Bound-T time and stack analyser

Application Note

ARMY7

Version 1

TR-AN-ARM7-001 2010-02-20 Tidorum Ltd.

Tidorum Ltd
www.tidorum.fi
Tiirasaarentie 32
FI-00200 Helsinki
Finland

This document was written at Tidorum Ltd. by Niklas Holsti.
The document is currently maintained by the same persons.

Copyright © 2004-2010 Tidorum Ltd.

This document can be copied and distributed freely, in any format, provided that it is kept entire, with
no deletions, insertions or changes, and that this copyright notice is included, prominently displayed,
and made applicable to all copies.

Document reference: TR-AN-ARM7-001

Document issue: Version 1

Document issue date: 2010-02-20

Bound-T version: 4b3

Last change included: BT-CH-0219

Web location: http://www.bound-t.com/app-notes/an-arm7.pdf
Trademarks:

Bound-T is a trademark of Tidorum Ltd.
ARM is a trademark of ARM Advanced RISC Machines Ltd.

Credits:
This document was created with the free OpenOffice.org software, http://www.openoffice.org/.

ii

http://www.bound-t.com/app-notes/an-arm7.pdf
http://www.openoffice.org/

Preface

The information in this document is believed to be complete and accurate when the document
is issued. However, Tidorum Ltd. reserves the right to make future changes in the technical
specifications of the product Bound-T described here. For the most recent version of this
document, please refer to the web address http://www.bound-t.com/.

If you have comments or questions on this document or the product, they are welcome via
electronic mail to the address info@tidorum.fi, or via telephone, fax or ordinary mail to the
address given below.

Please note that our office is located in the time-zone GMT + 2 hours, and office hours are
9:00 -16:00 local time. In summer daylight savings time makes the local time equal GMT + 3
hours.

Cordially,
Tidorum Ltd.
Telephone: +358 (0) 40 563 9186

Fax: +358 (0) 42 563 9186

E-mail: info@tidorum.fi

Web: http://www.tidorum.fi/
http://www.bound-t.com/

Mail: Tiirasaarentie 32
FI-00200 HELSINKI
Finland

Credits

The Bound-T tool was first developed by Space Systems Finland Ltd. (http://www.ssf.fi) with
support from the European Space Agency (ESA/ESTEC). Free software has played an
important role; we are grateful to Ada Core Technology for the Gnat compiler, to William Pugh
and his group at the University of Maryland for the Omega system, to Michel Berkelaar for the
I[p-solve program, to Mats Weber and EPFL-DI-LGL for Ada component libraries, to Ted
Dennison for the OpenToken package, and to Marc Criley for the XML EZ Out package. Call-
graphs and flow-graphs from Bound-T are displayed with the dot tool that is a part of the
GraphViz package from AT&T Bell Laboratories.

iii

http://www.ssf.fi/
http://www.bound-t.com/
http://www.tidorum.fi/
mailto:info@tidorum.fi
http://www.bound-t.com/

Contents

1

iv

INTRODUCTION 1
1.1 PUIPOSE ANA SCOPE...ceetieeeuiiiitieteeeeiiitteeeeeeeeib et teeeeeesittteeeeeeessnabrteeeeeeeeeeeeeeeeeeeeeeeeenes 1
1.2 OVBTVIEW..uuuiiiiiiiiereeeetie et eettteeeeeettaaeeeetttaa s eetesuaanseaaassasseeeaannassaatnnseennseenssesnnsennneens 1
1.3 REFEIEIICES. ...uuuuuiiiiiiiiiiieeieeeee e e et e e et e e e e e e e e e e e e e e e e e eabaaaaeaeeeeeaeeeeeeeseessnnneeeeeensennnnnns 2
1.4 Abbreviations and ACTOMYINS.uueetiiiriiuiiieeeeeeiiiitteeeeeeesiiireeeeeeeesirrreeeeeeeeeeeeeeeeeeennes 2
1.5 GlOSSATY Of TEITIIS. .uuvtiiteeiieiiiiiieee et e ettt e e e e ettt e e e e ettt e e e e s eesabbbteeeeeeeeeeeeeeeeennsnnnnes 3
1.6 TypographiC CONVENTIONS.uurtteeiirriiietteeeeeeiiiitteeeeeeenierrteeeesaesnnrreeeeesssausnraeeeessansnnes 4
USING BOUND-T FOR ARM7 5
2.1 OVOIVIEW . etttiiieeee e eeeeeeetttte e e e e e e et et ettt b e e e e e e e eeee e et e e e esnn e s e tena s eeesna e eeanaeeenenas 5
2.2 Supported ARM7 features and tOOIS..........ueeeeieiieeiiiiiiiiiieeeeeeeeeeeeeeeeceeeieeeeeeeeeeeeees 5
D20 TR 60101 ULl {0101 F: L - J PSPPI 6
2.4 Command arguments and OPTIONS........ceeeteeeeeeeeeeeeeeieieieeeaerrtrrareeanaeeeeeerennaeeeaeeeenes 6
2.5 OULPULS ettt eeeie e et e et e et e et e etaae s e et e etenesetenesetensseaeneaennsseeeneserennssannnserennnsenneens 12
WRITING ASSERTIONS ON ARM7 PROGRAMS 14
K T B 0) /<) a1 O RO OPPRR PP 14
3.2 SYMDOLIC MAMIES. ..ceiiiiiiieieeeieieee e et e e e e e e e e eeeeeeeeeeeeeasssssnssaeeseeeannnnnns 14
3.3 Naming items DY address......cuuiiiiiiiiiiiiiiiiiiiiiieieieeeeceeeeee e e e e e aaeaaas 15
3.4 INSTTUCHION TOLES....uuuiiiiiiiiiiiiiiieeeeeeeeeteeeeeeeeeeeeesesesssseaaaabbbbaeaaaaeeeeeeeeeeeeeeeeeeseeessnnnns 16
3.5 ASSETtable PrOPeItiES..ccciiiiiiiiiiieieeeeeteeee aaas 17
3.6 Defining the state (ARM or Thumb) of dynamic callees..............ceveeeeeeeiiiriiarreeennnne. 18
3.7 SHACKS. cettitteeeiie ettt ettt et et eeataneeeeaeeaaas 19
THE ARM7 AND TIMING ANALYSIS 21
N T @ 17/ a2 1<) TP USSP PPN 21
4.2 THE ARMY7 .ottt ettt ettt ettt e e e e e eaeeeeeaaaeaeeeeeeesasanannsnnnnnnnnnnnns 21
4.3 Static execution time analysis on the ARMT7........cccoorriiiiiiieiiiiiiiiieeeeeeeieeeeee e 23
SUPPORTED ARM7 FEATURES 24
5.1 OVIVIBW . ettt ettt e e e e e e e ettt e e e e e e e e eet ettt bbb e e e e et a e e etaa e e eeaneeeeenas 24
5.2 Operating state and the BX inStrucCtion.......eeeeeesuuuuuiiiiiiiiiiiieeeeeiieeeeeeetiniieeeeeeeeennns 25
5.3 Operating mode and the MSR and SWI inStructions..........ccceeuuueuuieereeeeieniinnneeeeennnn. 26
5.4 Control-transfer iNStITUCHIONS.uvvrtieterreiiiieeeeeerciireeeeeeesirreeeeeessiaeaeeeaaeeenes 26
5.5 Computational OPETations.uueeiiiiitieieeieeeeeiieeeeeeeeeeeeereeerreeeeeeeeeeeeeeeeeeeeeanas 32
5.6 CONAItION COAES...uuuuiiiiiiiiiiiiiiiieiettteeeete et ee e et et e e e et beeebeeeeeeeeeeabaaeeeeeeesanaans 32
5.7 MEMOTY ALA.....uuuiiieiiiiiiiiiieee ettt ettt et e ettt e e e e e b e et e e ee bbb bbb 33
5.8 COPTOCESSOTS. ceeuueeeeiiunieeetttuueeeetten e e e ettena e e e ettanaeeeeteeaaeteetenneeseeetanaaneeeeannesennnernnns 33
5.9 Time accuracy and approXimMatiOnS........cccuureeeeeirriiiurieeeeenniiiiieeeeeeerinreeeeeeseesaeaees 34
PROCEDURE CALLING STANDARDS 35
6.1 Procedure calls in the ARMY7........uuuuuiiiiiiiiiiiitiiiieeeeieeeeeeeeeeeeeeessssssessiiaieeeeeeeannanns 35
6.2 Model of calling standard in Bound-T.........ccceeiiiiiiiiiiiiiniiiiiii e 35
WARNINGS AND ERRORS FOR ARM7 36
7.1 WaITNE INESSAZES. .ceetreerrrunnuuuuraeeeeeeeerteeetnnenaueaseeeeeeeeereeessmnnnnaesseeesnnssensnseeeennneenes 36
7.2 BITOT INIOSSAZES. eevuurieturertueetrueeereuereetueeeeneerenasersnssersasserenssersnsssssneserensssssnssssesssennses 43
PATCH FILES 54

Tables

Table 1: Supported ARM7 features, toolS, fOTMALS......cuuviiieeriieeeeiriieeeeercireeeeesrreeeeessereeessssnnneessssnssssnnes 5
Table 2: Device SEleCtiON OPTIOTIS. . cciutteieitieeiiteeeite ettt e ettt e et teeette e ettt e s sateeesbeeesbteeesabbbbteeeeeeessesannsneeeas 7
Table 3: Program loading options fOr ARMT7.........cciiireiiieeiinriieeeieniiieeessssreeesssssssssesssssssesesssssssssssssssssnsnes 7
Table 4: Instruction modelling options fOr ARMT7......ccccuiiiriiiiiiiieiiteeeite et etee et e e ettt e e e e e e e eiebaeeeeeas 8
Table 5: Coprocessor modelling options fOr ARMT7.........ceeiirervieeeirriieeeeeneireeeeesssreeeessssnrereeseesesesesssemerene 11
Table 6: Coprocessor insStruction abbreViations...........cieeccieieieeiiieeeeiiiieeeeesireeeeeesireeesesreeeeesessesssssssenes 11
Table 7: ARM7-SPECIfiC -tTaACE ILEIMIS. .eeruueteriieeriieeeeiteeeitte ettt e steeesite e e bt e e sbeeeenteesemeeeeeenbeeeeeeeeeeessannnes 12
Table 8: ARM7-SPECifiC -WATTL TLEITIS. ... ceiriuiieeiiiieeiteeetee et te et e et e et e e sttt e e bt e esabeeesabeeeebeeeeeeeesesnannnes 12
Table 9: Naming StOTAZE CELLIS.....cieiutiiiiieieiee ettt ettt et e et e st e st e e s e e smeeesmreeeeareeesneeesnnnee 15
Table 10: Instruction 10les Per INSTIUCHION. .iiiiuvrietieriiieeereriiteeeseeititeeeessrreeesesereeeesessnrassssssnesssessrsrnrnnnnes 16
Table 11: Assertable properties for ARMT......ccccooueerieereeriienieeiiteereesiteesieesreesiteesreesreesssessreessraeeesennee 17
Table 12: Generic limitations Of BOUNA-T.......c.ccetiiiiiiiiiiiiiiiieee ettt et sree e e eeeesneee s 24
Table 13: Models of dynamic transfer of CONLIOL........ccceiveiiiireiiieiiee et eeee et e s eeee e 28
Table 14: Idiomatic instruction pairs and their T0les.........cocueiriiiiriiieiniiie e 28
Table 15: Modelling ARM7 control-transfer iNStruCtionsS.........ccueeeeeeteeeriereeieeeeiteeeeteeeeeeiieeeeeeeeeeseeanes 29
Table 16: Resolving dynamic transfer of CONIoL........cocuiiviiiriiiiiiiiiierieeieeeee e 31
Table 17: Approximations for iNStIUCHION LIMES.....cccctttrriierriieeeieeeiteeeeiteeeiteeseeeeesbeeeseaaeeteeeeeeessananns 34
Table 18: Invariance of registers and other storage cells in calls..........cccereviiereriiirreiiereeeiiiieeee e 35
Table 19: Warning messages from BoUnd-T/ARMYT7.......cc.ceieiiiiiriteieiteeeiteeeeete ettt e et e e eiieeteeeeeeeeeeaes 36
Table 20: Error messages from Bound-T/ARM?7.......cccccueeeriieeeiieeeiieeeeieeeeieeeeateeesteeseseeessneesssseeesssnnnes 43
Table 21: PAtCh fOTTALS.cciiiutiiiiiieiite ettt ettt et e ettt e et e et e e e e st e e ebbeesabeeseabteesseeesnaananee 54

vi

This page is almost blank on purpose.

1.1

1.2

INTRODUCTION

Purpose and scope

Bound-T is a tool for computing bounds on the worst-case execution time and stack usage of
real-time programs; see references [1] and [2]. There are different versions of Bound-T for
different target processors. This Application Note supplements the Bound-T User Guide and
Reference Manual [1, 2] and the Bound-T Assertion Language manual [3] by giving additional
information and advice on using Bound-T for one particular target processor, the processor
architecture known as the ARM7TDMI [4].

There are several physical processor implementations (chips, devices) that use the ARM7TDMI
core architecture, with possibly different execution timing. Bound-T can model the execution
timing of some of these processors, but certainly not all of them.

Overview

The reader is assumed to be familiar with the general principles and usage of Bound-T, as
described in the Bound-T User Guide and Reference Manual [1, 2]. The User Guide [1] also
contains a glossary of terms, many of which will be used in this Application Note.

In a nutshell, here is how Bound-T bounds the worst-case execution time (WCET) of a
subprogram: Starting from the executable, binary form of the program, Bound-T decodes the
ARMY7 machine instructions, constructs the control-flow graph, identifies loops, and (partially)
interprets the arithmetic operations to find the “loop-counter” variables that control the loops,
suchasnin“for(n =1;n < 20;n++) { ... }".

By comparing the initial value, step and limit value of the loop-counter variables, Bound-T
computes an upper bound on the number of times each loop is repeated. Combining the loop-
repetition bounds with the execution times of the subprogram's instructions gives an upper
bound on the worst-case execution time of the whole subprogram. If the subprogram calls
other subprograms, Bound-T constructs the call-graph and bounds the worst-case execution
time of the called subprograms in the same way.

This Application Note explains how to use Bound-T to analyse ARM7 programs and how
Bound-T models the architecture of this processor. To make full use of this information, the
reader should be familiar with the register set and instruction set of this processor, as
presented in reference [4].

The remainder of this Application Note is divided into a user guide part and reference part.The
user guide part consists of chapters 2 through 3 and is structured as follows:

« Chapter 2 shows how to use the ARM7 version of Bound-T. It briefly lists the supported
ARMY7 features and cross-compilers and fully explains those Bound-T command arguments
and options that are wholly specific to the ARM7, or that have a specific interpretation for
this processor.

« Chapter 3 addresses the user-defined assertions on target program behaviour and explains
the possibilities and limitations in the context of the ARM7 and its cross-compilers.

The remainder of the Application Note forms the reference part as follows:

« Chapter 4 describes the main features of the ARM7 architecture and how Bound-T models
them in general.

- Chapter 5 defines in detail the set of ARM7 instructions and registers that is supported by
Bound-T.

Bound-T for ARM7 Introduction 1

1.3

1.4

« Chapter 6 concentrates on procedure calling standards (parameter-passing methods) and
explains how Bound-T models and analyses the calling standards used by various compilers.

+ Chapter 7 listst all ARM7-specific warnings and error messages that Bound-T can issue and
explains the possible reasons and remedies for each.

+ Chapter 8 describes the syntax of patch files for analysis of ARM7 programs.

References

[1] Bound-T User Guide.
Tidorum Ltd., Doc.ref. TR-UG-001.
http://www.bound-t.com/manuals/user-guide.pdf

[2] Bound-T Reference Manual.
Tidorum Ltd., Doc.ref. TR-RM-001.
http://www.bound-t.com/manuals/ref-manual.pdf

[31 Bound-T Assertion Language.
Tidorum Ltd., Doc.ref. TR-UM-003.
http://www.bound-t.com/manuals/assertion-lang.pdf

[4] ARM7TDMI Data Sheet.
ARM Ltd., Doc number ARM DDI 0029E, August 1995.

[5] Procedure Call Standard for the ARM® Architecture.
ARM Ltd., Doc number ARM IHI 0042B, 2 April, 2008. ABI release 2.06.

[6] The ARM-Thumb Procedure Call Standard.
ARM Ltd., Doc number SWS ESPC 0002 B-01, 24 October, 2000.

[7]1 Intel® Hex as input to Bound-T.
Bound-T Technical Note, Tidorum Ltd., Doc.ref. TR-TN-IHEX-001.
http://www.bound-t.com/tech_notes/tn-ihex.pdf

Abbreviations and acronyms

See also reference [1] for abbreviations specific to Bound-T and reference [4] for the
mnemonic operation codes and register names of the ARM?7.

ABT Abort Mode (see [4], section 3.6)

AAPCS Procedure Call Standard for the ARM Architecture [5]
ATPCS ARM-Thumb Procedure Call Standard [6]

ARM 1. Advanced RISC Machines Ltd.

