detects and understands two forms of tail calls:

- If the subprogram is executing in its own register window, a CALL immediately
followed by a RESTORE instruction in the delay slot is a tail call. The RESTORE
instruction discards the register window and stack frame of the caller, before the callee
is entered, so that the callee can reuse this part of the register file and will return
directly to the caller's caller (or even higher in the call chain, if there were tail calls on
preceding levels).

- If the subprogram is not executing in its own register window, a CALL immediately
followed by an instruction that sets the return address register r15 to the value it had
on entry to this subprogram is a tail call. Register r15 defines the return address for the
callee, thus the call will return to caller's caller (or even higher in the call chain).

Bound-T for SPARC 0 27

28

When Bound-T detects such tail calls it models them correctly in the control-flow analysis.
(The analysis of tail calls in the register window trap analysis is currently under review
and to be confirmed.) However, the second form of tail call is detected only if the
instructions that carry the return address from the entry point of the subprogram to the
delay-slot instruction are simple enough to be analysed as “copy” operations (as defined
for the “value-origin” analysis, see [1]).

Trap handler subprograms

Bound-T classifies a subprogram as a trap handler if it is called with the Ticc instruction or
if it ends with one of the two standard return-from-trap control transfer couples (see
discussion of return instructions below).

Traps and trap instructions

The explicit trap instruction, Tice, with a static trap number, is modelled as a conditional
call to the corresponding entry in the trap vector. If the trap number is specified
dynamically by a register operand, Bound-T tries to bound the value of the register (using
constant propagation and arithmetic analysis); if the result is a single value, the instruction
is modelled as a conditional call as for a static trap number, otherwise the instruction is
considered a dynamic call, an error message is emitted and the execution of the trap
handler is not modelled. For such unresolved dynamic calls, you can define the possible
target addresses with assertions.

The entry address is computed from the trap number and the trap base address as set by
the -trap_base option. The trap base addresses for a SPARC program is usually determined
by the boot code that sets the Trap Base Register (TBR). The entry address for trap
number N is TBR + 16N. For example, if the trap vector is located at the address 2000000
hex, the entry point of trap number 6 (the register window underflow trap) is at 2000060
hex.

The trap vector allocates only 16 octets (4 instructions) to each trap. Therefore, the trap
vector usually contains only a jump to the actual trap handler subprogram. The entry
address of the trap vector entry is seldom connected to a symbolic identifier which means
that Bound-T will not know the true identifier (name) of the trap handler subprogram, but
will instead use the hexadecimal address of the trap vector entry as the identifier. For
example, if the trap base register is 2000000 hex, the register window underflow trap
handler will have the "identifier" 2000060. This identifier will appear in the analysis
results for this trap handler.

Many SPARC instructions cause implicit traps in error situations. However, Bound-T
includes in the WCET bound only the traps caused by the trap instruction (Ticc) and its
estimate of the register window traps caused by the SAVE and RESTORE instructions, as
explained in section 2.2. Any other possible trap is not included in the WCET bounds from
Bound-T.

Return instructions

All return instructions are supported on all levels. Some restrictions, however, apply to the
use of RETT (return from trap) instruction, see [8] or [9]. A trap handler subprogram
returns with a delayed control transfer couple that consist of a JMPL followed by a RETT.

0 Bound-T for SPARC

3.12

3.13

The following delayed control transfer couples can be used in trap handlers:
JMPL %17, %0
RETT %18

to re-execute the trapping instruction, and
JMPL %18, %0
RETT %18 + 4

to return to the instruction after the trapping instruction.

RETT instructions outside the delayed control transfer couples presented above cause an
error message to be emitted.

SAVE and RESTORE Instructions

SAVE and RESTORE instructions are fully supported, but some restrictions apply to their
usage in normal subprograms. There are no restrictions on their usage in trap routines.

A normal subprogram that is called with a CALL; SAVE (or JMPL; SAVE) sequence cannot
contain any SAVE instruction itself because the SAVE in the delay-slot of the CALL (or
JMPL) already creates a register window for the called subprogram. These subprograms are
known as caller-save subprograms.

A normal subprogram that is called without a SAVE in the delay-slot may contain at most
one SAVE instruction. This SAVE instruction may or may not be the first instruction in the
subprogram. If there is a SAVE instruction the subprogram is known as a self-save
subprogram, otherwise it is known as a leaf subprogram.

A normal caller-save or self-save subprogram must contain one RESTORE instruction. This
RESTORE instruction may be the last instruction in the subprogram, in which case it is the
delayed instruction of a return instruction or a tail call, or it may lie earlier in the body of
the subprogram. For a self-save subprogram the SAVE must come before the RESTORE in
any execution path.

Executing a SAVE instruction can cause a register-file overflow trap, and executing a
RESTORE instruction can cause a register-file underflow trap. Section 2.2 explains how
Bound-T statically predicts the occurrence of these traps and includes their execution time
in the WCET bounds.

Control/Status Registers

The instructions that read IU control/status registers are supported in Bound-T on the
definition level but all values read are considered opaque. These registers are the
following:

PSR Program Status Register
WIM Window Invalid Mask
TBR Trap Base Register

Y Multiply Step

Bound-T for SPARC 0 29

Writing values into PSR, WIM or TBR may alter the control flow in a way that Bound-T
does not model, and so such writes are supported only on the instruction decoding level. If
they occur in the target program, it is the user's responsibility to judge if the results from
Bound-T are still valid for WCET analysis.

3.14 Time Approximations

The following table lists the cases where Bound-T uses an approximate model of the
timing of SPARC instructions.

Case

Table 9: Approximations for Instruction Times

Description

Maximum Error

Register window traps

The static analysis may predict more traps than actually
can occur because Bound-T assumes worst-case call
depths of the subprogram's callees, and the worst initial
register window usage of its calls. The prediction of an
overflow trap when calling a subprogram C from a
subprogram S does not make use of the specific context in
which S was called. Likewise, the prediction of an
underflow trap on return from a subprogram C does not
make use of the context in which C was called. Thus the
register window analysis is independent of the call-path,
unlike the WCET analysis which can depend on the call-
path.

One trap time per
every call and return

If kernel restores only
one register window
on task resumption

Run-time traps other
than Ticc and other
than register window
traps

Concurrent operation
of FPU and IU

The variable FP
execution time

30 0

It may be necessary to ask Bound-T to assume that every
return causes an underflow trap; see section 2.2.

Bound-T does not attempt to analyse when such traps
(errors) can occur and does not include the trap handling
in the WCET analysis nor in the stack usage analysis.

If the TU and FPU of the SPARC operate concurrently, at
some points of execution the IU must wait for the FPU to
complete its current work. Bound-T tries to optimize the
insertion of the additional delays by distributing them into
the edges of the control-flow graph. The delays can
therefore delay other paths as well in addition to the paths
that really need the delays. At worst, the resulting WCET
bound may correspond to non-concurrent (sequential) IU/
FPU operation in which the IU waits for the FPU to
complete each instruction before starting the next IU
instruction. However, the worst-case execution path is
likely to go through the FP instructions that cause these
delays, therefore the error here should be minimal.

The variable and data-dependent execution time of the
floating-point instructions means that the actual execution
time of the instruction cannot be statically known and
Bound-T must assume the worst-case execution time of
the instruction. The worst-case execution times of the
floating-point instructions occur usually only when the
input values of the instruction are denormalized numbers
and therefore the worst-case time is usually pessimistic.

One trap per every
return

Unlimited, depending
on the trap handlers.

The worst-case
execution time of the
FP instructions

The difference
between the FP
instruction's actual
and worst-case
execution times

Bound-T for SPARC

Case

Description

Maximum Error

No default execution
time for extended or
quadruple FP precision

The user must define the execution time with the option
-fou_times.

Depends on user-
given values.

The varying memory
types with different
speeds

Cache memories

Undocumented
instruction times with
some memory wait
states.

In typical SPARC implementations there are several types
of memories with different speeds and even the memory
wait states may differ with the same type of memory.
Bound-T assumes the same speed for all memory accesses,
but the user may set different memory speed for example
for memory accesses in one subprogram. The data and
code can lie in different memories and therefore the
number of wait states can be given separately for data
accesses and for code fetches. See sections 4.2 and 5.6 for
details.

At present Bound-T does not model cache memories and
must therefore assume that every memory access is a
cache miss.

On the ERC32 and according to ref. [12] when memory
wait states are in use the delay caused by FP instructions
to the IU, as well as the WCETs of the instructions STB,
STH and LDSTUB do not seem to behave as described in
the SPARC documents [4], [5], [6] and [7]. Bound-T uses
overestimated instruction times to avoid too low WCET
bounds.

Bound-T for SPARC 0

Depends on user-
given values

The difference
between a cache hit
and a cache miss, for
every access to
memory

Some cycles per FP
delay or a critical
instruction

31

4

4.1

32

USING BOUND-T FOR SPARC

This chapter explains how to use Bound-T to analyse SPARC programs. It describes the
input file formats (the executable program file and other input files), the command-line
syntax, the command-line options, the outputs and the warning and error messages. A
dedicated section (4.3) discusses the “HRT mode” of analysis.

We concentrate on information specific to the SPARC version of Bound-T; please refer to
the generic Bound-T Reference Manuals [1] [2] [13] for information on the generic inputs,
options and outputs, especially for the generic syntax and meaning of the Bound-T
assertion language. The last section of this chapter advises on SPARC-specific aspects of
the assertion language, for example how to place assertions on the values of SPARC
registers.

Input Formats

Executable file

The target program executable file must be supplied in ELF-32 format. The byte-order
should be big-endian, since that is the byte-order of the SPARC. When possible the file
should contain symbolic debugging information in DWARF, STABS or ELF form.

File of FP operation times

The option -fou_time=filename tells Bound-T to read the assumed times of FP operations
from the file named filename. This file must be a text file with line terminators valid for the
platform on which Bound-T is run. Blank lines are ignored. Each non-blank line in the file
should contain two items: (1) the mnemonic identifier of an SPARC FP operation and (2) a
decimal integer giving the number of cycles to be used for this operation. These should be
separated by one or several spaces (blanks). For example, the following line specifies 12
cycles for a single-precision addition:

FADDS 12

The mnemonics are case-insensitive, thus fadds and FADDS are equivalent. The upper-case
forms are the following, in alphabetic order. Note that some forms may not be
implemented in the SPARC instruction set; setting the execution time of such a form has
no effect on the analysis and is silently accepted (no error or warning message).

FABSS FDIVD FMOVS FSQRTD
FADDD FDIVS FMULD FSQORTS
FADDS FDIVX FMULS FSORTX
FADDX FDMULX FMULX FSTOD

FCMPD FDTOI FNEGS FSTOI

FCMPED FDTOS FXTOD FSTOX

FCMPES FDTOX FXTOI FSUBD

FCMPEX FITOD FXTOS FSUBS

FCMPS FITOS FSMULD FSUBX

FCMPX FITOX

0 Bound-T for SPARC

The file can define the times for any subset of FP operations, in any order. The times for
other FP operations are not changed. The time given for an FP operation sets both the
“typical”’[bhnd the worst-case time of this operation (to the same value).

The mnemonics with “X” stand for extended-precision or quadruple-precision instructions.
Which precision actually is used depends on the SPARC device; the binary instruction
encoding is the same. Bound-T has no default execution time for these instructions and
will emit error messages if the target program contains such instructions for which an
execution time has not been defined with the option -fou_times.

Patch file

Sometimes it is useful to slightly modify or “patch” the target program before analysis.
Bound-T provides the general option -patch=filename that names a file that contains
patches to be applied to the loaded program memory image before analysis starts. The
format of the patch file is specific to the target processor. This section explains the patch
file format for the SPARC.

The patch file must be a text file with line terminators valid for the platform on which
Bound-T is run. Blank and null lines are ignored. Leading and trailing whitespace on each
line is ignored. Lines that start with “--” (possibly with leading whitespace) are ignored (as
comments).

The remaining lines are patch lines. Each patch line contains two or more fields (tokens)
separated by whitespace. The first field is a SPARC address in hexadecimal form and
defines the location that is patched; the remaining fields define the data for the patch. The
address must be 32-bit aligned (a multiple of 4). The addressed location must be present
in some code or data segment loaded from the executable file. In other words, patches
cannot be used to extend the loaded memory image, only to change its content.