2. The 32-bit instruction set, as opposed to the 16-bit Thumb instruction set.
3. The processor state that uses the 32-bit ARM instruction set.

BTA Branch via table of addresses. See Table 13.
C 1. Carry flag (in the CPSR)
2. The C programming language
CPSR Current Program Status Register
DAB Dynamic affine branch. See Table 13.
DC Dynamic call. See Table 13.
FIQ Fast Interrupt Request Mode (see [4], section 3.6)
GDT General dynamic transfer of control. See Table 13.
IRQ Interrupt Request Mode (see [4], section 3.6)
N Negative flag (in the CPSR)

Introduction Bound-T for ARM7

http://www.bound-t.com/tech_notes/tn-ihex.pdf
http://www.bound-t.com/manuals/assertion-lang.pdf
http://www.bound-t.com/manuals/ref-manual.pdf
http://www.bound-t.com/manuals/user-guide.pdf

1.5

SP
LR
PC
PSR
SPSR
STO
SVC
SWI
SYS
TBA
TBC
TBD
UND
USR
Thumb

TPCS

WCET

Stack Pointer (R13)

Link Register (R14)

Program Counter (R15)

Program Status Register

Saved Program Status Register

Skip by table of offsets. See Table 13.
Supervisor Mode (see [4], section 3.6)
SoftWare Interrupt (an ARM7 instruction)
System Mode (see [4], section 3.6)

To Be Added

To Be Confirmed

To Be Determined

Undefined Instruction Mode (see [4], section 3.6)
User Mode (see [4], section 3.6)

1. The 16-bit instruction set, as opposed to the 32-bit ARM instruction set.
2. The processor state that uses the 16-bit Thumb instruction set.

Thumb Procedure Calling Standard
Overflow flag (in the CPSR)
Worst-Case Execution Time

Zero flag (in the CPSR)

Glossary of terms

The following list contains only terms specific to the ARM?7 version of Bound-T as described in
the present document. See also reference [1] for general terms used in static execution-time
analysis and Bound-T in general.

Banked register

Coprocessor

An ARMY register that has different instances for different operating modes so
that each mode uses its own register. For example, each operating mode has a
different instance of register R13 = SP, except that User Mode and System
Mode share the same instance.

An additional processing element, for example a floating-point computation
unit, intimately connected to and controlled by an ARMY7 processor. Specific
ARMY7 instructions can move data from or to the coprocessor or make the
coprocessor execute an operation. A coprocessor can also extend the instruction
set by accepting and executing instructions that the basic ARM7 would reject as
undefined instruction codes.

Exception vector

Mode

State

A location in the ARM7 memory in the address range 0 .. 1F hexadecimal.
When an exception or interrupt occurs, the ARM7 diverts execution to the
corresponding address in this area. For example, the SWI instruction invokes
the exception vector at address 8.

The operating mode of an ARM7 processor. See [4], section 3.6. Normally the
processor is operating in User Mode (USR). During interrupt handling it may be
operating in Interrupt Request Mode (IRQ); during kernel calls in Supervisor
Mode (SVC), and so no.

The operating state of an ARM7TDMI processor, which is either ARM state (32-
bit instruction set) or Thumb state (16-bit instruction set). See [4], section 3.1.

Bound-T for ARM7 Introduction 3

1.6

Thumb See the "Thumb" acronym (this term inherits honorary acronym status by
analogy from the acronym ARM).

Typographic Conventions

We use the following fonts and styles to show the role of pieces of the text:
Register The name of a ARM7 register embedded in prose.
INSTRUCTION An ARMY7 instruction (32-bit or 16-bit).

-option A command-line option for Bound-T.
symbol A mathematical symbol or variable.
text Text quoted from a text / source file or command.

Introduction Bound-T for ARM7

2 USING BOUND-T FOR ARM7

2.1 Overview
This chapter begins the “user guide” part of this Application Note. It starts by giving an

overview of the ARM7 features that Bound-T currently supports, and continues by listing and
explaining all ARM7-specific command-line options and other inputs to Bound-T.

2.2 Supported ARM7 features and tools

Table 1 below shows a summary of the ARM7 features and tools that Bound-T supports at

present.

Table 1: Supported ARM?7 features, tools, formats

Features

Supported

Notes

Architecture and instruction set

ARM7 TDMI [4], with
32-bit ARM instructions, and
16-bit Thumb instructions.

Co-processors

None are modelled in detail.

Coprocessor instructions are modelled
with user-specified timing.

Endianness

Little-endian and big-endian.

Devices

Vanilla ARM7, per [4]

No special accelerators, for example
no caches or flash buffers.

Cross-compilers

GNU gcc

IAR

Code for some dense switch-case
structures cannot be analysed.

Keil/ARM RealView (armcc)

ARM ADS 1.2 (armcc)

Symbolic variable names are not
supported because of problems in the
DWAREF info from this compiler.

Texas Instruments TMS470

Procedure calling standards

AAPCS [5]

Not all variants are supported.

Stacks

The standard sp (R13) stack.

Executable file formats

ELF with DWARF2 or DWARF3

UBROF 10 from IAR

COFF

Intel Hex (32-bit linear address) [7]

No debugging information. A separate
file can define symbols. See option
-symbols in [2].

Execution-time unit

Processor clock cycle [4]

Stack-space unit

Octet (8-bit byte)

Bound-T for ARM7

Using Bound-T/ARM7

2.3

2.4

Input formats

Executable file

The target program executable file must be supplied in one of the following formats: ELF,
COFF, UBROF, or Intel Hex. The memory lay-out can be big-endian or little-endian, as
indicated by the file headers or by command-line options. ELF files can have debugging
information in DWARF2 or DWARF3 form.

Intel Hex files do not have embedded debugging information [7]. You can define symbolic
names for subprograms and variables in a text file with the -symbol option as described in [2].
Patch file

Sometimes it is useful to modify or “patch” the target program before analysis. Bound-T
provides the general option -patch filename that names a file that contains patches to be
applied to the loaded program memory image before analysis starts. The format of the patch
file is specific to the target processor. Since patch files are seldom needed, we defer to
Chapter 8 the explanation of the patch-file format for the ARM7.

Command arguments and options
The generic Bound-T command format, options and arguments are explained in the Reference
Manual [2] and apply without modification to the ARM7 version of Bound-T.
The command line usually has the form
boundt_arm7 opfions executable-file root-subprogram-names
For example, to analyse the execution time on the ARM7 processor of the main subprogram in
the ELF executable file prog.elf under the option -Ir, the command line is
boundt arm7 -device=arm7 -lr prog.elf main
Root subprograms can be named by the link identifier, if present in the program symbol-table,

or by the entry address in hexadecimal form. Thus, if the entry address of the main
subprogram is 20004A0 (hex), the above command can also be given as

boundt_arm7 -device=arm7 -lr prog.elf 20004A0

All the generic Bound-T options apply. There are additional ARM7-specific options as
explained below. The generic option -help makes Bound-T list all its options, including the
target-specific options.

The explanation of the ARM?7-specific options is grouped below as follows:
— Target device selection options

- Device-specific options

- Program loading options

- Instruction modelling options

— Coprocessor modelling options

- Memory timing options

- ARM?7-specific items for the generic -trace option.

- ARM?7-specific items for the generic -warn option.

Arguments and options Bound-T for ARM7

Note that a target-specific option must be written as one string with no embedded blanks, so
the option-name and its numeric or mnemonic parameter, if any, are contiguous and separated
only by the equal sign (=) but not by white space. For example, the form “-device=arm7” is
correct, “-device = arm7” is not.

Target device selection options

You must tell Bound-T which kind of ARM7 processor the target program is meant for so that
Bound-T can use the right ARM7 version and suitable defaults for other device parameters.

Use the option -device=name to select the target processor by name. The supported devices,
their names for the -device option and their properties are listed in Table 2 below, one row per
device. The columns in this table have the following meaning:

— Option: The option that selects the device.
— ARMY7 device: I1dentifies the device.

— Description: A general description of the properties of this device.

Table 2: Device selection options

Option ARM?7 device Description

-device=arm7 A “vanilla” ARM7 See reference [4]. No restrictions on memory addresses; no
predefined division of the memory space into read-only,
read-write memory, and peripheral registers; no wait-states
for memory accesses; no specific coprocessors.

The -device=name option can also be abbreviated to -name, for example -arm7, unless the
name of the selected device happens to equal the name of some other Bound-T option, which
is not the case for the currently supported devices.

Device-specific options

For some ARM?7 devices, Bound-T may require or allow additional options specific to this
device. If such device-specific options are used they must be given on the command-line after
the -device option that selects the device.

At present, there are no device-specific options for ARM7.

Program loading options

The following table describes the options that control the process of reading the target
program from an executable file.

Table 3: Program loading options for ARM7

Option Meaning and default value

-coff Function Asserts that the executable target-program file is in COFF form.
Default The form is detected automatically from the file itself.

-dwarf_align=N Function DWAREF blocks to be aligned at multiples of N octets.

Some compilers use padding octets to align DWARF information blocks
at some multiple (N) of octets. The alignment is usually unimportant for
normal analysis, but can be important for dumping the DWARF
information with Bound-T without analysis (no root subprograms named
on the command line). For example, dumping an executable file
compiled with the Texas Instruments TMS470 compiler requires
-dwarf_align=1.

Bound-T for ARM7 Arguments and options 7

Option Meaning and default value

Default The default is -dwarf_align=4.
-elf Function Asserts that the executable target-program file is in ELF form.
Default The form is detected automatically from the file itself.

-[no_Jelf_locals Function ~ Whether to include symbols with “local” binding from the ELF symbol-
table into the Bound-T symbol-table. Symbols with “global” binding are
always included.

Some compilers define simple labels as “local” function symbols which
can confuse tail-call detection (a branch to such a label is analysed as a
tail call) if such symbols are included in the Bound-T symbol-table. Use -
no_elf locals to prevent this problem.
Other compilers may define real subprograms as “local” function
symbols. If such symbols are not included in the Bound-T symbol-table,
their names (symbols, identifiers) cannot be used as input to Bound-T
nor will they appear in the output from Bound-T. Use -elf_locals to
prevent this problem.
If the executable file contains (also) a DWARF symbol-table, it usually
gives better information. Use -no_elf_locals in that case.

Default The default is -elf _locals.

-ihex Function Asserts that the executable target-program file is in 32-bit Intel-Hex form.
Note that Intel-Hex files carry no symbolic information (debugging info).
You may want to use also the -symbols option to enter a symbol-table
from some other source (for example, a memory map listing).

Default The form is detected automatically from the file itself.
-ubrof Function Asserts that the executable target-program file is in IAR UBROF form.
Default The form is detected automatically from the file itself.

Instruction modelling options

The following table describes the options that control the modelling of the instructions in the
target program to be analysed.

Table 4: Instruction modelling options for ARM7

Option Meaning and default value

-E:g_endian Function Assume that the target program runs in big-endian memory mode.
Default The default is little-endian (-little).

-little_endian Function Assume that the target program runs in little-endian memory

-little mode.
Default This is the default.

-bx_lr=any Function A BX LR instruction is analysed as dynamic control flow, unless

another role is asserted for this specific instruction. Analysis can
resolve the instruction to a return from the current subprogram or
to some other form of control transfer.

Default The default is -bx_Ir=return.

8 Arguments and options

Bound-T for ARM7

Option

Meaning and default value

-bx_Ir=return

Function

Default

A BX LR instruction is assumed to perform a return from the
current subprogram, unless another role is asserted for this
specific instruction.

This is the default.

-[no_Jinfer_range

-[no_Jinterwork
-[no_Jiw

-ldm_pc=any

-ldm_pc=return

-no_lIr

-mode=M

Bound-T for ARM7

Function

Default

Function

Default

Function

Default

Function

Default

Function

Default

Function

Default

Function

Default

Whether to infer ranges and signedness of operands from the way
these operands are processed.

The default is -no_infer_range.

Whether to assume that non-root subprograms can use a state
other than the root state set with the -state option. Disabling this
option does not prevent mixed-state code, it just adds assumptions
and reduces warnings, in particular for assertions that list the
callees of a dynamic call (see section 3.6).

The default is -no_interwork.

An Lpom instruction that loads the pc is analysed as dynamic control
flow, unless another role is asserted for this specific instruction.
Analysis can resolve the instruction to a return from the current
subprogram or to some other form of control transfer.

The default is -ldm_pc=return.

An Lbm instruction that loads the pc is assumed to perform a
return from the current subprogram, unless another role is
asserted for this specific instruction.

This is the default.

Enables analysis of the definitional state of the Link Register LR
which lets Bound-T analyse less regular procedure calling
protocols. May increase the size and complexity of the control-flow
graphs and even make them irreducible and thus unanalysable.

Implies the options -set pc Ir=any and -ldm_pc=any .
LR state analysis is disabled. See -no_Ir.

Disables the LR state analysis, counteracting -/r which see.
Indicates that the target progam uses only the usual BL, STM..LR,
Lom.pc call/return sequences.

Does not affect the options -set pc_Ir or -ldm_pc .
This is the default.

Root subprograms will be assumed to start execution in operating
mode M, which is one of the following (case insensitive): USR,
FIQ, IRQ, SVC, ABT, UND, or SYS.

You can also use, as M, the (decimal) numeric mode-codes valid
for the “mode” property in assertions; see Table 11. For example, -
mode=19 is the same as -mode=svc.

Asserting the “mode” property for a subprogram overrides this
option for that subprogram.

Non-root subprograms inherit their operating mode from their
caller, unless the calling sequence imposes another mode. For
example, calling a subprogram with the swi instruction means that
the subprogram starts operating in SVC mode.

The default is -mode=usr.

Arguments and options 9

Option

Meaning and default value

-[no_]pc_const

-set_pc_lr=any

-set_pc_lIr=return

-state=S

-[no_]vsc

Function

Default

Function

Default

Function

Default

Function

Default

Function

Default

10 Arguments and options

Whether to assume that all memory locations referenced by an
offset to the pc register, and defined in the memory image, hold
constant values.

Compilers generally use such references to access constants
embedded in the code, including the addresses of statically
allocated variables, and constants generated by the compiler, for
example address tables that implement switch-case structures.

The default is -pc_const.

An instruction that sets the pc to the current value of the link
register LR is analysed as dynamic control flow, unless another
role is asserted for this specific instruction. Analysis can resolve
the instruction to a return from the current subprogram or to
some other form of control transfer.

The default is -set_pc_lIr=return.

An instruction that sets the pc to the current value of the link
register LR is assumed to perform a return from the current
subprogram, unless another role is asserted for this specific
instruction.

This is the default.

Root subprograms will be assumed to start execution in operating
state S, which is one of the following mnemonics (case
insensitive): A, ARM, T, THUMB.

The mnemonics A and ARM indicate that root subprograms use
the 32-bit ARM instruction set.

The mnemonics T and THUMB indicate that root subprograms use
the 16-bit Thumb instruction set.

The state set by this option can be overridden for a subprogram by
an assertion on the "state" property of the subprogram, or by
symbol-table information from the executable file.

The default is -state=arm .

Whether to include the V (overflow) flag in the model for the
conditions in signed numerical comparisons (less, less or equal,
greater, greater or equal).

Including the V flag makes the analysis more accurate (more "bit-
precise") but can prevent the analysis of loop bounds, because the
"arithmetic analysis" phase in Bound-T cannot model overflows.

The default is -no_vsc.

Bound-T for ARM7

Coprocessor modelling options

The following table describes the options that control the modelling of the coprocessor(s) that
may be connected to and controlled by the ARM7 processor. At present, Bound-T has no model
for any specific coprocessor. These options let you define the worst-case execution time
assumed for the instructions that access the coprocessor(s) and the number of words
transferred by the “load coprocessor” and “store coprocessor” instructions.

Table 5: Coprocessor modelling options for ARM7

Option Meaning and default value

-instr_wait=C Function

Default
-ldc_short=W Function
-stc_short=W

Default
-ldc_long=W Function
-stc_long=W

Default

Assume C number of cycles for busy-wait looping in the co-
processor instruction instr (see Table 6 below for the possible
forms of instr).

Example: -cdp_wait=3

The default is zero busy-wait cycles for all coprocessor
instructions, for example -cdp_wait=0.

Assume W number of 32-bit words are transferred in the co-
processor data transfer instructions Lpc or stc when a “short”
transfer is specified.

Example: -stc_short=2
The default is one word: -ldc_short=1 and -stc_short=1.

Assume W number of 32-bit words are transferred in the co-
processor data transfer instructions Lbc or stc when a “long”
transfer is specified.

Example: -ldc_long=4
The default is two words: -ldc_long=2 and -stc_long=2.

The number of words transferred in the LDC and STC instructions affects both the execution
time of these instructions and their role in the computation (their effect on memory data).

Table 6 below lists the coprocessor instruction abbreviations (instr) that can occur in the

-instr_wait option.

Table 6: Coprocessor instruction abbreviations

Abbreviation = Meaning

cdp Coprocessor Data Operation

Idc Coprocessor Load Data

stc Coprocessor Store Data

mrc Move Coprocessor Register to ARM7 Register
mcr Move ARM7 Register to Coprocessor Register

A coprocessor can also erxtend the instruction set by accepting and defining instructions
(instruction words) that the basic ARM7 rejects as undefined instruction codes. Bound-T
considers such instruction codes undefined and will report them as errors.

Bound-T for ARM7

Arguments and options 11

2.5

12

ARM7-specific -trace items

The following table shows the ARM7-specific additional tracing output items that can be
requested with the generic Bound-T option -trace as explained in the Reference Manual [2]. By
default no such tracing is enabled.

Table 7: ARM7-specific -trace items

-trace item Traced information

bref Displays the arithmetic effect of each instruction as it is decoded and
modeled (as for the generic option -trace effect) but puts each assignment on
its own line, for a more readable listing.

data_ref Dynamic references to stack data.

dwarf_tree DWAREF tree traversals.

lines Execution of DWARF line-number programs.

load The process of reading code and data from the executable file and loading

the program to be analysed. For ELF files, displays each ELF element as soon
as it is read, and analogously for other file formats.

ARM7-specific -warn items

The following table shows the ARM7-specific additional warning items that can be requested
with the generic Bound-T option -warn as explained in the Reference Manual [2]. By default no
such warnings are enabled.

Table 8: ARM7-specific -warn items

-warn item Warning condition
assume_return An instruction is assumed to perform a return from the current subprogram,
but this assumption is not verified by analysis.
exchange Changing from ARM to Thumb state or vice versa.
pc_const PC-relative data is assumed to be constant, or assumed to be variable.
Outputs

The ARM7 version of Bound-T generates no ARM7-specific forms of output, only the general
outputs explained in the Bound-T Reference Manual [2].
Execution time (WCET)

The unit of execution time is the processsor clock cycle. A typical ARM7 data-processing
instruction takes one cycle. That is, the instruction adds one “incremental” cycle to the total
execution time of the program, but the ARM7 pipeline means that the total time from fetching
to completing the instruction (the “latency” of the instruction) is more than one cycle.

Stack usage

Stack sizes are expressed in units of 8-bit octets (bytes). ARM7 stack-space is allocated in 32-
bit words, so all stack sizes are normally a multiple of 4 octets.

Bound-T for ARM7 currently models only the hardware ARM7 stack, with the stack pointer
SP = R13. The name of this stack in outputs and assertions is "SP".

Arguments and options Bound-T for ARM7

Disassembled instructions (-trace decode)

The generic options -frace decode and -trace effect (and the ARM?7-specific option -trace bref)
make Bound-T display each analysed instruction in disassembled form, on the fly as the
instructions are located, fetched from the memory image, and decoded. Currently, all ARM7
instructions are disassembled into ARM (32-bit) form, whether the instructions were encoded
in the program as 32-bit ARM instructions or as 16-bit Thumb instructions. Moreover,
instruction mnemonics and register names are displayed in lower case. For example, the
Thumb instruction POP {R4} is disassembled into "1dm sp!, {r4}".

The only exception to the ARM disassembly is the Thumb BL instruction, which in fact consists
of two consecutive 16-bit instructions. Bound-T disassembles the two 16-bit instructions
separately, using the mnemonics "tbl1l" and "tbl2" respectively. These are not official
mnemonics and cannot be used in Thumb assembly language, where a single BL mnemonic
generates the complete pair of 16-bit instructions.

Bound-T for ARM7 Arguments and options 13

3.1

3.2

14

WRITING ASSERTIONS ON ARM7 PROGRAMS

Overview

If you use Bound-T to analyse non-trivial programs you nearly always have to write assertions
to control and guide the analysis. The most common role of assertions is to set bounds on some
aspects of the behaviour of the target program, for example bounds on loop iterations, that
Bound-T cannot deduce automatically. Assertions must identify the relevant parts of the target
program, for example subprograms and variables. The Bound-T assertion language has a
generic high-level syntax [3] in which some elements with target-specific syntax appear as the
contents of quoted strings:

+ subprogram names,

» code addresses and address offsets,

» variable names,

+ data addresses and register names,

 instruction roles, and

+ names of target-specific properties of program parts.

In practice the names (identifiers) of subprograms and variables are either identical to the
names used in the source code, or some “mangled” form of the source-code identifiers where
the mangling depends on the cross-compiler and not on Bound-T. However, Bound-T defines a
target-specific way to write the addresses of code and data in assertions. Register names are
considered a kind of “data address” and are target-specific.

This chapter continues the user-guide part of this Application Note by defining the ARM7-
specific aspects of the assertion language. In addition to the target-specific syntax items listed
above, we also discuss a "semantic" ARM7 peculiarity: the existence of two different instruction
sets, the 32-bit ARM set and the 16-bit Thumb set, which must be taken into account when
asserting the possible callees of a dynamic call.

Symbolic names

Linkage symbols

When the target program is compiled with debugging, the executable file usually contains a
symbol-table that Bound-T can use to connect the symbolic names of subprograms and
variables to their machine-level addresses for the analysis. You can then write assertions using
the symbolic names.

As in most versions of Bound-T, you must use the linkage symbols, not the source-code
identifiers, to name subprograms and variables. Depending on the compiler and linker, the
linkage symbols may be the same as the source-code identifiers or they may have some
additional decoration or mangling. For example, some C compilers add an underscore at the
front of the source-code identifier, so a C function called foo will have the linkage symbol _ foo.
The assertions must use the latter form, for example

subprogram "_ foo" ... end "_foo";

Scopes

Programs often contain many variables with the same name, in different lexical scopes, that is,
in different subprograms, blocks, or file scopes. In the assertion language, the symbolic name
of a subprogram or variable can be prefixed with a scope string to show which of the several
entities with this name is meant.

Writing assertions Bound-T for ARM7

The ARM7 version of Bound-T uses the normal lexical scopes of symbolic identifiers, which are
source-file (or module) name, subprogram name, and block name. Details may depend on the
compiler and executable file format.

For example, if the C functions foo and bar both contain a variable num, you would write, in an
assertion, "foo|num" for the first, and "bar |num" for the second.

3.3 Naming items by address
Subprograms, labels, exception vectors
Subprograms and labels can be named (identified) by the hexadecimal address, in quotes,
without any prefixes like “Ox” or the like. For example, if subprogram foo is located at 12AC
hex (that is, this is the entry address of foo) then foo can be identified by "12AC" or "12ac".
For another example, the SWI handler is the subprogram "8", that is, the subprogram that
starts at address 8, the SWI exception vector.
Code-address offsets
Some forms of assertions define code addresses by giving a code offset relative to a base
address. For Bound-T/ARM7 a code offset is written as a hexadecimal number possibly
preceded by a sign, '— or '+', to indicate a negative or positive offset. If there is no sign the
offset is considered positive.
Assume, for example, that the subprogram Rerun has the entry address 14AC hexadecimal and
the subprogram Abandon has the entry address 15A0 hexadecimal. The subprogram with the
entry address 14D4 hexadecimal can then be identified in any of the following ways, among
many others:
- Using the absolute address:
subprogram address "14D4"
- Using a positive hexadecimal offset relative to the entry point of Rerun:
subprogram "Rerun" offset "28"
- Using a negative hexadecimal offset relative to the entry point of Abandon:
subprogram "Abandon" offset "-CC"
Note that the sign, if used, is placed within the string quotes, not before the string.
Variables, registers, memory locations
The registers and other machine-level storage cells are named in assertions with the “address”
keyword, followed by a quoted string that names the cell. Table 9 below lists the nameable
storage cells and describes the syntax of their names, with examples. The names are case-
insensitive. The table omits the quotes that must enclose the string.
Table 9: Naming storage cells
Storage cell Syntax (without quotes) Example Meaning
Register RO .. R15 R<number> R7 Register R7
where the number is the number of the
regisgter, in decial, O .. 15.
Condition flag N, Z,C,V Z The Z flag in the CPSR

Bound-T for ARM7 Writing assertions 15

Storage cell Syntax (without quotes) Example Meaning

Memory cell M<length> <address> MW7A2 The 32-bit word at memory

dd A2 h
where length is B, H, or W for 8-bit byte, address 7 X

16-bit halfword, or 32-bit word, and
address is in hexadecimal

Parameter word in stack P<offset> P4 The 32-bit word in the

stack, 4 octets above the SP

where offset is the octet offset, in on entry to the subprogram

decimal form, from the SP (on entry to
the subprogram) to the parameter

Local variable in stack L<length> <offset> LB12 The 8-bit octet in the stack,

12 octets below the SP on

where length is B, H, or W, as above, and entry to the subprogram

offset is the octet offset, in decimal
form, from the SP (on entry to the
subprogram) to the variable

3.4

For example, the assertion clause

variable address "r4" 15 .. 37;

constrains the value of R4 to be greater or equal to 15 and less or equal to 37.

Instruction roles

Some ARM?7 instructions can perform different or unusual roles in a program, depending on
their context and operands. For example, any instruction that changes the PC register can in
principle perform a jump, a call, or a return. Bound-T needs to know the role, in order to
model the instruction properly, and uses heuristic assumptions, sometimes supported by
analysis, to choose the role for such multi-role instructions. The ARM7 architecture and
procedure-calling standards are particularly flexible regarding control-transfer roles, which
makes the automatic assignment of roles to such instructions hard. The Bound-T command-
line options -bx _Ir, -ldm_pc, and -set pc Ir can guide this assignment, but apply equally to all
instructions of a certain type, which is not always enough.

The generic assertion language [3] contains syntax for asserting the "role" that a given
instruction (identified by its address or offset) performs in the computation, for example
whether an instruction performs a branch or a call. The roles and their names are target-
specific. The general form of a role assertion is

instruction ... performs a "role"
end instruction;

Bound-T/ARM?7 supports several assertable roles for control-transfer instructions. Table 10
below lists the instructions for which a role can be asserted and the roles that can be asserted
for each instruction.

Table 10: Instruction roles per instruction

Instruction Role name Role performed

16

BL

"call" A call to the statically known target address, with a return address (the
address of the next instruction) passed in the Link Register LR as the
protocol requires.

Writing assertions Bound-T for ARM7

Instruction Role name

Role performed

"branch"

BX "branch"

"dynamic
call"

"dynamic tail
call"

"return"

Data Processing
with Rd = PC

"return"

A branch (not a call) to the statically known target address, which thus
identifies an instruction that is or will be in the same subprogram as the
BL instruction. The instruction also sets LR to a static value (the address
of the next instruction), but this value is not intended to be used as a
return address.

Either a branch to the dynamically computed target address, which thus
identifies an instruction that is or will be in the same subprogram as the
BX instruction, or a return from the current subprogram if analysis shows
that the target address is the return address of the current subprogram.
In the former case, the branch sets the processor state according to the
least significant bit of the target address. In the latter case, the processor
state is assumed to return to the state of the caller, but this is not
verified by any analysis.

A call to the dynamically computed target address, with a return address
to an instruction in the current subprogram passed in LR as usual.

A call to the dynamically computed target address. The callee is
expected to return directly to a higher-level subprogram, as if the
current subprogram (the caller) had returned at this point. Thus, the LR
normally contains the return address of the current subprogram.

A return from the current subprogram. Bound-T does not try to analyse
the value of the target address.

This means a "data processing” instruction such as mov or Abp with the pc
as the destination register to which the computed value is assigned.

A return from the current subprogram. Bound-T does not try to analyse
the value of the target address (the new value of the pc).

3.5 Assertable properties

The assertable properties for ARM7 subprograms are described in Table 11 below.

Table 11: Assertable properties for ARM7

Property name Meaning, values and default value

state

Values

Default

mode

Bound-T for ARM7

Function

Function

Chooses the operational state (instruction set) to be assumed for
the subprogram.

0 = ARM
1 = Thumb

For root subprograms the default state is set by the command-line
option -state, as either -state=arm or -state=thumb . The default
value of this option is -state=arm .

For non-root subprograms (included in the analysis by calls from
other subprograms) the default state is defined by analysis of the
calling sequence; only a Bx instruction changes the state, and the
new state depends on the least significant bit of the target address.

Chooses the operational mode to be assumed for the subprogram.

Writing assertions 17

3.6

18

Property name Meaning, values and default value
Values Encoded as in the mode bits M[4:0] of the ARM7 CPSR:

16 = USR = User Mode

17 = FIQ = FIQ Mode

18 = IRQ = IRQ Mode

19 = SVC = Supervisor Mode
23 = ABT = Abort Mode

27 = UND = Undefined Mode
31 = SYS = System Mode

Default For root subprograms the default is 16 = User, or the mode set
with the command-line option -mode. For non-root subprograms
the default mode is the same as the caller's mode, unless the
calling sequence defines another mode, as for example a call with
the swi instruction for which the callee is entered in SVC mode.

For example, the assertion block

subprogram "svc_handler"
property "mode" = 19;
property "state" = 0;
end “svc_handler”;

makes Bound-T analyse the subprogram svc_handler in Supervisor Mode and the ARM state
(32-bit instructions).

Defining the state (ARM or Thumb) of dynamic callees

The Bound-T assertion language lets you assert which subprograms can be called by a given
dynamic call instruction, such as a call via a "function pointer" in the C language. For example,
the following assertion lists the functions foo, bar, and gamma as the possible callees:

dynamic call calls "foo" or "bar" or "gamma"; end call;

The callees can be identified by their symbolic names, as in the above example, or by their
machine addresses. Of course it is easier and more robust to use the symbolic names, but this
also has a problem, as follows.

In ARM7 programs the BX instruction is often used to implement a dynamic call. However, this
instruction also changes the operating state, depending on the least significant bit of the target
address: a zero selects ARM state, a one selects Thumb state.

If the possible callees of a dynamic BX call are asserted and identified in the assertion by their
symbolic names, Bound-T looks up their machine addresses in the symbol-table (debugging
information) from the executable program file. However, for many compilers the address of a
Thumb subprogram in the symbol-table is the actual (even, 16-bit-aligned) entry address, not
the odd address required by the BX instruction to switch into Thumb state. Thus, the address
of a Thumb subprogram can look like the address of an ARM subprogram (a 32-bit aligned
address). Presumably, all Thumb-capable ARM7 compilers do somehow enter the state of each
subprogram in their symbol-tables, but Bound-T does not (yet) understand or use this
compiler-specific information.

The problem, then, is how to tell Bound-T which state to use for the asserted callee
subprograms, when the state is not identified by the least-significant bit of the symbol-table
address. There are several methods, as follows.

Writing assertions Bound-T for ARM7

3.7

Asserting the callee state

The surest method to specify the state of a (callee) subprogram is to write an assertion on the
"state" property for this subprogram. For example, if foo is a Thumb subprogram, you write:

subprogram "foo" property "state" = 1; end "foo";
If bar, on the other hand, is an ARM subprogram, you write:

subprogram "bar" property "state" = 0; end "bar";

Single-state programs

If your program (mainly) uses a single state, you can use the Bound-T option -no_interwork (or
-no_iw) which in fact is the default. This makes Bound-T assume (in the absence of other
information, such as a "state" assertion) that all callees of a dynamic call use the same state as
the caller.

Under the opposite option -interwork (or -iw) Bound-T makes the same assumption, but also
issues a warning every time it makes this assumption.

Adding the '1' bit by an offset

This method is rather tricksy and perhaps not to be recommended. If you know that the
symbol-table address associated with a Thumb callee, foo say, is the 16-bit-aligned, even
address, you can use an offset in the callee assertion to mark this callee as a Thumb
subprogram:

dynamic call calls "foo" offset "1" or "bar" or "gamma"; end call;

Bound-T looks up the (even) address of foo in the symbol-table, adds the offset 1, finds that
the result is an odd address, and thus knows that foo runs in Thumb state.

Identifying callees by machine address

You can also identify the callees for a dynamic call directly by their machine addresses, as in:

dynamic call calls address "80C9" or address "A77C"; end call;

You should then follow the BX rule: use an odd address for Thumb callees and an even address
for ARM callees. Thus, Bound-T will use Thumb state for the callee at 80C9 (real entry address
80C8). However, Bound-T will still not be sure that an even address indicates ARM state and
so will assume that the callee at A77C uses the same state as the caller (and warn about this
assumption, if you use the -interwork option).

Stacks

Currently Bound-T for ARM7 supports only the standard ARM7 stack, pointed to by the SP
register (R13) as defined in the AAPCS [5]. This stack is called “SP”, which is the stack-name to
be used in stack-usage assertions. However, since only one stack is defined, stack-usage
assertions can also omit the stack-name.

The SP register is a “banked” register which means that the ARM7 has a separate instance of
the register for each mode, except that User Mode and System Mode use the same instance.
Thus, a typical ARM7 program has at least two stack areas: one for User Mode, and one or
several for other modes. When an interrupt or exception occurs, the ARM7 automatically
switches to the corresponding mode, and the handler executes in that mode and with the SP of
that mode. Thus, the handler uses space from the stack for its own mode, not from the stack of
the interrupted mode.