The table below explains the form and meaning of the patch lines for the SPARC. Two
forms are possible, corresponding to the two rows in the table.

Table 10: Patch Formats

Field 1 Field 2 Field 3 Meaning

Address (hex) 32-bit word (hex) Places the word (field 2) at the patch address
(field 1), overwriting the word loaded from the
executable file at the patch address.

Address (hex) "trap" Target address (hex) Builds a jump to the target address (field 3). The
or subprogram name jump consists of two instructions: A SETHI that is
placed at the patch address (field 1) and a JmPL
that follows (at field 1 + 4 octets). These
instructions overwrite the words loaded from the
executable file at these addresses.

Note that in the second form (second row of the table) field 2 shall contain the literal text
“trap” but without any enclosing quotes. This form is intended for changing entries in the
trap vector.

The hexadecimal values can contain underlines () to separate digit groups.

Bound-T for SPARC 0 33

4.2

34

Here is an example of a patch file:

-- This is a comment.
-- The following patch line places the instruction

- rd %psr, %10

-- which is "al_48 00_00" in hexadecimal, at the
—-- address 2000810, also in hex:

2000810 al 48 00 00

-- The following patch line places the two instructions

- sethi %hi(Handler), %14
- jmp %14 + %lo(Handler), %g2

-- at address 2000814, where "Handler" is assumed to be
-- a subprogram name, present in the symbol-table:

2000814 trap Handler

Note that a comment cannot be appended to a patch line, so the following patch line is
wrong:

2000810 al_48 00_00 -- This kind of comment is not allowed.

Command Arguments and Options

The generic Bound-T command format, options and arguments are explained in the
Reference Manual [1] and apply without modification to the SPARC version of Bound-T.
The command line usually has the form

boundt_sparc options executable-file root-subprogram-names

For example, to analyse the execution time on the ERC32 processor of the main sub-
program in the ELF executable file prog.elf under the option -rw, the command line is

boundt_sparc -device=erc32 -rw prog.elf main

Root subprograms can be named by the link identifier, if present in the program symbol-
table, or by the entry address in hexadecimal form. Thus, if the entry address of the main
subprogram is 20004A0 (hex), the above command can also be given as

boundt_sparc -device=erc32 -rw prog.elf 20004A0

All the generic Bound-T options apply. There are additional SPARC-specific options as
explained below. The generic option -help makes Bound-T list all its options, including the
target-specific options.

0 Bound-T for SPARC

The explanation of the SPARC-specific options is grouped below as follows:

Target device selection options
Device-specific options

Program loading options
Instruction modelling options
Register window analysis options
Floating-Point Unit analysis options
Memory timing options

SPARC-specific items for the generic -trace option.

There are also options for RapiTime export. See section 4.7 for these.

Target device selection options

You must tell Bound-T which kind of SPARC processor the target program is meant for so
that Bound-T can use the right SPARC version and suitable defaults for the trap base
address and other parameters.

Use the option -device=name to selec the target processor by name. The supported devices,
their names for the -device option and their properties are listed in the following table, one
row per device.

Table 11: Device selection options

Option SPARC device Version -trap_base -code_base FPU
-device=erc32 The ERC32. V7 2 000_000 2 000 000 Concurrent
-device=v8 The ERC32 extended with V8 2000 000 2 000 000 Concurrent

the V8 instruction set.
-device=v8e The ERC32 extended with V8E 2000 000 2 000 000 Concurrent

the V8E instruction set.

The columns in this table have the following meaning:

Option: The option that selects the device.
SPARC device: Identifies the device.

Version: The version of the SPARC architecture (instruction set) that this device
implements.

-trap_base: The default value of the Trap Base Address for this device in hexadecimal
form. To override this default value give the option -trap_base=address after the -device
option.

-code_base: The default value of the -code base option for this device in hexadecimal
form. To override this default value give the option -code base=address after the -device
option.

FPU: Whether the FPU executes sequentially or concurrently with respect to the IU. To
override this default give the option -fou=sequential or -fou=concurrent after the -device
option.

Bound-T for SPARC 0 35

The -device=name option can also be abbreviated to -name, for example -erc32, unless the
name of the selected device happens to equal the name of some other option, which is not
the case for the currently supported devices.

If you want to analyse LEON code for control-flow or stack-usage, use the -v8 or -v8e
device and the other options -trap_base=40_000_000 (or whatever Trap Base Address is
defined in your LEON program) and -code base=40_000_000. No “leon” device-name is
provided because timing analysis is currently not supported for the LEON family.

Device-specific options

For some SPARC devices, Bound-T may require or allow additional options specific to this
device. If such device-specific options are used they must be given on the command-line
after the -device option that selects the device.

At present, there are no device-specific options.

Program loading options

The following table describes the options that control the process of reading the target
program from an executable file. The main issue is how to use the symbol-tables
(debugging information) that may be in the executable file. Bound-T uses the symbol-
tables to map machine addresses to source-level subprogram or variable names and
source-file names and line-numbers. Cross-compilers for the SPARC typically generate
symbol-tables in one or more of three forms:

- As an ELF symbol-table, a form defined in the ELF standard itself.

- As a STABS symbol-table, a form that predates the ELF standard but can be presented
as an ELF section with a specific name.

- As a DWARF symbol-table, the newest and most complete form that can be presented
as as a set of ELF sections with specific names.

By default Bound-T uses the DWARF symbol-table if it exists and otherwise the STABS
symbol-table if it exists. In both cases, if the ELF symbol-table also exists, Bound-T
complements the DWARF or STABS information by also using the “global” ELF symbols. If
the executable file contains neither DWARF nor STABS symbol-tables Bound-T uses all of
the ELF symbol-table if it exists (as it usually does), taking both “global” and “local”
symbols.

Table 12: Program Loading Options for SPARC

Option Meaning and default value

-elf_symbols Function =~ Makes Bound-T use the whole ELF symbol-table even if DWARF or

STABS symbol-tables exist. Depending on the compiler, this may make
more subprogram identifiers available.

Default Only the “global” ELF symbols are used if DWARF or STABS tables exist.

-stabs Function = Makes Bound-T use (also) the STABS symbol-table even if a DWARF
symbol-table exists.
Default The STABS symbol-table is used only if there is no DWARF table.
-no_adwarf Function Denies the use of DWARF symbols. Bound-T will instead use STABS or
ELF symbols if they exist.
36 0 Bound-T for SPARC

Option Meaning and default value

Default The DWARF symbol-table is used if it exists, in preference to STABS or
ELF.

-no_elf_globals Function Denies the use of “global” ELF symbols when DWARF or STABS symbols
exist.

Default The “global” ELF symbols are used to supplement DWARF and STABS
symbols when available.

See also the option -trace elf in Table 18.

Instruction modelling options

The following table describes the options that control the modelling of the instructions in
the target program to be analysed.

Table 13: Instruction Modelling Options for SPARC

Option Meaning and default value
-abi Function Assume SPARC ABI rules for global registers (%g1 — %g4 are
volatile across calls, %g5 — %g7 nonvolatile).
Default The default is -no_abi (see below).
-no_abi Function Assume all global registers are volatile across calls. This is the
opposite of -abi.
Default This is the default.
-no_unsigned_cond Function Prevents the approximation of unsigned branch conditions (in the

Bicc and Tice instructions) by the corresponding signed branch
conditions. Instead, the unsigned conditions are considered
opaque. See section 3.8.

This option makes the arithmetic analysis safer for combinations
of signed and unsigned variables and computations, but the
analysis becomes weaker and less able to find loop bounds.

Default The unsigned conditions are approximated by the corresponding
signed conditions.

-par=const Function Asserts that no callee subprogram modifies the parameters that
are passed in the stack, within the caller's frame.

Default The default is the opposite, -par=var, which see.

-par=var Function Asserts that a callee subprogram can modify the parameters that

are passed in the stack, within the caller's frame.
Default This is the default.

-sethi_signed Function The immediate operand in a seTHI instruction (or a combined
SETHI-OR pair) is taken as a signed two's complement 32-bit
number.

Default The operand is taken as an unsigned 32-bit number.

Bound-T for SPARC 0 37

Option Meaning and default value

-slil_max=X Function Sets the maximum shift count (number of bit positions), X, for
which an sLL instruction is modelled as a multiplication by
2shift count T arger shifts give an opaque result.

Note that large values of X may make the arithmetic analysis fail,
because of the risk of overflow, even if the actual values in an
execution of the target program do not cause overflow.

Default -sll_max=10 giving a maximum multiplier of 210 = 1024.

-trap_base=X Function Set the trap base address to hexadecimal value X. Note that the
last 12 bits of the address are required to be zeros.

Bound-T needs the trap base address to find the trap handlers
invoked explicitly by the Ticc instruction or implicitly by register
window overflows or underflows.

Default Depends on the selected SPARC device.
Note: To override the default, the -trap_base option must come
after the -device option on the command line.

-code_base=X Function Set the code base address to hexadecimal value X to help handle
dynamic (register indirect) jumps. All code to be analysed must lie
at addresses greater or equal to X.

Bound-T uses the code base address to reduce the numeric range
of address expressions, by analysing them as offsets to the code
base. This helps to avoid numeric overflow problems in the
analysis.

Default Depends on the selected SPARC device.
Note: To override the default, the -code_base option must come
after the -device option on the command line.

-via_positive Function When the code contains an indexed branch through a table of
branch addresses, using the code idiom explained in section 3.11,
this option asserts that both source registers that are used to index
the table contain non-negative or unsigned values.

Depending on the computation of the table index this option may
be necessary to help Bound-T locate the start of the address table.
However, if the assertion is false, Bound-T may wrongly omit
some targets of the indexed branch from the analysis, so the
computed WCET bound may not cover all executions.

Default Bound-T determines the location and length of the address table
from its arithmetic analysis of the address used in the instruction
that loads an address from the table, supported only by the
applicable assertions in the assertion file, if any.

Register window options

The option —rw enables the analysis of register-window usage and the register-file overflow
and underflow traps. Section 2.2 explains this analysis. The following table describes the
options that control the analysis. These options have no effect if the analysis is disabled
(by default or by the option —no_rw). See also the option —trap_base in Table 13.

38 0 Bound-T for SPARC

Table 14: Register Window Analysis Options for SPARC

Option Meaning and default value
-w) Function Enables the register window trap analysis. RW trap times are then
-rw_analysis included in the WCETSs from Bound-T. The long form of this

option is deprecated. The other options in this table are relevant
only if the analysis is enabled with this option.

Default There is no analysis of the register window traps. Trap handling
time is not included in the WCET bounds. The other options in
this table have no effect on the analysis.

-no_rw ' Function Disables the register window trap analysis. No RW trap times are
-no_rw_analysis included in the WCETSs from Bound-T. The long form of this
option is deprecated.
Default This is the default.
-max_win=X Function Sets the maximum number of register windows available in the

system to the value X. This value should exclude the window
reserved for trap handling.

Note that -max_win=1 forces Bound-T to assume a window trap for
every execution of the SAVE and RESTORE instructions.

Default 7 windows (-max_win=7). This corresponds to 8 register windows
in the full register file of which one is reserved for traps.
-returns_trap Function Makes Bound-T assume a register window underflow trap for
every return in the program.
Default Underflow traps are predicted by a global analysis.
-rw_calls Function Creates additional output that lists the calls that are important for

the register window analysis.

Output lines with the key RW First Call show the "first" calls that
can cause overflow traps. Output lines with the keyword

RW Deep Call show the "deep" calls that can cause underflow
traps on return from the caller.

This option is implicitly set by the generic option -trace additional
that is described in the Reference Manual [1].

Default The calls are not listed.

-rw_overflow=X Function Sets the worst-case execution time of the register window
overflow trap caused by a sAvE instruction to X cycles.

Default Bound-T analyses the trap handler to find a WCET bound. You
may need the -trap_base option.

-rw_underflow=X Function Sets the worst-case execution time of the register window
underflow trap caused by a RESTORE instruction to X cycles.

Default Bound-T analyses the trap handler to find a WCET bound. You
may need the -trap_base option.

Floating point options

The following table describes the options that control the analysis of the Floating-Point
Unit (FPU) and its interaction (sequential or concurrent operation and synchronization)
with the Integer Unit (IU). The options fall into three groups:

Bound-T for SPARC 0 39

— options to specify whether the FPU is sequential or concurrent with the IU,

- options to specify the execution times to be assumed for FP operations and apply for
both sequential or concurrent FPUs,

- options to disable or enable the analysis of the blocking between the IU and a
concurrent FPU. Section 2.3 explains the analysis.