Bound-T for ARM7 Writing assertions 19

The single stack that Bound-T models applies in principle only to one mode, the current mode.
In the Bound-T model, the SWI instruction is currently the only instruction that can cause
sequential (uninterrupted) execution to switch from one mode to another, usually from User
Mode to Supervisor Mode and back. (Bound-T assumes that no MSR instruction changes the
mode.). If a subprogram involves an SWI, the Bound-T stack-usage analysis will add the (User
Mode) stack usage at the point of the SWI to the (Supervisor Mode) stack usage of the SWI
handler, which causes an over-estimate of the (User Mode) stack usage. However, Bound-T
also computes and displays the (Supervisor Mode) stack usage of the SWI handler alone, so the
correct User Mode stack usage is easily computed manually by subtracting the SWI handler's
usage from the total.

Compiler-defined or application-defined stacks cannot be analysed at present.

20 Writing assertions Bound-T for ARM7

4.1

4.2

THE ARM7 AND TIMING ANALYSIS

Overview

This chapter begins the “reference manual” part of this Application Note. This chapter gives an
overview of the ARM7 processor, focusing on the aspects that affect timing analysis. Chapter 5
explains in detail which ARM7 hardware features Bound-T currently supports and how.
Chapter 6 moves to the software side and discusses the procedure calling standards (calling
protocols, binary interface standards) that Bound-T can analyse for ARM7 programs from
various cross-compilers. Chapter 7 lists and explains all ARM7-specific warning and error
messages that Bound-T can emit. Finally, Chapter 8 describes the form and meaning of patch
files for the -patch option.

The ARM7

Instruction sets

The ARM7TDMI [4] is a 32-bit microcontroller core. It has a “von Neumann” architecture with
a combined program and data memory space. While many microcontroller implementations
have a flash memory for the code, and RAM memory for the data, it is almost always possible
to execute code from the RAM, too, and sometimes it is significantly faster than executing
flash-resident code.

The ARM7TDMI core has pipelined fetch, decode and execute cycles. A special feature of this
processor is the ability to operate in two states: the ARM state and the Thumb state. ARM state
instructions are 32 bits wide and are typically used in time-critical code. Thumb instructions
are 16 bits wide and are typically used in bulk code to reduce the code size.

Integer addition, subtraction and multiplication are supported in hardware but division is not.
The core ARM7 does not support hardware floating point operations, but coprocessors can be
attached for this.

General registers

In ARM state, there are sixteen main 32-bit registers, RO through R15, but two registers have
hardware-assigned special roles: R15 is the Program Counter (PC) and R14 is the Link Register
(LR) which holds the return address when a subprogram call occurs. Moreover, R13 is
conventionally used as the Stack Pointer (SP), although the push and pop instructions (Load
LDR, Load Multiple LDM, Store STR, Store Multiple STM) can use any of RO - R14 to address
memory. If the return address is saved elsewhere (for example in the stack) R14 can be used as
a general working register.

Since the PC is an addressable register (R15), any instruction that stores a new value in the PC
acts like a control transfer and can implement a branch, a call, or a return. Subprogram calls
are most directly implemented by the Branch and Link instruction (BL), but for the ARM state
the procedure calling standard [5] also allows any code sequence that places the return
address in LR and the callee entry address in PC. There is no specific return-from-subprogram
instruction; the callee simply branches to the return address (which is usually saved and
recovered from the stack, if not kept in the LR). Programs that mix ARM code with Thumb
code are more constrained (see below).

The stack usage and stack lay-out is defined in software. The procedure calling standard [5] is
complex and has many variants depending on the performance goals and the presence of
coprocessors. The use of a frame-pointer register is optional, which means that stack-based
parameters and local variables can be accessed in different ways by different compilers.

Bound-T for ARM7 ARMY7 timing analysis 21

22

In Thumb state, the registers RO through R7 can be directly accessed. The PC, LR and SP are
accessed by specific instructions (not in the Rn sequence). Nearly all Thumb instructions can
be translated to an exactly equivalent ARM instruction.

Instruction alignment and ARM/Thumb state transitions

ARM instructions are aligned on 32-bit boundaries, so the lowest two bits of the PC are always
zero in ARM state. Thumb instructions are aligned on 16-bit boundaries, so the lowest PC bit is
zero in Thumb state.

Transition between ARM state and Thumb state is effected by a special instruction, Branch and
Exchange (BX), where the lowest bit of the target code address defines the new state: Thumb
state is entered if this bit is one, ARM state if this bit is zero (in which case also the next to
lowest bit must be zero). Even for Thumb state the actual address that BX loads into the PC
has zero in the lowest bit.

The status register and condition flags

The status register (CPSR) contains the conventional condition flags (Z = zero, N = negative,
C = carry, V = overflow).

In ARM state, most instructions have an option to set the flags or leave them unchanged. This
is indicated in assembly language by an -S suffix, for example MOVS sets the flags, but MOV
does not. All ARM instructions have a condition-code field to specify conditional execution of
the instruction. The condition is indicated in assembly language by a two-letter suffix, for
example MOVEQ = MOV if the Z flag is set.

In Thumb state, most instructions set the condition flags, but only the conditional branch
instruction can use them to control program flow. Other Thumb instructions do not have a
condition-code field, so conditional branches must be used for all conditional operations.

Memory

Memory is byte-addressed. Multi-byte instructions and operands must usually be aligned on
natural boundaries (multiple of item length).

An unusual feature of the ARM?7 is the ability to use either little-endian or big-endian memory
lay-out formats for multi-byte items. The memory endianness format is selected by a processor
input pin and is usually constant for a given system.

Load and store instructions can operate on 32-bit quantities or on signed or unsigned 16-bit
and 8-bit quantities, with automatic sign extension according to an instruction option.

Processor modes

To separate user-mode processing from system-mode processing and interrupt handling, the
ARMY7 defines seven different modes of operation: User, Fast Interrupt (FIQ), Interrupt (IRQ),
Supervisor, Abort, System and Undefined.

Some of the registers are “banked” per mode so that each mode has its own private instance of
these registers. All modes have their own instances of the Program Status Register, the PC and
the LR, except that User Mode and System Mode share the same registers. The FIQ mode has
in addition its own instances of R8 through R12.

Interrupts and traps, for which ARM7 uses the common term exceptions, are entered through
fixed exception vectors in the memory area from address zero (reset into Supervisor mode)
through hexadecimal 1C (service FIQ request). The vector location typically contains a branch
to the exception handler. ARM7 devices with both read-only and read-write memory can
generally “map” these vector addresses either to the read-only memory or to the read-write
memory, depending on an input pin or on some control register.

ARMY7 timing analysis Bound-T for ARM7

4.3

Static execution time analysis on the ARM7

General

The ARM7 architecture is very regular and suitable for static analysis by Bound-T. Instruction
execution timing usually depends only on the control-flow and is independent of the data
being processed. The exception is the multiplication instruction for which the time depends on
the number of non-trivial high bytes in the multiplier value. Memory access times are also
variable in some ARM7 implementations (devices, chips).

When a branch occurs, the ARM7 reloads the instruction pipeline before continuing. This
means that there are no “delayed” branches, which simplifies control-flow analysis.

The following architectural features can lead to approximate (over-estimated) execution times
for the concerned instructions:

+ Multiplication instructions.

« Memory wait states that vary in number depending on the address or access history.
+ Coprocessor timing.

See section 5.9 for more information about the approximations.

In addition, the weak procedure calling standard means that problems may arise in the
control-flow and call-graph analysis. See section 5.4 for more information about this issue.

Instruction cycle types: N, S, I, C cycles

The execution of an ARM7 instruction consists of some number of operation/memory cycles of
four kinds: sequential or S cycles where the processor accesses the same memory address as in
the preceding cycle or an address one word or half-word after the preceding address; non-
sequential or N cycles where the processor accesses some other memory address; internal or I
cycles where the processor does not access memory; and coprocessor register-transfer or C
cycles in which the processor transfers data from or to a coprocessor without involving the
memory system.

For example, a normal data-processing instruction, such as the addition of two registers, needs
one S cycle to advance the pipeline; the data processing is performed concurrently with the
instruction fetch. On the other hand, a branch instruction needs one N cycle to fetch the first
instruction from the target address into the first pipeline stage, followed by two S cycles to
fetch the two following instructions and thus fill the pipeline.

It is unclear if the distinction between S and N cycles depends dynamically on the actual
(computed) address relative to the preceding address, or statically on the instruction type. The
latter is indicated in [4] which states the number of S and N cycles for each instruction
unconditionally.

The actual duration of an N, S, I, or C cycle, in terms of some clock cycles, can depend on the
memory interface speed. In the current version of Bound-T/ARM?7 the cycle durations are
assumed to be one clock cycle. In future versions they will be settable by command-line
options for all subprograms or by “property” assertions for specific subprograms or even
specific loops; the latter is useful if the memory is divided into banks of different speeds.

Bound-T for ARM7 ARMY7 timing analysis 23

5.1

24

SUPPORTED ARM7 FEATURES

Overview

This section specifies which ARM7 instructions, registers and condition flags are supported by
Bound-T. We will first describe the extent of support in general terms, with exceptions listed
later. Note that in addition to the specific limitations concerning the ARM7, Bound-T also has
generic limitations as described in the Bound-T User Guide [1]. For reference, these are briefly
listed in section 5.1.

General support level

In general, when Bound-T is analysing a target program for the ARM?7, it can decode and
correctly time all instructions, with minor approximations except for coprocessor instructions
and variable memory access times.

Bound-T can construct the control-flow graphs and call-graphs for all instructions, assuming
that the program obeys one of the supported procedure calling standards listed in chapter 6.
Note that there are generic limitations on the analysis of branches and calls that use a
dynamically computed target address or a dynamically computed return address. The user may
have to assert the role performed by some instructions when Bound-T would otherwise choose
the wrong role; see section 3.4.

Bound-T can start the analysis of a root (top-most) subprogram in ARM state or Thumb state,
depending on command-line options and assertions. When Bound-T finds a BX instruction it
tries to deduce the value of the target address and in particular its least-significant bit, to
detect state changes from ARM state to Thumb state and vice versa.

When analysing loops to find the loop-counter variables, Bound-T is able to track all the 32-bit
integer (fixed point) additions and subtractions. Bound-T correctly detects when this integer
computation is overridden by other computations, such as multiplications or coprocessor
operations in the same registers. Note that there are generic limitations on the analysis of
pointers to variables.

Computations that use integer types narrower than 32 bits (eg. 16-bit or 8-bit integers) may be
harder to analyse because compilers insert masking AND instructions to emulate true 16- or 8-
bit wrap-around behaviour. Computations that use integers wider than 32 bits cannot be
analysed at present because Bound-T for ARM7 does not try to detect carry-chained
combinations of the 32-bit computations that actually compute with 64-bit or wider values.

In summary, for a program written in a compiled language such as Ada or C with a compiler
that uses one of the supported procedure calling standards, it is unlikely that the Bound-T user
will meet with any constraints or limitations that are specific to the ARM7 target system.

Reminder of generic limitations

To help the reader understand which limitations are specific to the ARM7 architecture,
Table 12 below gives a compact list of the generic limitations of Bound-T and remarks on their
application to the ARM7.

Table 12: Generic limitations of Bound-T

Generic Limitation Remarks for ARM7 target

Understands only integer operations in All results from floating-point (coprocessor) operations
loop-counter computations. are considered opaque.

Supported ARM7 features Bound-T for ARM7

5.2

Generic Limitation Remarks for ARM7 target

Understands only addition, subtraction = No implications specific to the ARM7.
and multiplication by constants, in
loop-counter computations.

Assumes that loop-counter computa- No implications specific to the ARM?7.

tions never suffer overflow.

Can bound only counter-based loops. No implications specific to the ARM7.

May not resolve aliasing in dynamic State changes due to Bx are not detected if the dynamic

memory addressing. target address is not resolved. But if the address is not
resolved, the analysis fails anyway because the callee is
unknown.

May ascribe the wrong sign to an No implications specific to the ARM7.

immediate (literal) constant operand.

ARMY7 features with incomplete models or analysis

The following are the aspects of the ARM7 that are incompletely modelled in Bound-T, or
where analysis may not always provide enough information to resolve the model's effects on
execution time or stack usage:

- State changes from ARM to Thumb and vice versa. See section 5.2.

« Mode changes with the MSR instruction. See section 5.3.

+ Banked registers for non-USR modes. See section 5.3.

+ Control-transfer instructions with dynamic target addresses. See section 5.4.
+ Some computational results are modelled as unknown. See section 5.5.

+ Condition codes when overflow (V flag) happens. See section 5.6.

« Coprocessor computations are not modelled, and all coprocessor registers are considered to
have unknown values. See section 5.8.

Operating state and the BX instruction

An ARMY7 processor starts in ARM state. During execution, it can switch into Thumb state or
back using the Branch and Exchange (BX) instruction. If an exception (trap or interrupt)
occurs, the processor automatically switches into ARM state to start handling the exception.
When the handler returns, the interrupted state is reestablished.

Bound-T can decode and analyse both ARM instructions and Thumb instructions. However,
Bound-T is not usually asked to analyse the program starting from the reset address (address
zero), but from some subprogram, called a root subprogram. To find out if the analysis should
start in ARM state or in Thumb state, Bound-T tries to look up the subprogram's state from the
program's symbol table. If this information is missing, Bound-T uses the command-line options
-state=arm or -state=thumb to define the initial state for all root subprograms, with -state=arm
the default. To define the initial state for a specific subprogram, assert the value of the “state”
property as explained in section 3.5.

Bound-T decodes and analyses Branch And Exchange (BX) instructions. The state after a BX is
set by the least significant bit in the value of the operand register. Thus Bound-T can track the
resulting state-change only if it can statically deduce the exact value of the operand register.
Otherwise, Bound-T reports an error and considers the BX to terminate the current
subprogram. However, you can assert that this BX performs a "dynamic call" role, and then
assert the identity of the callee or callees.

Bound-T for ARM7 Supported ARMY7 features 25

5.3

5.4

26

Since exception handlers are usually triggered asynchronously, they are normally analysed as
root subprograms and so the question of switching into ARM state for the handler does not
arise. However, the Software Interrupt handler is invoked synchronously by the SWwi
instruction. Bound-T starts the analysis of the SWI handler in ARM state (and SVC mode).

Operating mode and the MSR and SWI instructions

The ARM7 operating mode influences the behaviour and legality of instructions. Some
instructions are not allowed in User Mode, and some instructions behave differently in User
Mode and other modes. Therefore Bound-T must know, or assume, in which mode a
subprogram will be executed, before Bound-T can decode and model the subprogram's
instructions and behaviour.

Bound-T considers the operating mode (and the operating state) to be part of the “program
control state” of the ARM7, just as the PC register is. This means that Bound-T must know or
assume the correct mode (and state) when it reads instructions from the executable program's
memory image, decodes them, and builds the control-flow graph. Bound-T generally assumes
that all root subprograms begin execution in User Mode; this assumption be changed with the
command-line option -mode (see Table 4 on page 8) or with subprogram-specific assertions
on the “mode” property (see section 3.5).

The ARM7 instruction MSR sets the program status register to the value of a general (data)
register and can change the operating mode. However, Bound-T assumes that the MSR
instruction does not change the mode. If an MSR does change the mode, the analysis may fail
because the execution then uses another set of banked registers and another stack, while the
Bound-T model and analysis continue with the same registers and stack.

When Bound-T encounters a call instruction other than an SWI, it assumes that the callee starts
execution in the same mode as the caller uses. An assertion can override this by specifying
another value of the "mode" property for the callee subprogram. A warning is emitted for any
call where the modes of caller and callee differ.

Bound-T models an SWI instruction as a call to the exception handler vector at address 8. The
handler (the callee) is entered in ARM state and SVC mode. When the handler returns, the
caller continues execution at the instruction after the SWI instruction, in the caller's original
state and mode.

Banked registers are not modelled separately, because Bound-T generally assumes that the
operating mode is not changed within the subprograms under analysis at one time. The only
exception here is the SWI instruction, which does change to SVC mode for executing the SWI
handler. Bound-T assumes that the effect of the SWI handler on the caller's registers (usually
User Mode registers) is governed by the normal procedure calling standard.

Bound-T assumes that asynchronous exception processing (FIQ, ABT, IRQ, UND) preserves the
registers of the interrupted process (USR, SYS). For SVC registers see SWI above.

Control-transfer instructions

Why ARMY7 control transfers are tricky

Control-transfer instructions are those instructions that directly or indirectly change the PC.
The analysis of ARM7 control transfers is trickier than in most other processors because the
ARM7 has few dedicated instructions or instruction sequences for calling subprograms and
returning from subprograms; instead, calls and returns are implemented by suitable use of
combination of instructions that can perform several roles.

Supported ARM7 features Bound-T for ARM7

In ARM state, the control-transfer instructions are the branch instruction B, branch with link
BL, branch and exchange BX, software interrupt SWI, and any other instruction that stores a
new value in the PC register. The latter group includes data processing instructions such as
MOV and ADD and load instructions such as LDR and LDM.

Only one of the ARM control-transfer instructions is specifically intended for subprogram calls:
the branch with link instruction, BL. This instruction defines only the role played by the Link
Register (R14), which BL sets to the return address (the address of the next instruction after
BL) before branching to the entry point of the called subprogram.

In Thumb state, the control-transfer instructions are the unconditional branch B, conditional
branch Bxx (xx = condition code), branch and link BL (implemented as two consecutive 16-bit
instructions), branch and exchange BX, software interrupt SWI, a POP instruction when the PC
is included in the list of popped registers, and any "hi register operation" that stores a new
value in the PC register. The latter group includes MOV and ADD but not any load instructions.
Again, only the BL instruction is specifically intended for subprogram calls.

However, the ARM7 procedure calling standards, as defined in [5] and [6], do not standardise
the instruction sequences to be used for subprogram calls, subprogram preludes and postludes,
or return from subprogram. For example, a call can be implemented by any instruction
sequence that places a return address in LR and a subprogram's entry address in PC. The
return address can (in principle) point anywhere, not necessarily to the instruction after the
call sequence. Likewise, a subprogram can return by any instruction sequence that places the
return address in the PC. Thus, a call or return can look very much like a mere branch within
one and the same subprogram. Moreover, when the last action of a subprogram is to call
another subprogram, the call is known as a “tail call” and is often coded as a branch, letting
the callee inherit the return address of the caller.

Factors that define the role of a control-transfer instruction

To analyse a control-transfer instruction, Bound-T must classify the instruction as a branch
(jump) within the current subprogram, or a call to another subprogram (possibly a tail call
optimised into a branch), or a return from the current subprogram. Moreover, while some
control-transfer instructions give a statically known target address, others take the target
address from a register with a dynamically computed value. The classification must thus also
consider branches with a dynamic target and calls with a dynamic target.

Bound-T chooses the role of a control-transfer instruction based on several factors, here listed
in descending priority order:

« Whether the instruction is the second instruction of an idiomatic pair of consecutive
instructions which together perform a certain role (see Table 14 below).

« Whether a specific role is asserted for this instruction (per section 3.4).

« Command-line options that suggest roles for certain kinds of instruction: the options -bx_Ir,
-ldm_pc, and -set pc Ir.

+ The modelled value of the LR register at the control-transfer instruction, when the option -Ir
is used.

Modelling dynamic transfers of control

Some control-transfer instructions are modelled as dynamic branches or dynamic calls. In some
such cases, Bound-T tries to resolve the target address, or the set of possible target address,
using various kinds of data-flow analysis. For a dynamic call, the possible callees can also be
defined by an assertion. An unresolved dynamic branch (that is not a dynamic call) cannot be
resolved by assertions and appears as a return from the current subprogram, for the purposes
of execution-time and stack-usage analysis. An error message is of course emitted for
unresolved dynamic branches and calls.

Bound-T for ARM7 Supported ARMY7 features 27

Bound-T/ARM7 has five different models for dynamic transfers of control, identified and
described in Table 13 below. The table also shows, for each model, an example of ARM code
(an instruction or an instruction pair) that makes Bound-T use that model. A later subsection
describes the analysis of these models (see Table 16 on page 31). The names of the models are
used in later tables that show in general when Bound-T uses which model.

Table 13: Models of dynamic transfer of control

Name Model Description Example
BTA Branch via table of A branch in which the target address is loaded LDR PC,[PC,R4,LSL 2]
addresses from a constant table, using a dynamically

computed number to index the table.

STO Skip by table of offsets A branch in which the pc is changed by an offset LDRB R3,[R3,R2]
that is loaded from a constant table, using a ADD PC,PC.R3LSL 2
dynamically computed number to index the table,
and perhaps scaling the offset by a constant factor.

DAB Dense affine branch A branch in which the target address is directly ADD PC,PC,R3,LSL 4
computed as a constant base plus a constant factor
times a dynamically computed number.

DC Dynamic call A call in which the target address (the entry "B")‘()‘F","’-R’PC
address of the callee) is dynamically computed.

GDT General dynamic transfer Other instructions that execute a dynamic transfer ~ LPR PC,[SP1.#4
of control but are not immediately modelled as a
return from the current subprogram.

Return instructions are always dynamic from the callee's point of view, because the return
address is determined by the caller and usually depends on the location of the call. While BL
sets a static return address, other forms of call can compute the return address dynamically, so
the return address can be dynamic even from the caller's point of view. If a return address is
dynamically computed into R14 (LR), Bound-T may be unable to follow the control-flow in the
caller, after the call.

Idiomatic control-transfer pairs

Bound-T detects some idiomatic pairs of consecutive instructions and uses a specific role for
them, overriding all other role-defining factors. Table 14 below shows these pairs and their
roles. The abbreviation "DP instruction" means a "Data Processing instruction" [4].

Table 14: Idiomatic instruction pairs and their roles

1st instruction 2nd instruction Role

B Static call with return to LR.

ADPi ion th BX Rn
mstruction that but not BX LR

Sets LR to Pc, or : X X DC: Dynamic call with return
sets LR to PC + constant A DP instruction with Rd = pc to LR

but not mov Pc, LR.

LDR PC, ...

An unconditional DP instruction that sets STO: Dynamic branch using a
LDR Rn, ... where Rn # PC Pc to some constant base (perhaps the pc scaled offset from a table,
itself) plus some constant factor times Rn. indexed by the LDR operands.

28 Supported ARM7 features Bound-T for ARM7

Tracking the Link Register LR = R14 with the option -Ir

In arithmetic instructions the Link Register LR = R14 is modelled as a normal register. This
means that the LR can be used as a working register for any calculation, including loop
counting.

The command-line option -Ir can be used to make Bound-T track the definitional state of LR in
a special way for the purpose of detecting calls and returns (see Table 15 below). For this
purpose, four LR states are distinguished:

- Entry state: on entry to a subprogram, LR is assumed to contain the address to which the
subprogram shall return.

« Set to static value: a static value has been stored in LR, to act as the return address for the
next branch instruction. Bound-T can continue control-flow analysis after the call.

« Set to dynamic value: a dynamic value has been stored in LR, to possibly act as the return
address for the next branch instruction. Bound-T must use arithmetic analysis to continue
control-flow analysis after the call.

+ Post-call: upon return from a call, LR is considered to have an opaque and irrelevant value.

Under the -Ir option, the LR state influences the classification of PC-setting instructions into
branches, calls or returns, as shown in Table 15 below. Therefore Bound-T makes the LR state
a part of the “program control state” which identifies nodes in the control-flow graph. This
means that any instruction that can be reached with different LR states (due, for example, to a
conditional call before the instruction) will create as many different nodes and paths in the
control-flow graph. This expansion can complicate the graph considerably; the graph can even
become irreducible, whichs prevents its analysis. Therefore you should use the -Ir option only
when necessary, and otherwise use the default (corresponding to the option -no_Ir). You may
prefer to use instruction-role assertions (section 3.4) or the other command-line options -bx_Ir
or -ldm_pc, rather than the option -/Ir.

Choosing the role of a stand-alone control-transfer instruction

Table 15 below shows how Bound-T currently models ARM7 control-transfer instructions that
are not part of an idiomatic instruction pair (as listed in Table 14) and for which a specific role
has not been asserted (per section 3.4). The table also shows the options that have some
influence on this classification. The table is written assuming ARM state, but as each Thumb
control-transfer instruction has a directly analogous ARM instruction (when the POP {PC}
instruction is considered analogous to LDM {PC}) the table can be applied to Thumb state also.

Table 15: Modelling ARM7 control-transfer instructions

Instruction Modelled as... When... Options
B Tail call, static callee, return The target address is identified as the entry -tail_calls [2]
to higher-level subprogram point of a subprogram (in the symbol table, or ¢ /,0qis
(not to the current by an assertion), the B instruction is not in an -
subprogram) exception vector, and the option -tail_calls is
enabled.
Branch Otherwise, that is, if the B instruction is in an -tail_calls [2]

exception vector, or the target address is not
identified as the entry point of a subprogram,
or the option -no_tail_calls is used.

-elf locals

BL

Call, static callee, return to Always.
next instruction in current
subprogram

Bound-T for ARM7 Supported ARMY7 features 29

Instruction Modelled as... When... Options
BXLR Return, with possible change Under -Ir: -Ir
of state + when the Lr-state is "entry state", or -bx Ir
» when the LR-state is "set to dynamic value"
or "post-call", and -bx_Ir=return.
Under -no_Ir:
« when -bx_Ir=return.
Branch to static address, Under -Ir when the LR-state is "set to static -Ir
possible change of state value".
GDT: General dynamic When -no_Irand -bx_Ir=any. -Ir
transfer of control, with -bx Ir
possible change of state
BX PC Switch to ARM state, skip the When in Thumb state and the instruction is at
next 16-bit half-word, and a word-aligned address.
continue with the ARM
instruction after that
Unknown (return), with error When in ARM state, or when in Thumb state
message and the address of the instruction is not word-
aligned. This instruction is undefined [4].
BX Rn GDT: General dynamic When Rn is not LR nor PC.
transfer of control, with
possible change of state
PC := LR This means any Data Processing instruction -set_pc_Ir
that sets the pc to LR, for eample mov pc, LR or -Ir
ADD PC, LR, #0.
Return Under -set_pc_Ir=return, or
under -set_pc_Ir=any and -Ir, when the LR-state
is "entry state".
Branch to static address Under -set_pc_Ir=any and -Ir, when the LR-state
is "set to static value".
GDT: General dynamic Under -set_pc_Ir=any and -no_Ir, or
transfer of control. No change under -set pc_Ir=any and -Ir, when the LR-state
of state. is "set to dynamic value" or "post-call".
op PC... This means any Data Processing instruction
that sets the pc (that is, has the pc as the desti-
nation register) and does not set PC to LR.
Branch to static target When the new pc value is statically known.
GDT: General dynamic Otherwise.
transfer of control. No change
of state.
LDMRn{..PC..} Return Under -ldm_pc=return. -ldm_pc
GDT: General dynamic Under -ldm_pc=any.
transfer of control. No change
of state.
LDRPC,PC#k] Branch, one static target Under the -pc_const option. -pc_const
LDRPC,[PCRn] BTA: Branch, multiple targets Under the -pc_const option. -pc_const

from constant table, dynamic
index

30 Supported ARM7 features

Bound-T for ARM7

Instruction Modelled as... When... Options

LDR PC,[SP,...] GDT: General dynamic

transfer of control. No change
of state.

LDR PC,[Rn,..] BTA: Branch, multiple targets When Rn is not pc nor sp. A warning is emitted

from constant table, dynamic that the loaded value is assumed to constant.
index

All others Unknown (return)

Name

Resolving dynamic transfers of control

When an instruction is modelled as dynamic transfer of control, Bound-T uses various forms of
analysis of the chosen dynamic-transfer model to find (resolve) the possible target address or
addresses and, for the GDT model, also to select the actual role of the transfer of control. Table
16 below shows how the models are analysed. The Bound-T Reference Manual [2] explains the

nn

terms "arithmetic analysis", "constant propagation", and "value-origin analysis".

Table 16: Resolving dynamic transfer of control

Model Analysis

BTA

STO

DAB

DC

GDT

Branch via table If arithmetic analysis of the table-index value bounds it to an interval, Bound-T

of addresses gets the contents of the table (the constant target addresses) from the
corresponding addresses in the program's load-time memory image in the
executable file. Otherwise the branch remains unresolved.

Skip by table of If arithmetic analysis of the table-index value bounds it to an interval, Bound-T

offsets gets the contents of the table (the constant offsets) from the corresponding
addresses in the program's load-time memory image in the executable file, and
computes the target addresses from these offsets. Otherwise the branch remains

unresolved.
Dense affine If arithmetic analysis of the dynamic factor bounds it to an interval, Bound-T
branch computes the target addresses by applying the affine formula to every

(acceptable) value in the interval.Otherwise the branch remains unresolved.

Dynamic call If constant propagation or arithmetic analysis of the expression for the target
address bounds it to a reasonably small set of values, Bound-T uses these values
as the target addresses (after discarding invalid values, such as mis-aligned
addresses). The target addresses (possible callees) can also be asserted.
Otherwise the call remains unresolved.

General If value-origin analysis of the expression for the target address shows that it
dynamic equals the value of LR on entry to the current subprogram, Bound-T models the
transfer GDT as a return from this subprogram.

Otherwise, if constant propagation or arithmetic analysis of the expression for the
target address bounds it to a reasonably small set of values, Bound-T models the
GDT as a branch (within the current subprogram) and uses these values as the
target addresses (after discarding invalid values, such as mis-aligned addresses).

Bound-T for ARM7 Supported ARMY7 features 31

5.5

5.6

32

Computational operations

Operations with opaque results
The following computational results are modelled as unknown (opaque):

« Carry-out from all shift and rotate operations except LSL #0. Depending on the rest of the
instruction, this unknown carry-out may or may not define the new value of the C flag.

» All results of RRX, LSR #32, ASR #32.

+ All results of MUL, UMULL, SMULL, MLA, UMLAL, SMLAL.

« All condition flags after an MSR (but Bound-T assumes that the mode is not changed).
« The CPSR value stored by an MRS instruction.

+ All results and flags from coprocessor instructions.

MVN operation

The MVN operation stores the bit-wise logical negation ("not") of the second operand into the
destination register. Logical negation is not usually important in the arithmetic analysis of loop
counters. However, ARM7 compilers seem to use this instruction as a way to (almost) reverse
the sign of the operand, using two's complement arithmetic. The result is therefore modelled
as —operand2 — 1. The C flag becomes unknown.

LSL with zero shift-count (LSL #0)

For this special case, the result is just the input operand and the carry-out is the input value of
the C flag.

Condition codes

The CPSR condition flags that are modelled are Z (result zero), N (result negative), C (carry or
borrow from bit 31), and V (signed integer overflow). Note that the ARM7 carry flag C works
unconventionally for subtractions: it is set if there is no borrow, which is the opposite of the
conventional logic.

Each ARM instruction contains a 4-bit condition-code field that defines the condition for
executing the instruction. There are 15 condition codes (the 4-bit value 1111 is not used).
Each condition code corresponds to a Boolean function of the condition flags Z, N, C, and V.
For example, the condition code EQ (equal, zero) is defined as Z = 1, and the condition code
GE (greater or equal, signed) as N = V.

Although Bound-T does model the V flag in some analysis phases (mainly constant propa-
gation), the most complex and powerful analysis phase, the "arithmetic" analysis, does not
handle overflows. Therefore Bound-T by default models the ARM7 condition codes as
functions only of Z, N, and C, with the assumption that V = 0. For example, this models GE as
N = 0.

The command-line option -vsc makes Bound-T include V and use the exact model for the
condition codes. However, this does not enable analysis of overflow in loop bounds or other
complex computations that require the arithmetic analysis phase.

Direct assignment to the CPSR register by the MSR instruction is modelled as storing opaque
values in the condition flags.

Supported ARM7 features Bound-T for ARM7

5.7

5.8

Memory data

Words, half-words, octets

ARMY7 instructions can access memory in units of 32-bit words, 16-bit half-words, or 8-bit
octets. When a 16-bit quantity is loaded from memory into a 32-bit register the load
instruction can specify sign extension (LDRSH) or not (LDRH). An 8-bit quantity is always
loaded with sign extension (LDRSB).

Bound-T can model memory locations as 32-bit words, 16-bit half-words, or 8-bit octets, but
currently considers all memory data as potentially signed. Moreover, Bound-T does not
currently constrain the value of a memory datum by its length; for example, there is no
automatic constraint that the value of an 8-bit memory datum must be in the range
-128 .. 255.

Dynamically addressed data

An ARMY instruction cannot specify the absolute address of a memory location directly, as an
immediate, static value. Instead, all memory accesses use register-based addressing. Bound-T
uses data-flow analysis to bound the possible register values. If the analysis results in a single
possible address, Bound-T can use the accessed memory location as a variable in the rest of the
analysis. For example, if this variable is used as a loop counter, it is available to the loop-bound
analysis.

The analysis of the memory address of a load or store instruction can also show that the
address has a constant offset within the stack frame of the current subprogram, in which case
it represents either a parameter to the current subprogram or a local variable in the current
subprogram, and is then available to the further analysis.

If the memory address of a load or store instruction cannot be bounded by analysis to a single
value, or to a single stack-frame offset, Bound-T considers the instruction to access an
unknown address. A value loaded from an unknown address is considered opaque. A store to
an unknown address is currently modelled as having no effect, which introduces a risk of
aliasing, to be corrected in a future version of Bound-T.

Overlapping data

While Bound-T separates between word, half-word, and octet memory locations, it does not
currently check for aliasing or overlapping of memory variables. For example, an instruction
that stores an octet in memory is not considered to modify the memory word that contains this
octet. This defect will be corrected in future versions of Bound-T.