If the analysis of IU-FPU blocking is disabled for a concurrent FPU then the WCET bounds
will include FPU execution times only for floating-point comparison instructions such as
FCMPS. As explained in section 2.3, floating-point comparisons are always executed
synchronously with the IU. Thus their execution time is included in the WCET bound even
for an FPU that runs all other operations concurrently and even if the blocking analysis is

disabled.

Table 15: Floating-Point Options for SPARC

Option Meaning and default value

-fou=sequential Function Specifies whether the FPU operates sequentially while the IU
-fou=concurrent waits, or concurrently with the IU while the IU executes more
instructions.

Default Depends on the selected SPARC device.
Note: To override the default, the -fou option must come after the
-device option on the command line.

-fou_typical Function Makes Bound-T use the “typical” times for floating-point
operations, instead of the worst-case values. Note that this option
may cause Bound-T to give too optimistic WCET values. It is the
user's responsibility to judge if Bound-T's results are still valid for
WCET analysis when this option is used.

Default Bound-T uses the worst-case times of floating-point operations as
perhaps modified by the option -fou_time.

-fou_time=filename Function Makes Bound-T read FP operation times from the file called
filename. See section 4.1 for the format of this file.

Default No file of FP times is read and the default FP operation times
depend on the selected SPARC device. However, there are no
default times for the extended- or quadruple-precision operations.
If the target program uses such operations their execution time
must be defined with this option.

-fo) Function Enables the analysis of the concurrent operation and blocking of
-fo_analysis the FPU and IU. Relevant only when -fou=concurrent; has no effect
when -fou=sequential. The long form of this option is deprecated.

Under this option, the floating-point computation and blocking
times are included in the WCETs from Bound-T.

Default This the default when -fou=concurrent.

-no_fp) Function Disables the analysis of the concurrent operation and blocking of
-no_fp_analysis the FPU and IU. Relevant only when -fou=concurrent; has no effect
when -fou=sequential. The long form of this option is deprecated.

Under this option, no floating-point computation or blocking
times are included in the WCETSs from Bound-T, with the
exception of the floating-point comparison instructions like Fcmps
for which the execution time is included in the WCET bounds
because the IU always waits for these instructions to complete.

40 0 Bound-T for SPARC

Option Meaning and default value

Default The analysis is enabled by default.

See also the option -trace fou_reg in Table 18.

Memory timing options

The following table describes the options that control the analysis of memory access timing
for instruction fetches and load and store instructions.

At present Bound-T does not model or analyse cache memories. Thus, if your target has
caches, for a safe WCET analysis you must use these options to define memory access
timing that corresponds to a cache miss for each access.

For options that define a number of memory wait cycles, please note that the number of
wait cycles is not always the same as the number of wait states; see Table 17 below. Note
also that the number of wait cycles defined by a command-line option applies to all
subprograms that are analysed, but can be overridden by assertions for specific
subprograms or even for specific loops within a subprogram.

Table 16: Memory Timing Options for SPARC

Option Meaning and default value

-read_ws=X Function Sets the number X of memory wait cycles that will be assumed for
all memory reads (excluding stack references, alternate memory
references and code fetches) .

Default Zero wait cycles (-read_ws=0).

-write_ws=X Function Sets the number X of memory wait cycles that will be assumed for
all memory writes (excluding stack references and alternate
memory references).

Default Zero wait cycles (-write_ws=0).
-code_ws=X Function Sets the number X of memory wait cycles that will be assumed for
all code fetches.
Default Zero wait cycles (-code_ws=0).
-stack_read_ws=X Function Sets the number of memory wait cycles that will be assumed for
all stack reads to the value X.
Default Zero wait cycles (-stack_read ws=0).
-stack_write_ws=X Function Sets the number X of memory wait cycles that will be assumed for
all stack writes.
Default Zero wait cycles (-stack_write_ws=0).
-alt_read_ws=X Function Sets the number X of memory wait cycles that will be assumed for
all alternate memory reads (load instructions with an ASI).
Default Zero wait cycles (-alt_read_ws=0).
-alt_write_ws=X Function Sets the number X of memory wait cycles that will be assumed for

all alternate memory writes (store instructions with an ASI).

Default Zero wait cycles (-alt_write_ws=0).

Bound-T for SPARC 0 41

4.3

42

Memory access times defined with options (or with assertions in section 5.6) are in units of
system clock cycles, not in units of memory wait states. Some types of memory may require
several wait cycles for each wait state, or may require at least some constant number of
wait cycles. The user must calculate the memory wait cycles for different types of memory
by the formulas in Table 17 below, where w is the number of wait states of the memory.
Note that this table may be valid only for the ERC32 processor; other conversions may
apply to other SPARC implementations.

Table 17: Conversion Between Memory Wait States and System Clocks

Memory type Wait cycles for w wait states
RAM w
Boot-PROM 4w
I/0 area 1+w
Exchange memory 1+w

For example, if the program is executed from Boot-PROM with w = 2 wait states, the
option -code_ws=8 should be used.

SPARC-specific -trace items

The following table shows the SPARC-specific additional tracing output items that can be
requested with the generic Bound-T option -trace as explained in the Reference Manual
[1]. By default no such tracing is enabled.

Table 18: SPARC-Specific -trace Items

-trace item Traced information

elf The process of reading ELF data and loading the program to be analysed.
Displays each ELF element on standard output as it is read. This may help to
understand and correct problems with the ELF structure.

ipoints Each RapiTime ipoint (instrumentation point) and its “name” (unique
numeric identifier) when detected in the target program. See section 4.7.

fou_reg Extends the generic -trace decode option to show also the FPU source and
destination registers for each decoded instruction. Has no effect in the
absence of -trace decode.

stabs The process of reading symbol tables (debugging information) in the STABS
format. This may help to understand and correct STABS parsing problems.

HRT Skeleton Analysis

The HRT architecture and Bound-T

The principles of the “HRT” (Hard-Real-Time) software architecture are explained in the
user manual for the HRT mode of Bound-T [13]. Briefly, an HRT program is a multi-
threaded, real-time program that consists of a number of active and concurrent threads or
tasks, and a number of passive, protected objects. The threads interact via the protected

0 Bound-T for SPARC

objects. A given protected object can act as a resource that is accessed with mutual
exclusion (a resource object) or as a means for one thread to trigger (activate) another (a
synchronization object).

The real-time structure of an HRT program can be described by an HRT Execution Skeleton
File (ESF) that defines the threads and protected objects, defines the way in which they
interact, and gives the WCET of the relevant code. The ESF can be used to analyse the
schedulability of the whole program, which gives a static verification that all deadlines will
be met.

As explained in reference [13], Bound-T can generate the ESF when given the option -hrt
and the name of a “TPO file” instead of the names of root subprograms. The TPO file is
written by the user and lists the threads and protected objects of the target program.
Bound-T analyses the program to find the WCET bounds and the interaction between
threads and protected objects, and emits the result as an ESF.

Generic coding rules

To enable HRT analysis by Bound-T the program's threads must be coded so that for each
thread there is one subprogram that represents one activation of the thread. This is
because Bound-T cannot analyse the eternal loop that is often required as the outermost
structure of a thread, so the body of the loop must be separated into a subprogram.

HRT analysis of ORK programs

For HRT analysis, Bound-T/SPARC can be applied to programs that use the ORK kernel.
Other compilers and kernels have not yet been tested with Bound-T/SPARC.

The TPO file must list the threads and protected object operations using the identifiers
(symbols) assigned to them by the compiler and linker. Chapter 5 explains the mapping of
source-code identifiers to linker symbols in general. If the program is written in Ada using
the Ada tasking features, which map naturally to the HRT elements, additional name
mappings are needed.

The following rules have been found by empirical observation of ORK binaries:

« Thread: For an Ada task with the Ada identifier Foo, the corresponding part of the
linker symbol is fooTK (convert Ada identifier to lower case and add TK in upper case).
Thus, if this task is contained in the package Pak and itself contains a subprogram Sub,
the whole symbol for Pak.Foo.Sub is pak__fooTK__sub.

 Protected object: For an Ada protected object with the Ada identifier Obj, the
corresponding part of the linker symbol is objPT (convert Ada identifier to lower case
and add PT in upper case).

« Operation of resource object: If Foo is the Ada identifier of an Ada protected subprogram,
the corresponding part of the linker symbol is fooP (convert Ada identifier to lower case
and add P in upper case). Thus, if the Ada identifier of the protected object is Obj and
the object is declared in the package Pak, the whole symbol for Pak.Obj.Foo is
pak __objPT__fooP.

« Signalling operation of a synchronisation object: Same rules as for an operation of a
resource object.

« Waiting operation of a synchronisation object: This corresponds to an Ada protected
entry of an Ada protected object, and is a special case discussed below.

Bound-T for SPARC 0 43

44

It seems that each protected subprogram Obj.Foo also has another symbol, objPT_ _fooN,
that identifies the variant of Obj.Foo that is used when Obj.Foo is called from another
operation of the same object and no lock is required.

Analysing waiting operations

In Ada, the waiting operation of an HRT synchronisation object is normally implemented
as a protected entry of the Ada protected object, with a Boolean variable as the barrier
condition. The task (thread) that needs to wait on the object would normally just call this
entry. Unfortunately, it seems that the GNAT/ORK system does not name the entry
subprogram in an easily understood way, and moreover implements such an entry-call by
a GNAT run-time-system operation called Protected Single Entry Call which gets the
address of the entry subprogram as a parameter (a function pointer). Since Bound-T
cannot analyse calls through function pointers, it cannot analyse such an entry-call.
Instead, the target program must be coded and analysed in the following cumbersome
way:

- Isolate the actions of the protected entry into a normal subprogram Actions, so that the
entry itself is just of the following form:

protected body Obj is
entry Wait when Barrier is
begin
Actions;
end Wait;

end Obj;

« Isolate the entry call into a normal subprogram Await in the form:

procedure Await is
begin

Obj.Wait;
end Await;

« Use Bound-T to compute the WCET bound for Actions in normal (non-HRT) mode.

« In the TPO file, name Await as the entry of the protected object, and also assert its
WCET to be the WCET of Actions, plus the time required for the GNAT/ORK operation
Protected_Single_Entry_Call, which must be measured or estimated in some way.

This work-around is not perfect if the entry calls other protected operations. The execution
skeleton in the ESF will not show these calls, since Bound-T does not analyse the Actions
subprogram as an HRT operation.

Handling the GNAT/ORK run-time system

The structure of the GNAT/ORK run-time system is relatively complex. When Bound-T is
asked to analyse Ada code that performs run-time system calls, a number of run-time
system subprograms must be excluded from the analysis by asserting their execution times.
This issue is still under study, and we will give additional information in a later issue of
this document or in a separate Application Note.

0 Bound-T for SPARC

Output

This section describes the output from a Bound-T analysis of a SPARC program. It focuses
on the SPARC-specific aspects; please refer to the Bound-T Reference Manual [1] for a
generic description of the outputs.

Basic output format

Most Bound-T outputs, including warning and error messages, follow a common, basic
format that contains the source-file name and source-line number that are related to the
message. These output lines are explained in the Bound-T Reference Manual [1].

However, some compilers may not provide all the debugging information, depending on
the optimization and debugging options. With such target programs, the Bound-T output
will also be reduced, for example source-line numbers may be missing.

Units of measurement

Execution times (WCET bounds) are given in processor clock cycles.

Stack usage bounds are given in octets.

Outputs specific to the SPARC

Bound-T for the SPARC emits additional output lines explained in the following table.
These lines report details of the SPARC-specific analyses: the analysis of pipeline blocks
(stalls), IU/FPU blocks and register window traps. These results are included in the
general WCET bounds so these additional output lines can usually be ignored.

As explained in the Reference Manual [1], in each output line a keyword in field 1
identifies the kind of output, fields 2 through 5 identify the program element, and the later
fields contain the actual output. The table below is ordered alphabetically by the keyword
column.