Coprocessors

ARMY7 systems can have one or several coprocessors. Each coprocessor has its own registers
and its own condition flags and executes its own kind of operations or computations, for
example floating-point arithmetic. Bound-T does not currently model any specific
coprocessor(s), and so:

+ All coprocessor registers and flags are assumed to have unknown values.

- If a coprocessor register is loaded into an ordinary register by an MRC instruction, the
loaded value is considered unknown.

+ If coprocessor data are stored in memory by an STC instruction, the stored values are
considered unknown.

- Any conditions depending on coprocessor flags are considered unknown (possibly true,
possibly false).

« The execution time of coprocessor instructions is set by command-line options.

Bound-T for ARM7 Supported ARMY7 features 33

5.9 Time accuracy and approximations
Bound-T reports WCET values that take into account most of the timing features of the ARM7.
This section explains these features, how Bound-T models them, and where Bound-T must
make assumptions or approximations.
Timing of conditional instructions
All ARM instructions can be conditional in the sense that the instruction is executed only if a
condition code is true. The Data Sheet [4] is not entirely clear on the execution time of a
conditional instruction when the condition is false. Bound-T assumes that such an instruction
takes one sequential cycle (S cycle). This agrees with measurements to date.
Multiplication instructions
The execution time of the ARM7 multiplication instructions (MUL, MLA, UMULL, UMLAL,
SMULL, SMLAL) is variable. Depending on the value of one of the multiplicands (factors) the
number of cycles in the 8-bit multiplier array ranges from 1 to 4. Bound-T assumes the worst
case, 4 multiplier cycles, which can overestimate the real time by 3 cycles per instruction.
Coprocessor operations
Execution times for all coprocessor-related instructions (MCR, MRC, LDC, STC) are set by the
user with command-line options.
Memory wait states
Bound-T for ARM7 currently assumes that memory is accessed with no wait states. In other
words, the execution time is defined solely by the pipeline cycles that each instruction requires.
Summary of approximations
The following table lists the cases where Bound-T uses an approximate model of the timing of
ARMY instructions.
Table 17: Approximations for instruction times
Case Description Maximum Error
Memory wait states At present Bound-T assumes that all memory accesses Depends on the actual
execute with no wait states. number of wait states.
Multiply The execution time of a multiplication depends on the Three internal (I) cycles
value of the multiplier. Bound-T assumes the worst case. per multiplication
Coprocessor User-specified. Depends on the user-
operations specified times.
34 Supported ARM7 features Bound-T for ARM7

6.1

6.2

PROCEDURE CALLING STANDARDS

Procedure calls in the ARM7

In this chapter, we explain how Bound-T analyses the data-flow across subprogram calls and
returns.

The ARM?7 instruction set [4] contains only one instruction specifically intended for sub-
program calls: the Branch and Link instruction, BL. This instruction defines only the role
played by the Link Register (R14). All other aspects of subprogram calling, such as the passing
of parameters, the saving and restoring of registers, and the use of the stack, are defined by
software rules. Such rules are usually called a procedure calling standard or calling protocol.

The Procedure Calling Standard for ARM (AAPCS), as defined in [5], adds to the use of LR by
defining the parameter-passing methods, the saving of registers across calls, and some aspects
of the stack usage. However, compilers that generate ARM7 code are not forced to follow the
AAPCS rules and can define their own rules. The ARM-Thumb Procedure Call Standard [6]
defines the "interworking" of ARM and Thumb subprograms and the state changes (with BX)
when a subprogram running in one state calls a subprogram running in another state, or
returns to a caller running in another state.

Model of calling standard in Bound-T

Bound-T normally analyses all the subprograms in a call tree. As part of the analysis of a callee
subprogram, Bound-T discovers (some of) the storage locations) that hold parameters or other
input variables for this subprogram. Corresponding analysis of the caller subprograms discover
how the callers supply values for these parameters or other input variables. Thus, Bound-T
generally does not need to know all about the calling protocol and the parameter-passing
mechanisms, but can discover these data-paths on its own. However, the current design of
Bound-T implies that Bound-T needs to know which registers, or other storage locations, can
be altered by a subprogram call, and which cannot - the latter are called “invariant across a
call”. In other words, Bound-T needs to know which registers are “caller-save” (the callee can
change them) and which are “callee-save” (if the callee changes them, the callee has to restore
their original values before returning).

For ARM7 programs Bound-T currently assumes the rules shown in Table 18 below. This
classification is of course not applicable to register R15 = PC; the rule that applies to the PC is
that the callee returns with PC equal to the value of LR on entry to the caller, the return
address.

Table 18: Invariance of registers and other storage cells in calls

Register Role

Registers Ro .. R3, R12, R14 Not invariant: caller-save (scratch).

Registers R4 .. R11, R13 Invariant: callee-save.

Condition flags z, ¢, N Not invariant.

Stack parameters for the caller Invariant.

Local stack variables of the caller =~ Not invariant.

Statically allocated memory Not invariant.

Bound-T for ARM7 Calling standards 35

7.1

WARNINGS AND ERRORS FOR ARM7

Warning messages

The following table lists the Bound-T warning messages that are specific to the ARM7 or that
have a specific interpretation for this processor. The messages are listed in alphabetical order,
perhaps slightly altered by variable fields in the message; such fields are indicated by italic
text. The Bound-T Reference Manual [2] explains the generic warning messages, all of which
may appear also when the ARM7 is the target. The Bound-T Assertion Language manual [3]
explains the generic warnings related to assertions. The Intel-Hex Technical Note [7] explains
the warnings that can arise for Intel-Hex input files.

The specific warning messages for ARM7 refer mainly to unsupported or approximated
features of the ARM?7.

As Bound-T evolves, the set and form of these messages may change, so this list may be out of
date to some extent. However, we have tried to make the messages clear enough to be
understood even without explanation. Feel free to ask us for an explanation of any Bound-T
output that seems obscure.

Table 19: Warning messages from Bound-T/ARM?7

Warning Message Meaning and Remedy

Asserted callee at T assumed to use Reasons This Bx instruction performs a dynamic call, and an asser-
same state (S) as the caller tion resolves the call by listing the possible callees, inclu-

ding a callee at address T, but there is no information on
the operating state (ARM or Thumb) used by this callee.
Bound-T assumes that the callee uses the same state (S) as
the caller subprogram (in which the Bx instruction lies).

This warning is issued only under the -interwork option.

Action Check that callee assertion is correct, and that the sub-
program at T indeed uses state S. Perhaps use an assertion
on the "state" property to declare the correct state for this
subprogram. See section 3.6.

Asserted role R ignored for dynamic Reasons This Data Processing instruction has the pc as the desti-

flow

nation register and will be modelled as a general dynamic
transfer of control (model GDT). An instruction-role asser-
tion says that the instruction performs role R, but Bound-T
does not yet support such assertions for this type of
instruction.

Action Remove the assertion and try to use command-line options
to make Bound-T use the correct role model. If this is not
possible, tell Tidorum about the problem.

Assumed to perform a return type Reasons Bound-T assumes that this control-transfer instruction

36

performs a return from the current subprogram, of a certain
type, such as "return by BX", "return by pc := Ir", "return by
ldm {.. pc ..}", or "return by Thumb TBL2". The last type of
return indicates misuse of the Thumb "long branch with link"

instruction combination (Format 19, per [4]).

Action Check that the instruction is really meant to perform a
return. If the instruction is meant to perform some other
role, use command-line options or instruction-role
assertions to make Bound-T use the proper role.

Warning messages Bound-T for ARM7

Warning Message

Meaning and Remedy

Assuming that assertion indicates a
dynamic call

Assuming that dynamic call returns
to next instruction

Assuming that the source of

"ldr pc[base,..]" is constant

BL instruction cannot perform a

dynamic call. Assertion ignored.

Branch from source-state at S to
target-state at T

Call from caller mode to callee mode

Call from caller state to callee state

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

Action

An assertion says that this Bx instruction should perform a
"call" role. Since all Bx instructions specify the target address
dynamically (with a register), this warning informs you that
Bound-T will model the Bx as a dynamic call.

If the instruction should be modelled as a dynamic call,
change the assertion to specify the role "dynamic call".

An assertion says that this Bx instruction should perform a
"call" or "dynamic call" role. You are warned that Bound-T
assumes that the call will return to the instruction after the
BX, as is usual. In principle, Bound-T could try to analyse the
current value of LR to find the return point; in practice, this
analysis is not (yet) implemented.

If this assumption is wrong for your program, and you
cannot change the program, inform Tidorum about the
problem.

This LDR Pc,.. instruction has a base register that is neither pc
nor sp. Bound-T nevertheless assumes that the loaded value
is a constant and tries to model the instruction as a branch
via a table of addresses (model BTA).

Check that the assumption is correct.

An assertion claims that this BL instruction performs a
"dynamic call" role. This is impossible because all BL
instructions specify the target address statically.

Remove or correct the assertion.

The program contains a Bx instruction that Bound-T models
as a dynamic branch (model GDT). Analysis shows that the
branch can pass from address S to address T, while
changing the processor state from the source-state (ARM or
Thumb) to the target-state (Thumb or ARM).

This message appears only under the option -warn exchange.

Check that the program really should change state at this
point.

In the call under analysis, the caller and callee subprogram
run in different modes (USR, FIQ, IRQ, SVC, ABT, SYS,
UND).

Probably no action is needed.

In the call under analysis, the caller and callee subprograms
run in different states (ARM or Thumb).

Probably no action is needed.

Call from source-state at S to target-
state at T

Bound-T for ARM7

Reasons

Action

The program contains a Bx instruction that Bound-T models
as a dynamic call (model DC). Analysis shows that the call
can pass from address S (call instruction) to address T
(callee entry address) while changing the processor state
from the source-state (ARM or Thumb) to the target-state
(Thumb or ARM).

This message appears only under the option -warn exchange.

Check that the program really should change state at this
point.

Warning messages 37

Warning Message

Meaning and Remedy

Call to asserted target from source-
state at S to target-state at T

Call-via-register ignores invalid
address value A

COFF record-type out of context

COFF record-type within block

Flow from source-state at S to
target-state at T

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

Action

The program contains a Bx instruction that Bound-T models
as a dynamic call (model DC). An assertion says that the
call can pass from address S (call instruction) to address T
(callee entry address) while changing the processor state
from the source-state (ARM or Thumb) to the target-state
(Thumb or ARM).

This message appears only under the option -warn exchange.

Check that the program really should change state at this
point.

The program contains a dynamic control-transfer instruction
that Bound-T models as a dynamic call (model DC).
Analysis has generated a possible target address A (shown
as a decimal number), but this is not a valid code address

(it is out of range, or misaligned) and is therefore ignored
(other adresses, also generated by analysis, may be
accepted).

Check that the dynamic call is resolved correctly. If not,
assert the possible callees.

The COFF file has a record of the named record-type in an
unexpected context.

The COFF file is not in standard form. If this seems to cause
problems in the analysis, inform Tidorum of the problem, or
try to use an ELF file instead.

The COFF file has a record of the named record-type within
a lexical block, where it does not belong.

The COFF file is not in standard form. If this seems to cause
problems in the analysis, inform Tidorum of the problem, or
try to use an ELF file instead.

As the control flows from address S to address T, the
processor state changes from the source-state (ARM or
Thumb) to the target-state (Thumb or ARM).

This message appears only under the option -warn exchange.

Check that the program really should change state at this
point.

Format of COFF line number table
is incorrect

Ignoring write-back to destination
register

38 Warning messages

Reasons

Action

Reasons

The form or structure of the COFF line-number table (the
mapping between machine-code address and source-code
line number) is not as Bound-T expects it to be.

The COFF file is not in standard form. If this seems to cause
problems in the analysis, inform Tidorum of the problem, or
try to use an ELF file instead.

The program contains an LDR instruction in which the
destination register, Rd, is also the base register, rn, and
write-back of the effective load address into this register is
specified (auto-increment or auto-decrement). This is
contradictory, since it is then unclear whether rd should end
up with the loaded value or with the effective address.
Bound-T assumes that Rd receives the loaded value.

Bound-T for ARM7

Warning Message

Meaning and Remedy

Invalid register for COFF symbol S

Large literal D = hex H, used as
signed = S

Large literal D = hex H, used as
unsigned

MUL hasRn /=0

No ELF, STABS, or DWARF symbols
found

Action

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

Action

Check that this instruction really has this form, and is meant
to be executed. If not, Bound-T may be analysing an
impossible path, perhaps because an overestimation in the
analysis of an earlier dynamic branch.

The COFF program file defines the variable symbol S, but

claims that it is held in register Rn where n > 15. Bound-T
will not enter this symbol in its symbol tables so it will not
be usable in assertions.

None, or report the problem to Tidorum if you need to use
this variable in assertions.

The instruction under analysis has a literal (immediate)
operand. When the literal is interpreted as an unsigned
number, it has the value D (decimal) or H (hex). However,
at this point Bound-T decides to interpret the literal as the
signed value S (decimal).

This message appears only under the option -warn sign [2].

Check that the signed interpretation is correct. If not, note
that this may be a reason for problems in the arithmetic
analysis and that you may have to use assertions instead.

The instruction under analysis has a literal (immediate)
operand. When the literal is interpreted as an unsigned
number, it has the value D (decimal) or H (hex), and at this
point Bound-T decides to use this unsigned interpretation.

This message appears only under the option -warn sign [2].

Check that the unsigned interpretation is correct. If not, note
that this may be a reason for problems in the arithmetic
analysis and that you may have to use assertions instead.

The program contains a muL instruction in which the Rrn
operand field (bits 12 .. 15 in the instruction) is not zero.
This is surprising because the muL instruction does not use
this field (mLA does use it).

Check that this instruction really has this form, and is meant
to be executed. If not, Bound-T may be analysing an
impossible path, perhaps because an overestimation in the
analysis of an earlier dynamic branch.

The executable file contains no symbol-table in any of the
forms that Bound-T understands. Thus, Bound-T cannot
identify any subprogram or variable using its source-level
identifier.

Use only machine-level names (addresses, registers) for
subprograms and variables, or find an executable file with a
symbol table (debugging information).

Parameter P mapped past caller
stack height H

Bound-T for ARM7

Reasons

Bound-T is analysing the parameter-passing in a call. The
callee subprogram seems to use a parameter value from the
stack, identified by the cell-name P, but the offset of this
stack cell, from the stack frame of the callee subprogram, is
so large that the cell does not lie in the stack frame of the
calling subprogram, as shown by the caller's stack height H
at the call. The analysis of parameter passing in Bound-T
cannot handle this situation.

Warning messages 39

Warning Message

Meaning and Remedy

Action

Patch branch target T is not word- Reasons
aligned

Action
PC-based constant at AisD = H Reasons

Action
PC-based location at A is blank, Reasons
assumed to be variable

Action

Note that Bound-T cannot use the (bounds on the) value of
the actual parameter in its context-dependent analysis of the
callee.

The patch file (see Chapter 8) specifies a patch that is a
branch to address T. However, T is not a multiple of 4 octets
so it cannot be the address of an ARM instruction.

Correct the patch file.

The program contains an instruction that reads a value from
a memory location using the pc as a base register, and
Bound-T assumes that this memory location (at address A,
hex) contains a constant value, which (as read from the
executable program file) is D (decimal) or, equivalently, H
(hexadecimal).

This warning appears only under the options -pc_const and -
warn pc_const.

Check that the assumption (address A contains a constant
value) is correct.

The program refers to memory data at address A using the
Pc as a base register. However, the memory image in the
executable file does not define the contents of this memory
location, so Bound-T assumes that the location will contain
variable data (not constant data).

This warning appears only under the options -pc_const and
-warn pc_const.

If the memory location is meant to contain a constant,
amend the executable file so that it statically loads this
constant in this location.

PC-based store to constant memory Reasons

Action
Reference to length parameter at Reasons
offset H

Action

40 Warning messages

The current instruction stores data in memory at an address
that uses the pc as a base register. However, the option
-pc_const makes Bound-T assume that such memory
locations contain constants, so this store instruction means
that this assumption is suspect.

Remove the option -pc_const from the command line, or
change the program to use some other form of address
computation for variable data.

The instruction under analysis refers to a datum in the stack,
of a length less than a word (that is, a byte or a half-word),
at the non-negative offset H relative to the value of sp on
entry to the current subprogram, where H is not a multiple
of 32 bits (4 octets). This offset means that the datum is a
parameter (not a local variable) which is surprising because
all stacked parameters are expected to be full words in
length.

sp-based references to word-aligned data of any length
(word or sub-word) are accepted silently.

Check that this instruction really has this form, and is meant
to be executed. If not, Bound-T may be analysing an
impossible path, perhaps because an overestimation in the
analysis of an earlier dynamic branch.

Bound-T for ARM7

Warning Message

Meaning and Remedy

Reference to misaligned parameter

word at offset H

Reasons

Action

Resolving N jumps by constant table Reasons

of type offsets at A .. B.

Resolving N jumps computed as
C+F*(A. B)

Resolving N jumps via constant
address table at A .. B.

Test operation with PC as non-
destination

Test operation with S = 0

Bound-T for ARM7

Action

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

The instruction under analysis refers to a 32-bit word in the
stack at the non-negative offset H relative to the value of sp
on entry to the current subprogram. However, the offset is
not a multiple of 32 bits (4 octets), so the referenced word
would not be word-aligned.

Check that this instruction really has this form, and is meant
to be executed. If not, Bound-T may be analysing an
impossible path, perhaps because an overestimation in the
analysis of an earlier dynamic branch.

The program contains a dynamic control-transfer instruction
that Bound-T models as a skip by a distance taken from a
constant table of offsets (model STO) of a certain type, such
as "unsigned octet", with a dynamic table index. Such an
instruction typically results from a switch-case statement
that has a dense sequence of case values. Analysis of the
possible values of the table index has revealed that the table
is located in the address range A .. B and has N entries
(possible branch targets, cases).

Check that the subprogram under analysis contains a
switch/case structure with N cases (excluding the default
case, if any).

The program contains a control-transfer instruction that
Bound-T models as a branch to an address computed as a
constant C plus a constant factor F times a dynamically
computed number (model DAB). Analysis of the possible
values of the dynamic factor has bounded it to the range
A .. B, giving N possible branch targets.

Check that the subprogram under analysis contains a
switch/case structure with N cases (excluding the default
case, if any).

The program contains a dynamic control-transfer instruction
that Bound-T models as a branch to an address taken from a
constant address table with a dynamic table index (model
BTA). Such an instruction typically results from a switch-
case statement that has a dense sequence of case values.
Analysis of the possible values of the dynamic table index
has revealed that the table is located in the address range

A .. B and has N entries (possible branch targets, cases).

Check that the subprogram under analysis contains a
switch/case structure with N cases (excluding the default
case, if any).

The program contains a test instruction (TsT, TEQ, CMP, Or
cmN) in which the unused destination register (Rd) is the
pc = Ri5. This is surprising.

Check that this instruction really has this form, and is meant
to be executed. If not, Bound-T may be analysing an
impossible path, perhaps because an overestimation in the
analysis of an earlier dynamic branch.

The program contains a test instruction (TsT, TEQ, CMP, OF
CMN) in which the s-bit (instruction bit 20) is zero, which
contradicts the purpose of the instruction (to set condition
flags).

Warning messages 41

Warning Message

Meaning and Remedy

Action

The value V is not a valid code Reasons
address

Action

Check that this instruction really has this form, and is meant
to be executed. If so, correct it to have s = 1. If not, Bound-T
may be analysing an impossible path, perhaps because an
overestimation in the analysis of an earlier dynamic branch.

An assertion, or analysis by Bound-T, attempts to use a
number V (given in decimal form) as an ARM7 code
address, but the number is out of range.

Correct the assertion, if the mistake is in an assertion.

If the value comes from analysis, check the other results of
that analysis, for example the correct resolution of the
dynamic transfer of control for which V was computed as a
possible target.

Thumb long-branch-with-link in Reasons
strange LR state

Action

Thumb TBL1 instruction not Reasons
followed by TBL2

Action

Thumb TBL2 instruction not Reasons
preceded by TBL1

Action

42 Warning messages

The Thumb instruction pair "long branch with link" is
defined to consist of two consecutive 16-bit instructions, for
which we use the names TBL1 and TBL2, respectively (no
names are defined for these two parts of "Format 19" in
[4]). This warning is given for a TBL2 instruction when the
option -Ir is enabled, but the LR-state at the TBL2 is not "set
to constant value". (This can only happen if the TBL2 is not
preceded by a TBL1.) Bound-T cannot model a TBL2
instruction in such a context. A Fault message will follow.

Change the program to make every TBL2 instruction follow
a TBL1 instruction.

The Thumb instruction pair "long branch with link" is
defined to consist of two consecutive 16-bit instructions, for
which we use the names TBL1 and TBL2, respectively (no
names are defined for these two parts of "Format 19" in
[4]). This warning is given when the instruction after a
TBL1 instruction is not a TBL2 instruction. However,
Bound-T models the TBL1 correctly (as setting LR to a
constant), so this is not necessarily an error.

To avoid this warning, change the program to make every
TBL1 instruction be followed by a TBL2 instruction.

The Thumb instruction pair "long branch with link" is
defined to consist of two consecutive 16-bit instructions, for
which we use the names TBL1 and TBL2, respectively (no
names are defined for these two parts of "Format 19" in
[4]). This warning is given when the instruction before a
TBL2 instruction is not a TBL1 instruction. Bound-T may or
may not be able to model the stand-alone TBL2.

To avoid this warning, change the program to make every
TBL2 instruction follow a TBL1 instruction.

Bound-T for ARM7

7.2

Error messages

The following table lists the Bound-T error messages that are specific to the ARM7 or that have
a specific interpretation for this processor. The messages are listed in alphabetical order,
perhaps slightly altered by variable fields in the message; such fields are indicated by italic
text. The Bound-T Reference Manual [2] explains the generic error messages, all of which may
appear also when the ARM?7 is the target. The Bound-T Assertion Language manual [3]
explains the generic error messages related to assertions. The Intel-Hex Technical Note [7]
explains the warnings that can arise for Intel-Hex input files.

As Bound-T evolves, the set and form of these messages may change, so this list may be out of
date to some extent. However, we have tried to make the messages clear enough to be
understood even without explanation. Feel free to ask us for an explanation of any Bound-T
output that seems obscure.

To avoid redundancy and keep Table 20 compact, one common reason and solution has been
omitted from the table: For any error message that reports an illegal, surprising, or non-
analysable instruction, one possible reason is that Bound-T is analysing an impossible
execution path, perhaps because of an overestimated analysis of an earlier dynamic branch. If
so, the solution is either to use assertions to help Bound-T analyse the dynamic branch
correctly, or to change the target program to avoid such dynamic branches.

Table 20: Error messages from Bound-T/ARM?7

Error Message Meaning and Remedy

ARM code address A is misaligned Problem The address A of the current ARM instruction is not a

multiple of 32 bits = 4 octets. This is an illegal
address for an ARM instruction.

Reasons (1) The program is written in this way, or
(2) the address of a root subprogram given on the
Bound-T command line has this error.

Solution (1) Correct the program to use only 32-bit aligned
ARM instructions, or
(2) correct the command line.

ARM instruction “bx pc” is undefined; Problem The current ARM instruction is Bx pc. The behaviour
taken as return of this instruction is not defined in [4].

Reasons The program is written in this way.

Solution Correct the program to use only allowed instructions.

Asserted call without exchange from Problem This instruction performs a dynamic call, but cannot
caller state to callee state change the operating state (it is not a Bx). The call is

resolved by an assertion that lists the possible callees,
but one of the callees is known to use a different ope-
rating state, the callee state, than the caller, which
uses the caller state. This is impossible.

Reasons A mistake in the assertion; or a mistake in the
program (perhaps a Bx should be used); or a mistake
in whatever source defined the state of this callee.

Solution Correct the mistake.

Bound-T for ARM7 Error messages 43

Error Message

Meaning and Remedy

Asserted callee address A defines Thumb Problem

state, but callee C uses ARM state

This Bx instruction performs a dynamic call, and an
assertion resolves the call by listing the possible
callees, including a callee named C at an address A
which has a 1 in the least-significant bit (making the
address odd). Such an address makes the Bx switch
to Thumb state, but other information (perhaps a BL
call to C from the ARM state) suggests that C uses the
ARM state, which is a contradiction.

Reasons The assertion may be in error, or the error may be in
whatever reason suggests that C uses ARM state.
Solution Check all assertions that apply to C or that list C as a
callee. If C does use Thumb state, check for BL calls to
C from ARM state, and change them to use Bx.
Asserted “mode” value M encodes no Problem An assertion tries to specify the “mode” property of a
mode. subprogram, but the given “mode” value M is not one
of the mode codes defined in [4].
Reasons Error in the assertion file.
Solution ~ Correct the value given in the assertion.
See Table 11.
Asserted value of “mode” must be in Problem An assertion tries to specify the “mode” property of a
0..N,notM subprogram, but the given “mode” value M is not in
the valid range O .. N.
Reasons Error in the assertion file.
Solution Correct the value given in the assertion.
See Table 11.
Asserted value of “state” must be in Problem An assertion tries to specify the “state” property of a
0. 1,notM subprogram, but the given “state” value M is not in
the valid range O .. 1.
Reasons Error in the assertion file.
Solution Correct the value given in the assertion.
See Table 11.
Assertion on “mode” must set a single Problem An assertion tries to specify the “mode” property of a
value, not A .. B subprogram, but sets the “mode” to a range A .. B
instead of a single value, as Bound-T requires.
Reasons Error in the assertion file.
Solution ~ Correct the assertion to set one value. See Table 11.
Assertion on “state” must set a single Problem An assertion tries to specify the “state” property of a
value, not A .. B subprogram, but sets the “state” to a range A .. B
instead of a single value, as Bound-T requires.
Reasons Error in the assertion file.
Solution ~ Correct the assertion to set one value. See Table 11.
BL instruction cannot perform a role Problem An instruction-role assertion tells Bound-T to model
the present BL instruction with a role that Bound-T
cannot accept.
Reasons The assertion is written that way. Perhaps the

44 Error messages

assertion has the wrong address (or wrong offset)
that makes Bound-T apply the assertion to the wrong
instruction.

Bound-T for ARM7

Error Message

Meaning and Remedy

Branch target address is not a valid
address, taken as return

Call without exchange from caller state
to callee state

Cannot determine executable file type

Cannot read file

Cannot restore CPSR in User or System
Mode

Bound-T for ARM7

Solution

Problem

Reasons

Solution

Problem

Reasons

Solution

Problem

Reasons

Solution

Problem

Reasons
Solution

Problem

Reasons

Correct the assertion.

The (statically known) target address of the present
branch instruction is not a valid code address (out of
range, or misaligned).

The program is written in that way, or Bound-T is
following a false path.

Correct the program, or use options or assertions to
avoid analysing the false path.

This call instruction cannot change the operating
state (it is not a BX), but the callee is known to use a
different operating state, the callee state, than the
caller, which uses the caller state.

A mistake in the program (perhaps a Bx should be
used) or a mistake in whatever source defined the
state of the callee.

Correct the mistake.

Bound-T does not recognise the file type (file format)
of the executable target program file named on the
command line.

(1) The file uses a format that Bound-T does not
support, or

(2) Bound-T does not understand the file header
information correctly.

(1) Get an executable file in a format that Bound-T
supports, or

(2) use a command-line option to define the file
format, for example -elf.

Bound-T cannot read the executable program file
named on the command line, although the file seems
to exist.

The file permissions do not allow reading.
Correct the file permissions.

The current subrogram is assumed to execute in User
Mode or System Mode, and the current instruction is
a Data Processing instruction that assigns a new
value to the pc register — that is, it executes a com-
puted branch — and it also has the s-bit (instruction
bit 20) on, which in this case means that the instruc-
tion copies the SPSR into the CPSR. However, this
action is not allowed in these modes because the
SPSR is not accessible.

(1) The program is written in this way, or

(2) the current subprogram should be analysed
assuming some other mode (this kind of instruction
is normally used to exit from an exception or
interrupt mode).

Error messages 45

Error Message

Meaning and Remedy

File not found

Incorrect exit from mode M taken as
return

Invalid instruction code

Jump by tabled offset at address A that
is blank (not loaded)

46 Error messages

Solution

Problem

Reasons

Solution

Problem

Reasons

Solution

Problem

Reasons

Solution

Problem

Reasons

Solution

(1) Correct the program to use only allowed
instructions, or

(2) use the -mode option or an assertion on the
“mode” property to make Bound-T assume some
other mode for this subprogram.

Bound-T cannot open the executable program file
named on the command line, because there seems to
be no file with this name.

The file-name on the command line is wrong,
mistyped, or missing some directory path.

Correct the command line.

The current instruction seems to be some kind of exit
or return from an interrupt or exception (that is, a
Data Processing instruction with the pc as the
destination register and the s bit set), but the
instruction is not exactly the standard exit/return
instruction for the current mode, M.

The wrong mode is assumed, or the program uses a
non-standard way to exit/return from an exception
or interrupt, or the instruction has some other
purpose that Bound-T does not understand.

Correct the assumed mode, or change the program to
use the standard exit/return instruction for this
mode.

The instruction code at this point in the program (in
the memory image from the executable file) is not
the code of a legal ARM or Thumb instruction.

(1) The program is written in this way, or
(2) the program will, at run time, put a correct
instruction at this location, before executing it.

(1,2) Change the program to include all its
instructions in the executable file, at their initial and
fixed addresses.

Bound-T has classified the current instruction as a
jump (skip) by an offset picked from a constant table
of offsets by a dynamically computed index (model
STO; this instruction perhaps implements a switch-
case structure). Analysis suggests that the table has a
slot at address A. However, the memory image in the
executable file does not define the value of the
memory location at A, so this offset is unknown.

(1) The instruction was misclassified and is not a
jump via an offset table, or

(2) Bound-T has overestimated the range of table
indices (I).

Change the program to avoid this sort of code. If that
is difficult, please report the problem to Tidorum.

Bound-T for ARM7

Error Message

Meaning and Remedy

Jump by tabled offset finds out-of-range
slot address A

Jump by tabled offset F * X (at address
A) from base B causes over- or under-
flow

Jump by tabled offset F * X (at address
A) from base B ignored because
computed target T is not a valid address

Bound-T for ARM7

Problem

Reasons

Solution

Problem

Reasons

Solution

Problem

Bound-T has classified the current instruction as a
jump (skip) by an offset picked from a constant table
of offsets by a dynamically computed index (model
STO; this instruction perhaps implements a switch-
case structure). Analysis suggests that the table has a
slot at address A, but this is not in the range of valid
addresses.

(1) The instruction was misclassified and is not a
jump via an offset table, or

(2) Bound-T has overestimated the range of table
indices.

Change the program to avoid this sort of code. If that
is difficult, please report the problem to Tidorum.

Bound-T has classified the current instruction as a
jump (skip) by an offset picked from a constant table
of offsets by a dynamically computed index (model
STO; this instruction perhaps implements a switch-
case structure). Analysis suggests that the table has a
slot at address A, and the memory image in the exe-
cutable file defines the offset value (before scaling)
at this address as X, but the computation of the
branch target address as F*X+B causes under- or
overflow, so the result is suspect and is not used.
That is, this target is omitted from the flow graph.

The numbers F and X are shown in decimal form, A
and B in hexadecimal form.

(1) The instruction was misclassified and is not a
jump by an offset table, or

(2) Bound-T has overestimated the range of table
indices, or

(3) the offset values in the table are set at run time,
so the table is not constant.

Change the program to avoid this sort of code. If that
is difficult, please report the problem to Tidorum.

Bound-T has classified the current instruction as a
jump (skip) by an offset picked from a constant table
of offsets by a dynamically computed index (model
STO; this instruction perhaps implements a switch-
case structure). Analysis suggests that the table has a
slot at address A, and the memory image in the exe-
cutable file defines the offset value (before scaling)
at this address as X, but the computation of the
branch target address as F*X+B gives a value T that
is not a valid code address. Therefore, the offset in
this slot is not used and target T is not included in
the flow graph.

The numbers F and X are shown in decimal form,
while A, B, and T are in hexadecimal form.

Error messages 47

Error Message

Meaning and Remedy

Jump via table finds out-of-range slot

indexB + I

Jump via table slot at address A that is

blank (not loaded)

Reasons

Solution

Problem

Reasons

Solution

Problem

Reasons

Solution

Jump via table slot at address A ignored Problem

because slot value V is not a valid

address

48

Error messages

(1) The instruction was misclassified and is not a
jump by an offset table, or

(2) Bound-T has overestimated the range of table
indices, or

(3) the offset values in the table are set at run time,
so the table is not constant.

Change the program to avoid this sort of code. If that
is difficult, please report the problem to Tidorum.

Bound-T has classified the current instruction as a
jump (branch) to an address picked from a constant
table of addresses by a dynamically computed index
(model BTA; this instruction perhaps implements a
switch-case structure). The table seems to start at
address B, and the current table slot has the offset
(index) I, giving the total table-slot address B + I,
but this is not in the range of valid addresses.

(1) The instruction was misclassified and is not a
jump via an address table, or

(2) Bound-T has overestimated the range of table
indices (I).

Change the program to avoid this sort of code. If that
is difficult, please report the problem to Tidorum.

Bound-T has classified the current instruction as a
jump (branch) to an address picked from a constant
table of addresses by a dynamically computed index
(mode BTA,; this instruction perhaps implements a
switch-case structure). The current table slot is at
address A, computed as B + I where B is the
apparent start of the table and I is the offset (index)
that Bound-T is now considering. However, the
memory image in the executable file does not define
the value of the memory location at A, so the target
address of the jump is unknown.