Table 19: Outputs for SPARC

Keyword (field 1) Explanation of fields 6 -

Block_Wcet num : min .. max : local : callees : total

Reports the part of the WCET bound that comes from pipeline blocks (stalls,
resource dependencies). There are two kinds of blocks in the SPARC: Integer
Unit blocks and Floating-Point Unit blocks. IU blocks occur when an U
instruction uses a source operand register that is the destination register of
the dynamically preceding instruction; this creates a one-cycle block. FPU
blocks occur for concurrently executing FPUs for FPU load/store instructions
and when an FPU instruction is still executing when the next FPU instruction
is about to start execution, as explained in section 2.3. Both kinds of blocking
are reported together in this output line.

Sequentially executing FPUs do not cause blocking. The FPU execution time is
included in the time the instruction spends in the IU.

This output line reports the blocking that occurs (or could occur) in the
execution path that defines the WCET bound for the current subprogram
identified in fields 2 through 5. However, other execution paths (with a
smaller or equal total execution time) may have more blocking. The fields
have the following meaning:

Bound-T for SPARC 0 45

46

Keyword (field 1)

Explanation of fields 6 -

num is the number of blocked instruction pairs in this execution path. Each
pair is counted once although it may be executed many times (in loops).

min .. max is the range of blocking times per execution of a blocking
instruction pair. If only IU blocks occur, the range is 1 .. 1; if FPU blocks
occur, the range can be wider.

local is the part of the WCET bound for the current subprogram that comes
from blocking in this subprogram, excluding blocking in callees.

callees is the part of the WCET bound for the current subprogram that comes
from blocking in callee subprograms.

total is local + callees, the total contribution of blocking to the WCET bound
for the current subprogram.

RWin

RW _Deep_Call

RW Depth

rwu_max : wd_min .. wd_max : overflows : underflows : time

Reports the results of the register window trap analysis (see section 2.2) for
the current subprogram identified in fields 2 through 5. In this output line:

rwu_max is the computed upper bound on the number of register windows in
use at the start of the current subprogram. This includes the possible save
instruction that creates the stack frame for this subprogram, whether it comes
immediately after the cALL in the calling subprogram or at the start of the
current subprogram.

wd_min .. wd_max are the bounds on the number of register windows pushed
and popped by an execution of the current subprogram, including its callees.
This number is called win_depth in section 2.2.

overflows is the number of register window overflows included in the WCET
bound for the current subprogram. It does not include overflows in callees. It
can be zero or one, but nor more than one.

underflows is the number of register window underflows included in the
WCET bound for the current subprogram. It does not include underflows in
callees. It can be zero or one, but not more than one.

time is the part of the WCET bound for the current subprogram that comes
from the register window overflow and underflow traps in the current
subprogram. It does not include overflows or underflows in callees.

wd_min .. wd_max

Emitted only when one or both of the options -rw_calls or -trace additional is
used. Fields 2 through 5 identify a call; this output line reports that this call
may push and pop so many register windows that the caller may be left with
only its own register window in the register file, which means that a register
window underflow trap occurs on return from the caller. See section 2.2.

wd_min .. wd_max are the bounds on the number of register windows pushed
and popped by the callee and deeper callees if any.

rwu_max : wd_min .. wd_max

Emitted only when one or both of the options -rw_calls or -trace additional is
used. Reports intermediate results of the register window trap analysis. See
the explanation of the RWin output line, above.

Bound-T for SPARC

4.5

Keyword (field 1) Explanation of fields 6 -

RW First_Call wd_min .. wd_max

Emitted only when one or both of the options -rw_calls or -trace additional is
used. Fields 2 through 5 identify a call; this output line reports that this call
may be the first call that the caller executes and thus this call may cause a
register overflow trap if the caller's rwu_max is large enough. See section 2.2.

wd_min .. wd_max are the bounds on the number of register windows pushed
and popped by the callee and deeper callees if any. However, they are not
relevant for the occurrence of register window overflow traps at this point.

Trap_Handler trap description

Reports that the subprogram identified in fields 2 through 5 is considered the
trap handler for the trap described in field 6. Currently Bound-T considers
two kinds of traps: "Register Window overflow" and "Register Window
underflow". See section 2.2 and the option -trap_base in section 4.2.

Warning Messages

The following table lists the Bound-T warning messages that are specific to the SPARC or
that have a specific interpretation for this processor. The messages are listed in alpha-
betical order, perhaps slightly altered by variable fields in the message; such fields are
indicated by italic text. The Bound-T Reference Manual [1] explains the generic warning
messages, all of which may appear also when the SPARC is the target. The HRT-mode
manual [13] explains the warnings that are specific to an HRT analysis. Section 4.7
explains the warning messages that may arise while exporting the target program for
RapiTime analysis.

The specific warning messages refer mainly to unsupported or approximated features of
the SPARC.
Table 20: Warning Messages

Warning Message Meaning and Remedy

Alternate leaf return from trap Reasons The current subprogram ends with the normal

return sequence for a leaf subprogram but the
subprogram itself seems to be a trap handler. This
is a contradiction.

Action Note that the analysis of this subprogram may be
incorrect.

A privileged instruction in a normal Reasons The current subprogram contains a privileged
subprogram instruction, but appears to be a normal

subprogram and not a trap or interrupt handler.

Action If the application runs normal subprograms in
“user” mode (not privileged), a trap will occur at
the privileged instruction. The time and space
bounds for the subprogram do not include this
trap.

Bound-T for SPARC 0 47

Warning Message

Meaning and Remedy

A SAVE instruction in a caller-saves Reasons
subprogram

Action

The current sAvVE instruction is out if place
because it occurs in a caller-save subprogram, that
is, the calling sequence already executes a SAVE
for this subprogram.

Modify the program to avoid such code. If the
current subprogram is a root subprogram that has
been asserted to have the “caller-saves” property,
remove this assertion.

Asserted RWU_Max (A) is less than Reasons
computed RWU Max (C)

Action

The assertion file asserts the property “rwu_max”
to the value A, but Bound-T computes the
maximum initial register-window usage of this
subprogram to be a greater value C. The asserted
value A is used in the analysis.

Check that the assertion is valid.

Assuming that Register Window traps may Reasons
occur.

Action

Callee parameter P maps to callee parameter Reasons

Q

Action
Dynamically computed trap number T Reasons
truncated to N

Action

48 0

See the warning “Not known how subprogram
uses Register Windows”.

Ditto.

While analysing the parameters that are passed in
a given call, and in particular the stack location
that the callee subprogram sees as a parameter P
passed from the caller, Bound-T finds that the
caller also sees this same stack location as a
parameter Q that the caller's caller passes to the
caller. This is unusual because when the callee
uses P it is referring to a stack frame that is at
least two levels away in the call-path.

The P and Q symbols have the form “parN” where
N is the octet offset from the stack pointer on
entry to the subprogram (caller or callee).

Possible causes for such code include tail calls in
assembly language or nested subprograms.

You may want to check that Bound-T has
analysed the stack-pointer and frame-pointer
operations correctly for this particular call. The
option -trace param may help.

The program contains a Ticc instruction where the
trap number is a register operand (dynamically
computed). Bound-T analysed the computation
and found a single value T for the operand,
however this value is outside the range for trap
numbers and so Bound-T truncates the value to
the seven least significant bits as defined in the
SPARC architecture, giving trap number N.

Check the program to verify that the Ticc
instruction works correctly and that the value T is
correct. To avoid this warning, modify the
program to make T a valid trap numbers without
truncation.

Bound-T for SPARC

Warning Message

Meaning and Remedy

Frame height becomes unknown

Reasons

Action

The program contains an instruction that modifies
the frame pointer register (fp = r30) in a way that
Bound-T cannot analyse.

The analysis of computations involving variables
accessed relative to the frame pointer may be
unreliable. See Table 5 and the surrounding
section.

Indirect jump to A

Jump-and-link with destination register R is
not seen as a call

Reasons

Action

Reasons

Action

The program contains a JMPL instruction that
takes the target address from a register. Bound-T's
analysis of the computation indicates that the
register has the value A, which is thus the target
address of the jump. The warning is issued
because this analysis may be wrong in some cases.

Check that this ympL instruction really has a single
possible target.

The current subprogram contains a JMPL
instruction with destination register R which is
neither r0 nor r15. This means that the instruction
saves a “return” address but not in the standard
place (r15). Bound-T models the instruction as a
jump and not as a call.

Check if Bound-T's model is correct.

Large literal U used signed = S

Leaf subprogram contains a call

Load for jump via table uses Immediate
operand

Bound-T for SPARC

Reasons

Action

Reasons

Action

Reasons

Action

The program contains a SETHI-OR instruction pair
that loads a literal operand into a register, and
this operand has the sign bit set, so that Bound-T
uses the signed interpretation S instead of the
unsigned interpretation U.

The signed interpretation is considered only when
the option -sethi_signed is in effect.

This warning can be disabled with the option
-warn no_sign.

Check that the signed interpretation is correct.

Based on its structure and calling sequence, the
present subprogram seems to be a leaf
subprogram (that is, it does not have a register
window of its own) but even so it calls another
subprogram. A leaf subprogram should not call
other subprograms.

Check the program design and coding on this
point.

The program contains a Lb instruction that loads a
register from memory, followed by a JmpL to the
address in the register. Bound-T interprets this as
a switch-case structure that uses a table of
addresses; see section 3.11. However, the LD
instruction has an Immediate operand, which is
unusual for this code idiom.

Check that Bound-T's interpretation of this code is
correct.

49

Warning Message

Meaning and Remedy

Negative immediate address considered
unknown

Reasons

Action

The program contains an instruction that uses an
immediate (literal) memory address that has the
sign bit on, so that the value appears negative.
The actual memory location that is accessed then
depends on the actual memory size, not known to
Bound-T, and so Bound-T considers the address
unknown.

None. In theory, the situation may weaken
Bound-T's analysis of loop bounds, but memory
locations in this area are unlikely to contain loop
counters.

No ELF symbol table found

Normal leaf return from trap

Normal return from trap

No symbol tables found in the program

Not known how subprogram uses Register
Windows.

Assuming that Register Window traps may
occur.

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

Action

The option -elf_symbols told Bound-T to use the
ELF symbol table, but the executable file does not
contain an ELF symbol table.

Either get an executable file that does contain an
ELF symbol table, or do not use the option
-elf_symbols. For the GNU compilers, use the
compiler option -g.

The current subprogram seems to be a trap
handler but ends with the normal return sequence
for a leaf subprogram. This is a contradiction.

Note that the analysis of this subprogram may be
incorrect.

The current subprogram seems to be a trap
handler but ends with the normal return sequence
for a non-leaf subprogram. This is a contradiction.

Note that the analysis of this subprogram may be
incorrect.

The program under analysis does not contain any
symbol table (debugging information) that
Bound-T can use.

Obtain an ELF file with debugging symbols (for
the GNU compilers, use the compiler option -g).
Remove command-line options that deny the use
of certain symbol tables. See Table 12.

Bound-T is not sure if the present subprogram
uses a register window of its own, but assumes
that register window traps may occur. (Two
warnings are emitted as shown at left.)

Check the code for the subprogram and possibly
change it to use a standard call/return protocol.

No time analysis, so [U/FPU blocking
ignored

50 0

Reasons

Action

The option -no_time has disabled execution-time
analysis, thus Bound-T decides not to perform the
(unnecessary) concurrent-FPU timing analysis
although it has not been disabled with -no_fp.

To suppress this message use also the option
-no_fp whenever you use -no_time.

Bound-T for SPARC

Warning Message

Meaning and Remedy

No time analysis, so register window traps
ignored

Reasons

Action

The option -no_time has disabled execution-time
analysis, thus Bound-T decides not to perform the
(unnecessary) register-window analysis although
it was enabled with -rw.

To suppress this message do not use the option
-rw together with -no_time.

Not sure if a register window is used

Not sure if S is a leaf subprogarm.

Not sure if S is a trap handler.

Object file problem

Property P has no valid upper bound.

Using zero.

Register Window usage unclear

Bound-T for SPARC

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

Action

Bound-T is not sure if the present subprogram
uses a register window of its own, but assumes it
does not.

None. The “window depth” (win_depth in
section 2.2) may be underestimated by one.

Bound-T is not sure if subprogram S is a leaf
subprogram, that is, whether or not it uses its
own register window. Bound-T assumes that S is a
leaf subprogram and uses the same register
window as its caller.

None. The situation probably has no effect on the
analysis. It may mean that a later warning “Leaf
subprogram contains a call” for subprogram S is
spurious. It may also mean that a call to
subprogram S is wrongly considered not to cause
a register window overflow.

Bound-T is not sure if subprogram S is a trap
handler subprogram, but assumes that it is.

None. The situation probably has no effect on the
analysis. It may mean that a call to subprogram S
is wrongly considered not to cause a register
window overflow.

There is some problem in the executable file
named on the command line; the file is perhaps
not in a format that Bound-T supports.

Get an executable file that Bound-T can analyse.

An assertion constrains the value of property P
(eg. the “code_ws” property) but does not place
an upper bound on the value, which means that
there is no upper bound on the execution time.
Bound-T uses a zero value for this property.

Correct the assertion file.

Bound-T cannot classify the current subprogram
as a leaf, self-save, caller-save or trap handler sub-
program. These terms are defined in section 3.11.

Note that the analysis of register-window traps for
this subprogram and for calls to this subprogram
may be inaccurate.

51

Warning Message

Meaning and Remedy

Resolving jumps via constant address table
atA..B

Return from interrupt from Trap call

Return from trap from Interrupt call

RW Overflow (Underflow) trap became
bounded in FP analysis

RW Overflow (Underflow) trap became
unbounded in FP analysis

RW Overflow (Underflow) trap time-bound
changed in FP analysis

SAVE after RESTORE is not modelled

52 0

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

Action

The program contains the code idiom (instruction
pattern) that implements a switch/case statement
with a table of addresses; see section 3.11.
Bound-T's analysis of the index computation
indicates that the address table occupies the
addresses A .. B, but this analysis may be wrong in
some cases. Moreover, Bound-T assumes that the
address table is constant and not modified during
program execution.

Check that the addresses A .. B indeed contain the
whole address table for a switch/case and that
this address table is constant.

The current subprogram ends with the return-
from-interrupt sequence but the subprogram itself
seems to be a trap handler. This is contradictory.

Note that the analysis of this subprogram may be
incorrect.

The current subprogram ends with the return
sequence for a trap handler but the subprogram
itself seems to be an interrupt handler. This is a
contradiction.

Note that the analysis of this subprogram may be
incorrect.

For a concurrent FPU, before the FPU timing
analysis Bound-T was unable to bound the WCET
of the indicated trap handler, but after the FPU
analysis a WCET bound was found. This is
surprising.

Please report this event to Tidorum Ltd.

For a concurrent FPU, before the FPU timing
analysis Bound-T was abled to bound the WCET
of the indicated trap handler, but after the FPU
analysis a WCET bound was not found. This is
surprising.

Please report this event to Tidorum Ltd.

For a concurrent FPU, the analysis of the FPU
timing (section 2.3) changed (increased) the
WCET bound for the indicated trap handlers
(because the handler contains a significant
amount of such blocking).

The amount of FPU blocking reported for
subprograms that can cause register window traps
may be overestimated, because the FPU block
analysis was based on the initial (smaller) WCET
bounds for these trap handlers.

The current instruction is a save but the current
subprogram has already executed a RESTORE.
Bound-T cannot model this manipulation of the
register windows.

Modify the program to avoid such code.

Bound-T for SPARC

Warning Message

Meaning and Remedy

STABS N_Sline record with no base address,
ignored

Reasons

Action

The executable ELF file contains a STABS source-
line record (N_Sline record) that is not in the
context of a subprogram and so has no base
address, therefore Bound-T cannot use the record.
Probably the file is in some variant of ELF/STABS
that Bound-T does not understand.

Try to get an executable file in the ELF format
that Bound-T supports, preferable with DWARF
debugging information.

STABS register number N is not modelled

Stack frame location and size become

unknown

Stack height becomes unknown

Time asserted. Assuming zero blocking time.

Time is asserted but not window-depth;
using zero

Too many RESTORE levels

Too many SAVE levels

Bound-T for SPARC

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

Action

The executable ELF file contains a STABS symbol
record describing a variable as located in register
number N, in the range 1 .. 31, but Bound-T does
not model SPARC register number N as a cell in
the current register-window context.

None, but the variable mapped to register N may
not be usable in assertions.

The current SAVE instruction occurs in a context
where Bound-T is unable to model the changes in
the register windowing, or specifies a destination
register other than sp = r14.

Modify the program to avoid such code.

The program contains an instruction that modifies
the stack pointer register (sp = r14) in a way that
Bound-T cannot analyse.

The result of the stack usage analysis should not
be considered reliable. See section 2.5.

The WCET bound for the current subprogram is
asserted in the assertion file, not computed;
therefore, the pipeline blocking in the subprogram
was not analysed, and no blocking is assumed.

Note that the blocking time reported for this
subprogram (Block_Wcet output lines) does not
correspond to the actual code of the subprogram.

The assertion file asserts an execution time for
this subprogram, but does not assert any value for
the “win_depth” property, so Bound-T uses zero
as the value of “win_depth”.

Correct the assertion file.

The current RESTORE instruction does not match
an earlier SAVE instruction in the current
subprogram or in the calling sequence for the
current subprogram. Bound-T cannot model the
effect of this RESTORE instruction.

Modify the program to avoid such code.

The current subprogram (or its calling sequence)
has already executed a sAve instruction. Bound-T
cannot model the effect of the current second (or
third, etc.) sAVE instruction.

Modify the program to avoid such code.

53

Warning Message Meaning and Remedy

Trap O taken as return Reasons The program contains a Tice instruction for trap
number zero, which usually means a software
reset and reboot. Bound-T models this instruction
as a return from the current subprogram.

Action Note that the time and space bounds for the
current subprogram do not include the trap
handling.

UNIMP instruction taken as return Reasons The program contains an UNIMP instruction that is

not within an alternate call sequence. Bound-T
models this instruction as a return from the
current subprogram.

Action Note that the time and space bounds for the
current subprogram do not include the trap that
results from executing unimP.

Zero weight for FPU delay on step-edge E Reasons For a concurrent FPU, the heuristic formula that
Bound-T uses to assign weights to flow-graph
edges that may account for FPU blocking delays
has assigned zero weight to edge number E. This
may degrade the assignment of FPU blocking
delays to edges and so lead to a pessimistic WCET
bound.

Action None.

4.6 Error Messages

The following table lists the Bound-T error messages that are specific to the SPARC or that
have a specific interpretation for this processor. The messages are listed in alphabetical
order, perhaps slightly altered by variable fields in the message; such fields are indicated
by italic text. The Bound-T Reference Manual [1] explains the generic error messages, all
of which may appear also when the SPARC is the target. The HRT-mode manual [13]
explains the error messages that are specific to an HRT analysis. Section 4.7 explains the
warning messages that may arise while exporting the target program for RapiTime
analysis.

Table 21: Error Messages

Error Message Meaning and Remedy

Alternate leaf return from C call ~ Problem The current subprogram ends with the alternate return
sequence for a leaf subprogram but the subprogram itself
seems to be of type C: a subprogram to be called with the
normal sequence or a trap or interrupt handler. This is a
contradiction.

Reasons The program is written that way, or Bound-T is confused
about the type of the subprogram.

Solution =~ Modify the program to follow the calling conventions.

54 0 Bound-T for SPARC

Error Message

Meaning and Remedy

Alternate return from C call Problem The current subprogram ends with the alternate return
sequence for a non-leaf subprogram but the subprogram
itself seems to be of type C: a subprogram to be called with
the normal sequence or a trap or interrupt handler. This is
a contradiction.

Reasons The program is written that way, or Bound-T is confused
about the type of the subprogram.
Solution =~ Modify the program to follow the calling conventions.

Alternate leaf return in the callee's Problem The current subprogram ends with the alternate return

window sequence for a leaf subprogram, but the subprogram seems
to be using its own register window at this point. This is a
contradiction.

Reasons The program is written that way, or Bound-T is confused
about the register window management.
Solution =~ Modify the program to follow the calling conventions.

Alternate leaf return in a trap Problem The current subprogram ends with the alternate return

window sequence for a leaf subprogram, but the subprogram seems
to be using a trap-handler register-window at this point.
This is a contradiction.

Reasons The program is written that way, or Bound-T is confused
about the register window management.
Solution =~ Modify the program to follow the calling conventions.

Asserted negative minimum Problem The assertion file asserts the property win_depth for a

(maximum) window depth, using subprogram, but gives a negative minimum (maximum)

Zero. bound for the value of this property.

Reasons An error in the assertion file.
Solution ~ Correct the assertion file.

Asserted RWU Max is out of Problem The asserted property rwu_max for a subprogram is either

range: bounds on RW greater than the maximum window usage of the system, or
lower than or equal to zero.

Reasons An error in the assertion file.
Solution ~ Correct the assertion file.

Asserted too large minimum Problem The assertion file asserts the property win_depth for a

(maximum) window depth, using subprogram, but gives a too large minimum (maximum)

D. bound for the value of this property. A bound is too large if
it exceeds the total number D of available register windows
(option -max_win).

Reasons An error in the assertion file or in the command line.
Solution ~ Correct the assertion file or the command-line option
-max_win.

Call instruction at return Problem The last instruction in the subprogram, in the return
sequence itself, is a cALL instruction, which violates the
calling protocols.

Reasons Error in the program being analysed.
Solution ~ Correct the return sequence of the subprogram; move the

Bound-T for SPARC

CALL to occur before the return sequence.

Error Message

Meaning and Remedy

Cannot open FPU-time file for Problem The file with FP operation times, named in the option

reading -fou_time, could not be opened for reading.

Reasons The file-name may be wrong (such a file does not exist) or
the file permissions may not allow reading.

Solution ~ Check and correct the file-name or the file permissions.

Cannot read file Problem Bound-T could not read the executable file (target
program) named on the command line.

Reasons The file permissions do not let the user read the file, or the
file type does not allow the access method that Bound-T
uses.

Solution ~ Correct the type or permissions of the file.

Does not seem to be a SPARC/ELF Problem The given executable file (target program) does not seem

file to be an ELF file for a SPARC program.

Reasons The executable file uses some other format, or does not
contain a SPARC program, or uses an ELF variant that
Bound-T does not support.

Solution ~ Check the compiler and linker options. If they are correct,
contact Tidorum Ltd.

Dynamic call at return Problem The last instruction in the subprogram, in the return
sequence itself, is a ymPL instruction that implements a
dynamic call. This violates the calling protocols.

Reasons Error in the program being analysed.

Solution =~ Correct the return sequence of the subprogram; move the
JMPL to occur before the return sequence.

Dynamic jump or call resolved to Problem The program contains a JMpL instruction with a computed

invalid address base + offset target address. Bound-T's analysis of the computation of the
target address gives a result that exceeds the range of
SPARC code addresses. The result is expressed as the sum
of a constant base (displayed in hexadecimal) and a
computed offset (displayed in decimal).

Reasons The analysis of the target address computation is probably
wrong, possibly because of undetected aliasing (pointers),
or because the computation depends on 32-bit overflow
(address wrap-around) that Bound-T does not model.

Solution ~ Replace the dynamic jump or call by a static jump or call.

File does not exist Problem The executable file for the target program, named on the
command line, was not found.

Reasons The file-name is wrong, or some directory in the path to the
file does not allow access.

Solution ~ Correct the file-name or the permissions on the path.

FP instruction not recognised : M Problem The file with FP operation times, named in the option
-fou_time, contains an unrecognised operation mnemonic M.

Reasons Error in the file.

Solution Correct the file.

56 0

Bound-T for SPARC

Error Message

Meaning and Remedy

FPU-time text not understood: text Problem

Ignoring asserted “caller save”
values (must be single non-
negative value)

Reasons
Solution

Problem

Reasons

Solution

The file with FP operation times, named in the option
-fou_time, contains a line with some kind of syntax error.
The line contains the given text.

Error in the file.
Correct the file.

An assertion gives an invalid value or range of values to the
caller_save property. This property must be given a single
non-negative value.

Error in the assertion file.

Correct the assertion file.

Ignoring asserted “call” values
(must be single value A .. B)

Problem

Reasons

Solution

An assertion gives an invalid value or range of values to the
call property. This property must be given a single value in
the range A .. B.

Error in the assertion file.

Correct the assertion file.

Instruction address A exceeds
segment boundaries

Bound-T for SPARC

Problem

Reasons

Solution

The program seems to reach an instruction at an address A
that is not in any code segment, that is, it is not present in
the memory image at load time.