(1) The instruction was misclassified and is not a
jump via an address table, or

(2) Bound-T has overestimated the range of table
indices (I) or the start address (B), or

(3) the program will put some address in this table
slot at run time, so the table is a variable and not a
constant.

Change the program to avoid this sort of code. If that
is difficult, please report the problem to Tidorum.

Bound-T has classified the current instruction as a
jump (branch) to an address picked from a constant
table of addresses by a dynamically computed index
(mode BTA; this instruction perhaps implements a
switch-case structure). The current table slot is at
address A, and the memory image in the executable
file defines the value of this memory location as V,
but this value is not a valid code address (out of
range, or misaligned).

Bound-T for ARM7

Error Message

Meaning and Remedy

Reasons

Solution

(1) The instruction was misclassified and is not a
jump via an address table, or

(2) Bound-T has overestimated the range of table
indices (I) or the start address (B), or

(3) the program will put some valid address in this
table slot at run time, so the table is a variable and
not a constant.

Change the program to avoid this sort of code. If that
is difficult, please report the problem to Tidorum.

LDM cannot use PC as the base register

LDM with S bit (©) should not have
write-back (1)

LDM with S bit (©) should not occur in
User Mode

Missing data for PC-based branch target
at address A

Problem

Reasons
Solution

Problem

Reasons
Solution

Problem

Reasons

Solution

Problem

Reasons

Solution

The current instruction is an Lbm with the pc as the
base register, which is not allowed [4].

The program is written in this way.
Correct the program to use only valid instructions.

The current instruction is an Lom with the s bit on
and also specifies that the updated value of the base
register should be written back to the base register,
which in assembly language are denoted by caret
(™) and exclamation (!) suffixes, respectively. This
combination is not allowed.

The program is written in this way.
Correct the program to use only valid instructions.

The current instruction is an Lom with the s bit on,
which in assembly language is denoted by a caret
suffix () and specifies “user bank transfer”, but

such instructions are not allowed in User Mode.

The program is written in this way. Perhaps this
subprogram actually runs in another mode.

Correct the program to use only valid instructions, or
specify a different operating mode.

The current instruction is a branch to a code address
loaded from a statically known memory location
referenced by a constant (immediate) offset to the
PC. However, the memory image in the executable
file does not define the value of this memory
location, so Bound-T cannot follow the branch.

Perhaps the PC-based memory location holds a
variable value, not a constant. If so, Bound-T cannot
currently model this dynamic branch.

Change the executable file to define the constant
target address, or to avoid such dynamic branches.

MRS to PC is invalid, effect ignored

MSR from PC is invalid, effect ignored

Bound-T for ARM7

Problem

Reasons
Solution

Problem

Reasons

The current instruction is Mrs with the pc as the
destination register. This combination is not
allowed [4].

The program is written in this way.
Correct the program to use only valid instructions.

The current instruction is msr with the pc as the
source register. This combination is not allowed [4].

The program is written in this way.

Error messages 49

Error Message

Meaning and Remedy

Solution Correct the program to use only valid instructions.
MSR from PC to flags is invalid, effect Problem The current instruction is msr (limited to set only the
ignored condition flags) with the pc as the source register.
This combination is not allowed [4].
Reasons The program is written in this way.
Solution Correct the program to use only valid instructions.
MSR to SPSR is impossible in User mode Problem The current instruction is msr with the spsr as the
destination register. However, Bound-T has assumed
that the current mode is User Mode, which means
that the instruction is invalid because the sPsR is not
accessible in User Mode.
Reasons The program is written in this way, which probably
means that the assumption of User Mode is wrong.
Solution Use the command-line option -mode or assertions on
the “mode” property to make Bound-T use the
correct mode for the analysis of this subprogram.
MSR to SPSR flags is impossible in User Problem The current instruction is msr (limited to set only the
mode condition flags) with the spsR as the destination
register. However, Bound-T has assumed that the
current mode is User Mode, which means that the
instruction is invalid because the sPsR is not
accessible in User Mode.
Reasons The program is written in this way, which probably
means that the assumption of User Mode is wrong.
Solution ~ Use the command-line option -mode or assertions on
the “mode” property to make Bound-T use the
correct mode for the analysis of this subprogram.
MUL/MLA uses PC Problem The current instruction is MUL, MLA, MULL, or MLAL, and
or one of the operands is the pc, which is not allowed
MULL/MLAL uses PC for these instructions [4].
Reasons The program is written in this way.
Solution Correct the program to use only valid instructions.
MUL/MLA has Rd = Rm Problem The current instruction is muL or MLA and uses the
same register as both rRd and rRm operands, which is
not allowed for these instructions [4].
Reasons The program is written in this way.
Solution ~ Correct the program to use only valid instructions.
MULL/MLAL uses a register in multiple Problem The current instruction is MuLL or MLAL and uses the
roles same register(s) in several operand roles, which is
not allowed for these instructions [4].
Reasons The program is written in this way.
Solution Correct the program to use only valid instructions.
No -device was specified Problem The Bound-T command line did not specify the
ARMY device for the analysis.
Reasons Missing option -device on the command line.
Solution Add the -device option to the command line.

50 Error messages

Bound-T for ARM7

Error Message

Meaning and Remedy

No instruction loaded at this address

Patch address A exceeds segment
boundaries

Patch address A is not word-aligned

Patching branch from A to T is too long

Patching data invalid: text

Patching data or params invalid

PC-based LDC/STC cannot have write-
back

Bound-T for ARM7

Problem

Reasons

Solution

Problem

Reasons
Solution

Problem

Reasons
Solution

Problem

Reasons
Solution

Problem

Reasons
Solution

Problem

Reasons
Solution

Problem

Reasons

Solution

The program tries to execute an instruction from a
memory location that is not defined in the executable
program file (memory image). Bound-T cannot
continue its analysis because the contents of this
memory location are unknown.

(1) The program is written in this way, or

(2) some part of the program is missing from the
executable file, or

(3) the program will put instructions in this memory
location at run time, before executing them.

(1,2,3) Correct the program to include all its
instructions in the executable, at their initial and
fixed addresses.

The patch file (see Chapter 8) specifies a patch at
address A, but A is not located in any segment of the
target program's memory image, nor is it in the
exception vector area 0 .. 1C (hex).

Error in the patch file.
Correct the patch file.

The patch file (see Chapter 8) specifies a patch at
address A, but A is not a multiple of 4 octets, as
currently required for all patches (also for Thumb
patches).

Error in the patch file.
Correct the patch file.

The patch file (see Chapter 8) specifies a patch at
address A, to be a branch to address T, but the
distance from A to T is too large to be encoded in a
single B instruction.

Error in the patch file.
Correct the patch file.

The patch file (see Chapter 8) specifies a patch
consisting of the data text, but this text is not in the
correct syntax for ARM7 patches.

Error in the patch file.
Correct the patch file.

The patch file (see Chapter 8) contains a line that is
not understood as an ARM7 patch.

Error in the patch file.
Correct the patch file.

The current instruction is an Lbc or stc with the pc as
the base register. The instruction also specifies “write
back” of the auto-modified base register value, which
is not allowed for the pc [4].

The program is written in this way.

Correct the program to use only valid instructions.

Error messages 51

Error Message

Meaning and Remedy

PC-based load or store cannot have Problem The current instruction is an LDR, STR, LDRH, STRH,
write-back LDRsB, or LRDSH with the pc as the base register. The
instruction also specifies “write back” of the auto-
modified base register value, which is not allowed for
the pc [4].
Reasons The program is written in this way.
Solution ~ Correct the program to use only valid instructions.
PC used as register offset Problem The current load or store instruction computes the
memory address using a base register and an offset
register. The pc register is specified as the offset
register, which is not allowed for these
instructions [4].
Reasons The program is written in this way.
Solution Correct the program to use only valid instructions.
STM cannot use PC as the base register ~ Problem The current instruction is an stm with the pc as the
base register, which is not allowed [4].
Reasons The program is written in this way.
Solution ~ Correct the program to use only valid instructions.
STM with S bit (”) should not have Problem The current instruction is an stM with the s bit on
write-back (1) and also specifies that the updated value of the base
register should be written back to the base register,
which in assembly language are denoted by caret
(™) and exclamation (!) suffixes, respectively. This
combination is not allowed.

Reasons The program is written in this way.

Solution Correct the program to use only valid instructions.

STM with S bit (©) should not occur in Problem The current instruction is an stm with the s bit on,

User Mode which in assembly language is denoted by a caret
suffix () and specifies “user bank transfer”, but
such instructions are not allowed in User Mode.

Reasons The program is written in this way. Perhaps the
current subprogram actually uses another mode.

Solution ~ Correct the program to use only valid instructions, or
specify a different operating mode.

SWP with PC is invalid, effect ignored Problem The current instruction is an swp that specifies the PC
as an operand, which is not allowed [4].
Reasons The program is written in this way.
Solution Correct the program to use only valid instructions.
This BX instruction cannot perform a role Problem An instruction-role assertion tells Bound-T to model
the present Bx instruction with a role that Bound-T
cannot accept.

Reasons The assertion is written that way. Perhaps the
assertion has the wrong address (or wrong offset)
that makes Bound-T apply the assertion to the wrong
instruction.

Solution Correct the assertion.

52 Error messages

Bound-T for ARM7

Error Message

Meaning and Remedy

This instruction cannot perform a role Problem An instruction-role assertion tells Bound-T to model
the present instruction with a role that Bound-T
cannot accept.

Reasons The assertion is written that way. Perhaps the
assertion has the wrong address (or wrong offset)
that makes Bound-T apply the assertion to the wrong
instruction.

Solution Correct the assertion.

THUMB code address A is misaligned Problem The address A of the current Thumb instruction is
not a multiple of 16 bits = 2 octets. This is an illegal
address for a Thumb instruction.

Reasons (1) The program is written in this way, or
(2) the address of a root subprogram given on the
Bound-T command line has this error.

Solution (1) Correct the program to use only 16-bit aligned
Thumb instructions, or
(2) correct the command line.

Thumb instruction “bx pc” from a non- Problem The current Thumb instruction is Bx pc but the

word-aligned address is undefined; taken instruction is not located at a word-aligned address

as return (multiple of 4 octets). The behaviour of this
instruction is not defined in [4].

Reasons The program is written in this way.

Solution Correct the program to use only allowed instructions.

Undef is not implemented Problem This instruction is an “Undefined Instruction” [4].
Bound-T does not support such instructions.

Reasons The program is written in this way. Perhaps the
target system has a coprocessor that understands this
instruction.

Solution Correct the program to use only supported
instructions.

Unexpected end of [COFF, ELF, Intel- Problem The executable file is not complete.

Hex, UBROF] file

Reasons The executable file format is inconsistent.

Solution ~ Obtain a correct executable program file.

Variable address null Problem An assertion names a variable by means of a string
that gives the machine-level address or register-
name, but the string is null (contains no text).

Reasons Error in the assertion text.

Solution Correct the assertion file.

Bound-T for ARM7

Error messages 53

PATCH FILES

The -patch option

This chapter describes the syntax and meaning of patch files for the Bound-T analysis of ARM7
programs. A patch file is named on the Bound-T command line with an option of the form
-patch filename and contains text that defines certain changes to the memory image of the
target program to be applied before analysis begins.

Bound-T for ARM7 at present implements only 32-bit patches, not 16-bit patches. However,
the patched code and the patch can use either ARM state or Thumb state. For Thumb code the
patch must supply an even number of 16-bit Thumb instructions.

Form and meaning of ARM7 patch files

The patch file must be a text file with line terminators valid for the platform on which Bound-T
is run. Blank and null lines are ignored. Leading and trailing whitespace on each line is
ignored. Lines that start with “--” (possibly with leading whitespace) are ignored (as
comments).

The remaining lines are patch lines. Each patch line contains two or more fields (tokens)
separated by whitespace. The first field is an ARM7 address in hexadecimal form and defines
the location that is patched; the remaining fields define the data for the patch. The address
must be 32-bit aligned (a multiple of 4). The addressed location must be present in some code
or data segment loaded from the executable file, or lie in the exception vector area from
address O to address 1F hex. In other words, patches cannot be used to extend the loaded
memory image, only to change its content.

The table below explains the form and meaning of the patch lines for the ARM7. Two forms
are possible, corresponding to the two rows in the table. Note that field 3 is not used (is blank)
in the first form (first row in the table).

Table 21: Patch formats

Field 1 Field 2 Field 3 Meaning

Address (hex) 32-bit word (hex) Places the word (field 2) at the patch address
(field 1), overwriting the word loaded from the
executable file at the patch address.

Address (hex) "b" Target address (hex) Places an ARM 32-bit branch (B instruction) to

or subprogram name the target address (field 3) at the patch address
(field 1), overwriting the word loaded from the
executable file at the patch address.

The distance from the patch address (field 1,
where the B instruction will lie) to the target
address (field 3) must be small enough to fit in
the immediate offset field of a B instruction.

54

Note that in the second form (second row of the table) field 2 shall contain the literal text “b”
but without any enclosing quotes. This form is mainly intended for changing entries in the
exception vectors.

If you want to use the first form to patch the hexadecimal value B (decimal 11) into the
program, add a leading zero and write OB in field 2. This avoids confusion with the “b”
mnemonic of the second form.

The hexadecimal values can contain underlines () to visually separate digit groups. The
underlines have no numerical meaning; the string 8AB 013 denotes the same hexadecimal
number as the string 8AB013.

Patch files Bound-T for ARM7

Example

Here is an example of a patch file:

-- This is a comment.
-- The following patch line places the instruction

- mov r4,124
-- which is "E3_A04_07C" in hexadecimal, at the
—-- address 2000810, also in hex:

2000810 E3_A04 07C

-- The following patch line places the instructions
-— b Handler
-- at address 8, where "Handler" is assumed to be

-- a subprogram name, present in the symbol-table:

8 b Handler

Note that a comment cannot be appended to a patch line, so the following patch line is wrong:

2000810 E3_A04 07C -- This kind of comment is not allowed.

Bound-T for ARM7 Patch files

55

56

Patch files

Tidorum Ltd

Tiirasaarentie 32
FI-00200 Helsinki
Finland

www.tidorum.fi
info@tidorum.fi

Tel. +358 (0) 40 563 9186
Fax +358 (0) 42 563 9186
VAT FI 18688130

Bound-T for ARM7

mailto:info@tidorum.fi
http://www.tidorum.fi/

	1Introduction
	1.1Purpose and scope
	1.2Overview
	1.3References
	1.4Abbreviations and acronyms
	1.5Glossary of terms
	1.6Typographic Conventions

	2Using Bound-T for ARM7
	2.1Overview
	2.2Supported ARM7 features and tools
	2.3Input formats
	Executable file
	Patch file

	2.4Command arguments and options
	Target device selection options
	Device-specific options
	Program loading options
	Instruction modelling options
	Coprocessor modelling options
	ARM7-specific -trace items
	ARM7-specific -warn items

	2.5Outputs
	Execution time (WCET)
	Stack usage
	Disassembled instructions (-trace decode)

	3Writing Assertions on ARM7 Programs
	3.1Overview
	3.2Symbolic names
	Linkage symbols
	Scopes

	3.3Naming items by address
	Subprograms, labels, exception vectors
	Code-address offsets
	Variables, registers, memory locations

	3.4Instruction roles
	3.5Assertable properties
	3.6Defining the state (ARM or Thumb) of dynamic callees
	Asserting the callee state
	Single-state programs
	Adding the '1' bit by an offset
	Identifying callees by machine address

	3.7Stacks

	4The ARM7 and Timing Analysis
	4.1Overview
	4.2The ARM7
	Instruction sets
	General registers
	Instruction alignment and ARM/Thumb state transitions
	The status register and condition flags
	Memory
	Processor modes

	4.3Static execution time analysis on the ARM7
	General
	Instruction cycle types: N, S, I, C cycles

	5Supported ARM7 Features
	5.1Overview
	General support level
	Reminder of generic limitations
	ARM7 features with incomplete models or analysis

	5.2Operating state and the BX instruction
	5.3Operating mode and the MSR and SWI instructions
	5.4Control-transfer instructions
	Why ARM7 control transfers are tricky
	Factors that define the role of a control-transfer instruction
	Modelling dynamic transfers of control
	Idiomatic control-transfer pairs
	Tracking the Link Register LR = R14 with the option -lr
	Choosing the role of a stand-alone control-transfer instruction
	Resolving dynamic transfers of control

	5.5Computational operations
	Operations with opaque results
	MVN operation
	LSL with zero shift-count (LSL #0)

	5.6Condition codes
	5.7Memory data
	Words, half-words, octets
	Dynamically addressed data
	Overlapping data

	5.8Coprocessors
	5.9Time accuracy and approximations
	Timing of conditional instructions
	Multiplication instructions
	Coprocessor operations
	Memory wait states
	Summary of approximations

	6Procedure Calling Standards
	6.1Procedure calls in the ARM7
	6.2Model of calling standard in Bound-T

	7Warnings and Errors for ARM7
	7.1Warning messages
	7.2Error messages

	8Patch Files
	The -patch option
	Form and meaning of ARM7 patch files
	Example