The analysis stops at this point.

The most common reason is that the actual Trap Base
Address in the target program differs from the address that
Bound-T uses, either by default from the chosen SPARC
device or as given in the -trap_base option. This makes
Bound-T go to the wrong address to find the code for a trap
handler.

Another possible reason is that Bound-T is exploring an
execution path that is impossible or mistaken, perhaps
because a switch/case address table is overestimated. The
analysis of some switch/case statements needs the
-via_positive option.

It can also happen that the execution path being explored is
possible but the program will place some instruction at
address A before this address is reached during execution.

Check your -device and -trap_base options. Note that
-trap_base must come after -device.

Use the option -via_positive to help the analysis of
switch/case statements.

Ensure that all code is statically present in the program's
load image, not created or moved during execution.

Error Message

Meaning and Remedy

Invalid instruction
or
Invalid instruction taken as return

JMPL is last instruction in
subprogram

Problem

Reasons

Solution

Problem

Reasons

Solution

The program seems to reach an illegal instruction; an
instruction word that does not encode a valid instruction in
the chosen version of the SPARC architecture.

There are many possible reasons. There may simply be an
error in the program. Perhaps the program is meant for a
later version of the SPARC architecture and so contains
instructions that have been added after SPARC V7, V8 or
V8E (depending on the -device chosen). Perhaps Bound-T is
exploring an execution path that is impossible or mistaken,
maybe because a switch/case address table is overesti-
mated. Perhaps the path is possible but the program will
place some valid instruction here, before execution reaches
this address.

Check that your SPARC program is compiled for the chosen
-device. Check that Bound-T has analysed dynamic jumps
correctly. Ensure that all code is statically present in the
program's load image, not created or moved during
execution.

The last instruction in the subprogram, in the return
sequence itself, is a JMPL instruction, which violates the
SPARC coding rules.

Error in the program being analysed.

Correct the code of the subprogram.

Jump via table finds invalid
address A

Problem

Reasons

Solution

The program seems to contain a switch/case construct that
is encoded with a table of addresses as explained in
section 3.11 but the table contains a value A that is not a
valid code address.

The decoding is probably wrong; perhaps Bound-T has
overestimated the size of the table so that the value A is not
taken from the table, but from some point before or after
the table.

Simplify the switch/case construct or replace it with
conditional statements (if-then-elsif ...).

Jump via table slot at address A
that exceeds segment boundaries

Problem

Reasons

Solution

The program seems to contain a switch/case construct that
is encoded with a table of addresses as explained in
section 3.11 but the table extends to an address A that is
not in any code segment, that is, it is not present in the
memory image at load time.

The decoding is probably wrong; perhaps Bound-T has
overestimated the size of the table. Alternatively, the table
is not constant (statically loaded) but is filled dynamically
by the program before the switch/case statement is
executed.

Simplify the switch/case construct or replace it with
conditional statements (if-then-elsif ...). Ensure that all
address tables are statically present in the program's load
image, not created during execution.

58 0

Bound-T for SPARC

Error Message

Meaning and Remedy

Mismatch of call kind : New N :
Current C

Problem

Reasons

Solution

A subprogram is called using different calling protocols
(normal, alternate, trap or interrupt; see section 3.11).
Before this point in the analysis, the calling protocol
appeared to be protocol C; now, the program indicates that
the protocol is N.

An error in the program, or a subprogram that somehow
adapts to different calling protocols.

Change the program to use one calling protocol for each
subprogram.

No -device was specified

Mismatch of caller-push : New N :
Current C

Mismatch of RW kind : New N :
Current C

Problem

Reasons
Solution

Problem

Reasons

Solution

Problem

Reasons

Solution

The command line contains no -device=name option to
select the SPARC device.

Mistake on the command line.
Add a -device=name option to the command line.

A caller-save subprogram is called with a delayed save
instruction that pushes a stack-frame of a different size (N)
than the size (C) used in earlier calls of the same subprog-
ram. N and C are expressed as bounds on the symbolic
variable size.

Perhaps the subprogram is written to use a stack frame of
variable size, defined by the caller.

Change the program to make the called subprogram a self-
save subprogram (with its own sAVE), or to push the same
size of frame in all caller-save calls.

A subprogram is called using different register window
protocols (caller-save, self-save, leaf or trap; see
section 3.11). Before this point in the analysis, the RW
protocol appeared to be protocol C; now, the program
indicates that the protocol is N.

An error in the program, or a subprogram that somehow
adapts to different register-window protocols.

Change the program to use one register window protocol
for each subprogram.

Normal leaf return from C call

Normal return from C call

Bound-T for SPARC

Problem

Reasons

Solution

Problem

Reasons

Solution

The current subprogram ends with the normal return
sequence for a leaf subprogram but the subprogram itself
seems to be of type C: a subprogram called with the
alternate sequence or a trap or interrupt handler. This is a
contradiction.

The program is written that way, or Bound-T is confused
about the type of the subprogram.

Modify the program to follow the calling conventions.

The current subprogram ends with the normal return
sequence for a non-leaf subprogram but the subprogram
itself seems to be of type C: a subprogram called with the
alternate sequence or a trap or interrupt handler. This is a
contradiction.

The program is written that way, or Bound-T is confused
about the type of the subprogram.

Modify the program to follow the calling conventions.

Error Message

Meaning and Remedy

Normal leaf return in the callee's Problem The current subprogram ends with the normal return

window sequence for a leaf subprogram, but the subprogram seems
to be using its own register window at this point. This is a
contradiction.

Reasons The program is written that way, or Bound-T is confused
about the register window management.
Solution ~ Modify the program to follow the calling conventions.

Normal leaf return in a trap Problem The current subprogram ends with the normal return

window sequence for a leaf subprogram, but the subprogram seems
to be using a trap-handler register-window at this point.
This is a contradiction.

Reasons The program is written that way, or Bound-T is confused
about the register window management.
Solution =~ Modify the program to follow the calling conventions.

Object file problem Problem There is some problem in the executable file named on the
command line.

Reasons The file is perhaps not in a format that Bound-T supports.
Solution ~ Get an executable file that Bound-T can analyse.

Only one token in this FPU-time Problem The file with FP operation times, named in the option

line : text -fou_time, contains a line that has only one textual token,
whch is a syntax error. The line contains the given text.

Reasons Error in the file.
Solution ~ Correct the file.

Patch address A exceeds segment Problem The patch file, named in the -patch option, specifies

boundaries patching at address A but the address is not in any code
segment, that is, it is not present in the memory image at
load time.

Reasons Error in the patch file. Possibly the patch is meant for
another executable, with different address ranges.

Solution ~ Correct the patch file. Only addresses that are present in
the loaded memory image can be patched.

Patch address A is not 32-bit Problem The patch file, named in the -patch option, specifies

aligned patching at address A but the address is not aligned at a
word boundary (not a multiple of 4 octets).

Reasons Error in the patch file.
Solution ~ Correct the patch file. All patch addresses must be word
aligned (multiples of 4).

Patch data invalid: data Problem The patch file, named in the -patch option, provides the
given patch data but this could not be interpreted as a 32-
bit hexadecimal word.

Reasons Error in the patch file.
Solution ~ Correct the patch file. All patch data must be written in
hexadecimal and fit in 32 bits (unsigned).

Patch data or params invalid Problem The patch file, named in the -patch option, contains a line

60 0

that is in error.

Bound-T for SPARC

Error Message

Meaning and Remedy

Reasons Error in the patch file.
Solution Correct the patch file. See section 4.1.

Return from interrupt from C call Problem The current subprogram ends with the return sequence for
an interrupt handler but the subprogram itself seems to be
of type C: not a trap or interrupt handler. This is a contra-
diction.

Reasons The program is written that way, or Bound-T is confused
about the type of the subprogram.
Solution ~ Modify the program to follow the calling conventions.

Return from interrupt from K Problem The current subprogram ends with the return sequence for

subprogram an interrupt handler but the subprogram itself seems to be
of kind C: not a trap or interrupt handler. This is a contra-
diction.

Reasons The program is written that way, or Bound-T is confused
about the type of the subprogram.
Solution =~ Modify the program to follow the calling conventions.

Return from interrupt from normal Problem The current subprogram ends with the return sequence for

subprogram in V an interrupt handler but the subprogram seems to be using
a normal register-window view V at this point. This is a
contradiction.

Reasons The program is written that way, or Bound-T is confused
about the register window management.
Solution ~ Modify the program to follow the calling conventions.

Return from trap from C call Problem The current subprogram ends with the return sequence for
a trap handler but the subprogram itself seems to be of type
C: not a trap or interrupt handler. This is a contradiction.

Reasons The program is written that way, or Bound-T is confused
about the type of the subprogram.
Solution =~ Modify the program to follow the calling conventions.

Return from trap from K Problem The current subprogram ends with the return sequence for

subprogram a trap handler but the subprogram itself seems to be of type
K: not a trap or interrupt handler. This is a contradiction.

Reasons The program is written that way, or Bound-T is confused
about the type of the subprogram.
Solution =~ Modify the program to follow the calling conventions.

Return from trap from normal Problem The current subprogram ends with the return sequence for

subprogram in V a trap handler but the subprogram seems to be using a
normal register-window view V at this point. This is a
contradiction.

Reasons The program is written that way, or Bound-T is confused
about the register window management.
Solution =~ Modify the program to follow the calling conventions.

Return with restore from a K Problem The current subprogram ends with a return sequence that

subprogram

Bound-T for SPARC

includes a RESTORE instruction, as proper for a self-save or
caller-save subprogram, but the subprogram itself seems to
be of a different kind K. This is a contradiction.

Error Message

Meaning and Remedy

RETT instruction out of context

RWU_Max is asserted, but without
upper bound: bounds on RW

SAVE for call does not set the
stack pointer

SAVE for call increases the stack
pointer

SAVE for call is not static

Strange JMPL taken as return

62 0

Reasons

Solution

Problem

Reasons
Solution

Problem

Reasons
Solution

Problem

Reasons
Solution

Problem

Reasons
Solution

Problem

Reasons

Solution

Problem

Reasons

Solution

The program is written that way, or Bound-T is confused
about the type of the subprogram.

Modify the program to follow the calling conventions.

There is a RETT instruction in the program without a
preceding JMPL instruction or in some other context that
does not match the standard return-from-trap instruction
sequence.

An error in the program.
Correct the program.

The assertion file asserts the property rwu_max for a
subprogram, but places no upper bound on the value,
which is meaningless.

Error in the assertion file.
Correct the assertion file.

This savE instruction is the delayed instruction for a sub-
program call but the destination register is not the stack
pointer sp = r14. This violates the calling conventions.

The program is written that way.
Change the program to use the normal calling conventions.

This sAve instruction is the delayed instruction for a sub-
program call but its effect is to increase, not decrease, the
value of the stack pointer sp = r14. This violates the calling
conventions.

The program is written that way.
Change the program to use the normal calling conventions.

This savE instruction is the delayed instruction for a sub-
program call but its effect on the stack pointer sp = r14 is
defined by a dynamic computation (register operand)
instead of a static value (immediate operand). Bound-T
cannot determine the size of the stack frame that is allo-
cated for the callee.

The program is written that way, perhaps because the stack
frame is too large to be encoded as an immediate operand.

Change the program to avoid this kind of code.

The program contains a JmpL instruction that does not
match any of the standard ways of using a JMPL: as a
dynamic jump, a dynamic call, or a return from a
subprogram, trap or interrupt. Bound-T assumes that the
instruction implements a return from the current
subprogram.

The target program is written that way.

Change the program to use JMpL in ways that Bound-T can
handle.

Bound-T for SPARC

Error Message

Meaning and Remedy

The instruction word W at the
normal return point A is not a
valid SPARC instruction

Problem

Reasons

Solution

The program contains a subprogram call that seems to
return to an address A that contains the word W which is
not a valid SPARC instruction nor the special
"unimplemented" instruction UNIMP.

The call and the callee do not follow the standard calling
protocol, or the program itself dynamically puts a valid
instruction at address A before executing the call.

Ensure that the standard calling protocol is followed and
that all code is statically present in the program's load
image, not created or moved during execution.

The normal return point A
contains no instruction.

Trap instruction in delay slot

Unable to bound the WCET of the
RW Overflow (Underflow)
handler. Using WCET = 0.

Unaligned DOUBLEWORD in IU
register R

Unaligned T in FPU register F

Bound-T for SPARC

Problem

Reasons

Solution

Problem

Reasons
Solution

Problem

Reasons

Solution

Problem

Reasons

Solution

Problem

Reasons

Solution

The program contains a subprogram call that seems to
return to an address A that is not in the code segment of
the program (not loaded with an instruction).

The call and the callee do not follow the standard calling
protocol, or the program itself dynamically puts some
instructions at address A before executing the call.

Ensure that the standard calling protocol is followed and
that all code is statically present in the program, not
created or moved during execution.

The program contains a Tice (trap on integer condition)
instruction in an illegal context (in the delay slot of a
control-transfer instruction).

The program is written like that.
Correct the target program.

Bound-T is unable to bound the WCET of a trap handler for
the register-window trap analysis. This analysis is explained
in section 2.2.

The trap handler is written in a way that Bound-T cannot
analyse. There should be other error reports, before this
one, that explain the problem in more detail.

User the option -rw_overflow [br 0-rw_underflowdl to set the
WCET of the trap handler, or disable the register-window
trap analysis entirely.

The program uses IU register R as a doubleword operand,
but R is an odd number.

The program is written in that way.

Correct the program to use even register numbers for
doubleword data.

The program uses FPU register F as an operand of the
multi-word floating-point type T, but F is not a multiple of
the number of 32-bit words in T.

The program is written in that way.

Correct the program to use properly aligned register
numbers for multi-word floating-point data (extended and
quadruple-precision data).

Error Message

Meaning and Remedy

Unexpected end of ELF file Problem The executable target program file named on the command
line ends unexpectedly, at a point where more data is
expected.

Reasons The file may be damaged, or it may be in a format that
Bound-T does not support.
Solution Correct the file.

Unknown device: Arg Problem The device-name given in the command-line argument Arg
is not recognised.

Reasons Error in the command line.
Solution ~ Correct the command line.

Unknown -fpu option: Arg Problem The value given for the -fou option in the command-line

argument Arg is not recognised.
Reasons Error in the command line.
Solution Correct the command line.

Unknown or invalid FP instruction Problem The current instruction seems to be a floating-point
instruction that Bound-T does not support or for which
Bound-T does not know the execution time.

Reasons The instruction specifies a combination of FP operand types
that is not supported in the chosen SPARC architecture (V7,
V8, VBE), or applies to extended-precision or quadruple-
precision operands and the execution time of this
instruction has not been defined with the -fou_time option.

Solution = Modify the program to use only supported FP instructions,
or use the -fou_time option to define the execution time.

Unknown -par option: Arg Problem The value given for the -par option in the command-line
argument Arg is not recognised.

Reasons Error in the command line.
Solution Correct the command line.

Unknown register-view on entry, Problem Bound-T is starting to analyse a subprogram but does not

assuming caller-view know if this is a self-save or a caller-save subprogram. It
assumes the former (self-save) so that the subprogram
begins its execution using the caller's register window.

Reasons This error should never occur.
Solution Please inform Tidorum Ltd.

Value V for opt is out of range; Problem The value V given in the command-line argument Arg for

should be A .. B: Arg the option opt is not an acceptable value for this option.
The acceptable values are between A and B, inclusive.

Reasons Error in the command line.
Solution Correct the command line.

Value for opt should be a natural Problem The value given in the command-line argument Arg for the

number (base 10): Arg option opt is not an unsigned, decimal number or has too
many digits.

Reasons Error in the command line.
Solution ~ Correct the command line.

64 0

Bound-T for SPARC

Error Message Meaning and Remedy

Value is not a multiple of 0x1000: Problem The value given in the command-line argument Arg is not

Arg

acceptable because only multiples of 1000 (hex) are
allowed.

Reasons Error in the command line.

Solution Correct the command line.

Value is out of range or not a Problem The value given in the command-line argument Arg is not
hexadecimal number: Arg an unsigned, hexadecimal number or has too many

4.7

hexadecimal digits.
Reasons Error in the command line.

Solution Correct the command line.

RapiTime Export

RapiTime

RapiTime from Rapita Systems Ltd [14] is a timing analysis tool that uses measurements
(tests) to compute execution time distributions and to estimate execution-time bounds.
RapiTime has different ways to measure execution times with high resolution of program
parts, down to basic blocks. One way is to instrument the source code with
instrumentation points or ipoints, typically calls to a specific subprogram that records the
execution time at this point. The subprogram has a single parameter, an integer that
uniquely identifies the ipoint and is recorded together with the time. The value of this
integer is called the name of the ipoint.

After the test is executed, RapiTime analyses the trace (log) of ipoint records to find out
the execution paths (the paths in the "ipoint graph") and the the execution time at each
ipoint. For this analysis of the time measurements, RapiTime needs to know the program
structure in terms of the machine-level control-flow graphs and call graphs and the
location of the ipoints in these graphs. Bound-T for SPARC can optionally export the
analysed subprograms as an XML file that defines this structure.

The structure of the XML file is defined in [15].

RapiTime options

The following command-line options control the RapiTime export function in Bound-T.

Table 22: RapiTime Export Options

Option Meaning and default value

-rapitime=filename Function Exports the analysed program parts to a RapiTime XML file of the

given filename. If a file with this name already exists, it is
overwritten.

Default No export.

-ipoint=name Function Defines the subprogram of the given name, or the given

or

-ipoint=address

hexadecimal entry address, as the RapiTime instrumentation
routine. Every call of this subprogram is an ipoint.

Bound-T for SPARC 0 65

Option Meaning and default value

Default None. If a RapiTime file is exported either this option or
-no_ipoints must be defined.

-no_ipoints Function Disables the detection and export of ipoints, as an alternative to
the -ipoint option. However, the resulting file is not useful for a
RapiTime analysis because it does not show the location of the
instrumentation points.

Default None. If a RapiTime file is exported either this option or the -jpoint
option must be defined.

See also the option -trace jpoints in Table 18.

Warning messages

While exporting a RapiTime file, Bound-T can emit some warnings as explained in the
following table.

Table 23: RapiTime Export Warning Messages

Warning Message Meaning and Remedy
No RapiTime <link> for unresolved Reasons The program contains a dynamic call (or a trap
dynamic call instruction) that Bound-T could not resolve, so

the possible callees are unknown and the call
cannot be represented as a <link> element in the
RapiTime output.

Action Change the program to uses static calls, or assert
the possible callees.

Error messages

While exporting a RapiTime file, Bound-T can emit some error messages as explained in
the following table.

Table 24: RapiTime Export Error Messages

Error Message Meaning and Remedy
Cannot create RapiTime file Problem Bound-T could not create a file with the given name to hold
named "name" the RapiTime XML form of the analysed subprograms.

Reasons File or directory permissions prevent the creation.

Solution ~ Change the permissions to allow creation or change the
name to create the file in a directory that allows it.

Ipoint subprogram not found Problem The subprogram named in the option -ipoint=name was not
found in the symbol-table of the target program.

Reasons The name may be mistyped, or the compiler may have
“mangled” the source-code name into a different linkage
name.

Solution ~ Check the symbol table and correct the name, or use the
option form -jpoint=address.

66 0 Bound-T for SPARC

Error Message Meaning and Remedy

No -ipoint defined for RapiTime Problem The instrumentation routine is unknown.

Reasons The command line has neither an -ipoint option nor a
-no_ipoints option.

Solution Correct the command line.

RapiTime ipoint-name unknown: Problem While analysing the “name” (parameter value) of this

interval

RapiTime ipoint call, Bound-T did not find a single value,
but an interval of values, or no limits at all.

The interval has the form min <= name <= max, where
min and max are the computed lower and upper limits, or
absent if no limit in that direction was found.

Reasons The code that sets the parameter value is too complex for
analysis, or the compiler's optimization has made it so.

Solution See below, “compiling programs for RapiTime”, or contact
Tidorum Ltd.

Compiling programs for RapiTime

The GCC compilers for SPARC (including the GNAT Ada compiler) perform some
optimizations that can make it difficult for Bound-T to find the “name” for some RapiTime
ipoint calls. The most common reason for this problem is a switch-case statement where
every branch ends with an ipoint (a call of the ipoint subprogram) but with different
“names” (different parameter values). The compiler may detect the call instructions (and
their delay slots) as common code, shared by all case branches, and remove them from the
branches in favour of a single call instruction (and its delay slot) to which all case
branches jump. Bound-T sees this as a single ipoint that has multiple “names” (any “name”
or parameter value defined in any case branch). This leads to the error message that the
ipoint-name is unknown.

Experiments have shown that the following GCC compiler options disable the problematic
optimizations and avoid this error:

—-fno-optimize-sibling-calls
-fno-crossjumping

Bound-T for SPARC 0 67

5.1

68

WRITING ASSERTIONS

If you use Bound-T to analyse non-trivial programs you nearly always have to write
assertions to control and guide the analysis. The most common role of assertions is to set
bounds on some aspects of the behaviour of the target program, for example bounds on
loop iterations, that Bound-T cannot deduce automatically. Assertions must identify the
relevant parts of the target program, for example subprograms and variables. The assertion
language has a generic high-level syntax [17] in which some elements with target-specific
syntax appear as the contents of quoted strings:

-+ subprogram names,

« code addresses and address offsets,

« variable names,

+ data addresses and register names,

« instruction roles, and

+ names of target-specific properties of program parts.

In practice the names (identifiers) of subprograms and variables are either identical to the
names used in the source code, or some “mangled” form of the source-code identifiers
where the mangling depends on the cross-compiler and not on Bound-T. However, Bound-
T defines a target-specific way to write the addresses of code and data in assertions.
Register names are considered a kind of “data address” and are target-specific.

This chapter explains any specific limitations and possibilities for user-specified assertions
when Bound-T is used with SPARC programs. These issues include the identification of
subprograms and variables by machine addresses, the name mangling in the GNAT and
GCC compilers, and the SPARC-specific property names.

Naming Subprograms

Ada modules

In Ada modules, the naming is complicated by the package hierarchies, nested
subprograms and overloaded names. With the ORK system using the GNU Ada compiler,
the general principle is that an Ada identifier of the form A.B.C is mapped to a linker
symbol of the form a__b _c. In other words:

« letters are converted to lower case,
+ periods are converted to double underscores ().

However, for an Ada entity that is a library-level subprogram, for example the main
procedure of the Ada program, the identifier, say Foo, is mapped to the symbol _ada _ foo.
In other words:

« letters are converted to lower case,
« a prefix of one underscore, ada and a double underscore is added.
Section 4.3 explains the additional rules for naming tasks and protected objects.

Ada lets different subprograms have the same overloaded name when the compiler can
distinguish the subprograms based on the parameter and result types (the profile of the
subprogram). Linkers, however, need unique names, so GNAT will assign sequential

0 Bound-T for SPARC

5.2

5.3

numbers to such overloaded names, in the order in which they are declared in the source
code, and construct unique linkage names by appending a $ symbol and the number to the
overloaded name. For example, if package Pak contains two subprograms named Foo, the
linkage name for the first one will be pak __foo$1 and for the second, pak__foo$2.

Be very careful to update your assertions when you add, remove or reorder subprograms
with overloaded names in a package. In the preceding example, if you insert a new
overloaded subprogram Foo in package Pak between the two existing subprograms Foo,
the new subprogram gets the linkage name pak _foo$2 while the linkage name of the last
subprogram changes to pak__foo$3. Existing assertions for the last subprogram have to be
updated accordingly or they will be applied, wrongly, to the new, inserted subprogram.

For Ada source programs the subprogram linkage names can most easily be found from the
program itself by using the Bound-T option -trace symbols to list all the symbols.
Alternatively, the target program's symbol-table can be dumped with Bound-T or with
some special-purpose program such as the GNU objdump.

C and Assembler modules

The ORK development tools do not include any extra underscores before the subprogram
name for C and assembler sources. The identifier given in the source-code is used as such.

Naming Variables

The naming of the variables by the ORK tools is more straightforward. The scope of the
variables includes the filename and the subprogram name, but no extra underscores are
included in the variable names for Ada, C or assembler sources.

Naming Items by Address

Registers

SPARC registers can be named in assertions with the address keyword, followed by a
quoted string that gives the register name.

The syntax for register names will appear rather strange to those familiar with the SPARC
assembly language. The reason behind this syntax is the register-window system which
means that a subprogram can refer to the same register-file location with two different
register numbers — one number before the SAVE instruction and another number after the
SAVE. Moreover, a given register number can identify a different location in the register
file before and after the SAVE, and some register-file locations are accessible only before or
after the SAVE.

Bound-T needs to name the registers in a way that associates a given name with the same
storage location both before and after the SAVE. This is done by expanding the usual
SPARC register groups — the “global”, “local”, “in” and “out” groups — to include two new
groups: “pass” registers and “work” registers. These six groups cover all the registers that
can be accessed both before and after the SAVE, as shown in the table below. The symbol n
means any number in the range 0 .. 7 with some exceptions as noted in the table. The
stack pointer and frame pointer registers are modelled separately as shown in the table.

Bound-T for SPARC 0 69

Table 25: Register groups and names

Bound-T . Corresponding SPARC registers
Meaning
name Before SAVE After SAVE
Gn

A global register.
The dummy register RO is not modelled so G0..G7 = RO..R7
the name Go is not used.

70

In Input register as seen before the save
instruction (in the caller's view). .
(.)) I0..I7 = R24..R31 Not accessible
The frame pointer is modelled separately so
the name 16 is not used.
Ln Local register as seen before the save .
. g1stel - L0..L7 = R16..R23 Not accessible
instruction (in the caller's view).
Pn . i . .
Incom%ng parameter-passing register, 00..07 = R8..R15 I0..I7 = R24..R31
accessible both before and after the sAve.
Wn Working register after the SAvE. Not accessible L0..L7 = R16..R23
On Outgoing parameter register after the SAVE.
The stack pointer is modelled separately so Not accessible 00..07 = R8..R15
the name 06 is not used.
SP The stack pointer. SP = R14
FP The frame pointer. FP = R30

The syntax for ordinary register names is a one-letter register-set identifier, as shown in
the leftmost column of Table 25, in upper or lower case, followed by a decimal register
number within the valid range. The valid range depends on the register-set as explained in
the table. The names for the stack pointer and frame pointer are the two-letter words SP
and FP, respectively, in upper, lower or mixed case.

For example, the assertion

variable address "g5" <= 100;

states that the value of g5 = r5 is at most 100.

Variables

Variables can be named in assertions with the address keyword, followed by a quoted
string that gives the variable's memory address. The memory address of a variable is given
by an address-space identifier m or M followed by the hexadecimal address. The
hexadecimal address is given by using decimal numbers O - 9, and letters a, b, ¢, d, e and f
(case-insensitive). Note that the address must not be preceded by "0x" nor surrounded by
"16# .. #" nor followed by an "h" suffix; just write the hexadecimal digits.

For example, the assertion
variable address "m57D12" 12 .. 20;

states that the value of the 32-bit integer variable at the address 57D12 (hexadecimal) is
between 12 and 20.

0 Bound-T for SPARC

5.4

5.5

5.6

Subprograms

Subprograms can be named in assertions with the address keyword followed by a quoted
string that gives the entry address in hexadecimal as above (but not preceded by any
specific identifier).

For example, the assertion

subprogram address "A70D21E"
time 342 cycles;
end subprogram;

states that the WCET of the subprogram with the entry address A70D21E (hexadecimal) is
at most 342 cycles.

Loop and Return Offsets

An assertion can identify a loop by giving an offset from the start of the subprogram that
contains the loop, in the form

subprogram "Nurture"
loop that executes offset "1A8"
repeats 15 times;
end loop;
end "Nurture";

For the SPARC the loop-offset is written as a quoted string that gives the entry address in
hexadecimal (but not preceded by any specific identifier). The example above identifies
the loop that contains the instruction at the address given by the entry address of the
subprogram Nurture plus 1A8 (hexadecimal) octets. Note that the offset must point exactly
at an instruction; the assertion will not work if the offset points, for example, to the second
octet of an instruction. The offset that Bound-T displays for an unbounded loop should
work as such.

Code offsets can also be used in "return to offset" assertions for subprograms that return in
special ways. The same offset syntax is used there.

Instruction Roles

The generic assertion language [17] contains syntax for asserting the "role" that a given
instruction (identified by its address or offset) performs in the computation, for example
whether a branch instruction performs a branch or a call. The roles and their names are
target-specific. The SPARC version of Bound-T defines no assertable roles; it chooses the
role of each instruction based on its own analysis of the instruction and its context.

Properties

Assertable properties

The assertable properties for the SPARC are listed and explained in the following table. For
the properties that relate to memory wait cycles, see Table 17 in section 4.2 for the
conversion from wait states to wait cycles.

Bound-T for SPARC 0 71

Property name

Table 26: Assertable Properties

Meaning, values and default value

read_ws Function = Changes the number of read wait cycles in the current context, for all
memory reads (excluding stack references, alternate memory references and
code fetches).
Values Number of wait cycles (system clock cycles). See section 4.2 for the relation
to wait states.
Default Zero wait cycles or the value given in a command-line option -read_ws.
write_ws Function =~ Changes the number of write wait cycles in the current context, for all
memory writes (excluding stack references and alternate memory
references).
Values Number of wait cycles (system clock cycles). See section 4.2 for the relation
to wait states.
Default Zero wait cycles or the value given in a command-line option -write_ws.
code_ws Function =~ Changes the number of code fetch wait cycles in the current context.
Values Number of wait cycles (system clock cycles). See section 4.2 for the relation
to wait states.
Default Zero wait cycles or the value given in a command-line option -code_ws.
alt_read_ws Function = Changes the number of read wait cycles in the current context for alternate
memory references.
Values Number of wait cycles (system clock cycles). See section 4.2 for the relation
to wait states.
Default Zero wait cycles or the value given in a command-line option -alt_read ws.
alt_write_ws Function = Changes the number of write wait cycles in the current contex for alternate
memory references.
Values Number of wait cycles (system clock cycles). See section 4.2 for the relation
to wait states.
Default Zero wait cycles or the value given in a command-line option -alt_write_ws.
stack_read_ws Function =~ Changes the number of read wait cycles in the current context for stack
references.
Values Number of wait cycles (system clock cycles). See section 4.2 for the relation
to wait states.
Default Zero wait cycles or the value given in a command-line option -stack_read ws.
stack_write_ws Function =~ Changes the number of write wait cycles in the current context for stack
references.
Values Number of wait cycles (system clock cycles). See section 4.2 for the relation
to wait states.
Default Zero wait cycles or the value given in a command-line option -stack_write_ws.
call Function Can be asserted for a subprogram and specifies the calling sequence. Since

72 0

Bound-T deduces the calling sequence for non-root subprograms from the
actual call instructions this property should be asserted only for the root
subprogram of an analysis and only when this is not an ordinary subprogram
called with the normal sequence.

Bound-T for SPARC

Property name

Meaning, values and default value

Values

Default

0 Normal calling sequence, ordinary subprogram.

1 Alternate calling sequence, ordinary subprogram.
2 Trap handler.

3 Interrupt handler.

Zero (0) (normal calling sequence) for a root subprogram, otherwise
deduced from the instructions used in the call(s) of the subprogram.

caller_save Function

Values

Default

win_depth Function

Values

Default

Can be asserted for a subprogram and specifies whether the subprogram is

called with the cALL;SAVE sequence, that is, whether the caller executes the

SAVE instruction that allocates a register window for the called subprogram,
and if so, how much stack space this save allocates.

Zero (0) or undefined means that the caller does not execute a SAVE on
behalf of this subprogam.

A positive value means that the caller executes a save for this subprogram;
the value gives the amount of stack space (in octets) that this save allocates.

A positive value should not be asserted for subprograms that are trap or
interrupt handlers.

Zero (0) for root subprograms, otherwise deduced from the instructions used
in the call(s) of the subprogram.

Asserts the range of the window-depth of the current subprogram (given in
subprogram context).

The number of register windows used by this subprogram and its deeper-
level callees.

The range of window-depth of a subprogram is analysed by Bound-T, or if
the WCET of the subprogram is asserted and the subprogram is not analysed
at all, a default value of zero will be used.

wu_max

Function

Values

Default

The register window usage assumed on the entry to the current subprogram
(given in subprogram context).

Number of register windows.

Two (2) or the maximum number of windows (-max_win option) if less
than 2, for the root subprograms named on the command-line, and the result
of the analysis for other subprograms.

Properties assumed for unanalysed subprograms

When a subprogram is excluded from the analysis by asserting its WCET, the subprogram
is given default values for properties as shown in the following table. Other values for
these properties can be asserted to override these defaults. The table lists only the
properties that are relevant; for example, the memory wait-state properties are irrelevant
because the WCET of the subprogram is asserted.

Table 27: Default properties for unanalysed subprograms

Property name

Default value for a subprogram that is not analysed

call

caller_save

Undefined. Can be asserted or deduced from the actual calling sequence.

Undefined. Can be asserted or deduced from the actual calling sequence.

win_depth

0..0.

Bound-T for SPARC 0 73

74

Property name

Default value for a subprogram that is not analysed

rwu_max

Two (2) or the maximum number of windows (-max_win option) if less than 2.

Bound-T for SPARC

Tidorum Ltd

Bound-T for SPARC

Tiirasaarentie 32

FI-00200 Helsinki, Finland
www.tidorum.fi

Tel. +358 (0) 40 563 9186
VAT Fl 18688130

75

	1Introduction
	1.1Purpose and Scope
	1.2Overview
	So what's it all about?
	When does it work?

	1.3References
	1.4Abbreviations and Acronyms
	1.5Glossary of Terms
	1.6Typographic Conventions

	2The SPARC and Timing Analysis
	2.1The SPARC architecture
	Data formats and operations
	Memory and register addressing
	Fault tolerance
	Optional co-processor
	Control flow
	Concurrent Functional Units

	2.2Static Timing Analysis of the SPARC Integer Unit
	General
	Register Window Traps

	2.3Static Timing Analysis of the SPARC Floating Point Unit
	FPU and IU sequential operation
	FPU and IU concurrent operation
	Variable instruction execution time

	2.4Timing Approximations
	2.5Stack Usage Analysis for the SPARC

	3Supported SPARC Features
	3.1Overview
	General support level

	3.2Levels of Support
	Opaque values

	3.3Implications of Limited Support
	3.4Reminder of Generic Limitations
	3.5Support Synopsis
	3.6Data Registers and Memory Accesses
	Integer Unit register file
	Floating-point Unit registers
	Memory data

	3.7Registers and the Calling Protocol
	Windowed or flat
	Stack and frame pointers
	References to stack variables

	3.8Condition Codes
	3.9Computational Operations
	Supported Integer Unit arithmetic
	Immediate operands
	Unsupported Integer Unit operations
	Floating-point operations
	Example of the unsupported operations

	3.10Division and Remainder Routines
	3.11Jumps, Calls, Returns and Traps
	Branch and jump instructions
	Jump via address table
	Call instructions
	Leaf vs non-leaf subprograms
	Normal vs alternate calls
	Tail calls
	Trap handler subprograms
	Traps and trap instructions
	Return instructions

	3.12SAVE and RESTORE Instructions
	3.13Control/Status Registers
	3.14Time Approximations

	4Using Bound-T for SPARC
	4.1Input Formats
	Executable file
	File of FP operation times
	Patch file

	4.2Command Arguments and Options
	Target device selection options
	Device-specific options
	Program loading options
	Instruction modelling options
	Register window options
	Floating point options
	Memory timing options
	SPARC-specific -trace items

	4.3HRT Skeleton Analysis
	The HRT architecture and Bound-T
	Generic coding rules
	HRT analysis of ORK programs
	Analysing waiting operations
	Handling the GNAT/ORK run-time system

	4.4Output
	Basic output format
	Units of measurement
	Outputs specific to the SPARC

	4.5Warning Messages
	4.6Error Messages
	4.7RapiTime Export
	RapiTime
	RapiTime options
	Warning messages
	Error messages
	Compiling programs for RapiTime

	5Writing Assertions
	5.1Naming Subprograms
	Ada modules
	C and Assembler modules

	5.2Naming Variables
	5.3Naming Items by Address
	Registers
	Variables
	Subprograms

	5.4Loop and Return Offsets
	5.5Instruction Roles
	5.6Properties
	Assertable properties
	Properties assumed for unanalysed subprograms

